
A Proposal for XSLT 4.0
Michael Kay

Saxonica
<mike@saxonica.com>

Abstract

This paper defines a set of proposed extensions to the XSLT 3.0 language
[18], suitable for inclusion in version 4.0 of the language were that ever to
be defined.

The proposed features are described in sufficient detail to enable the
functionality to be understood and assessed, but not in the microscopic
detail needed for the eventual language specification.

Brief motivation is given for each feature. The ideas have been collected
by the author both from his own experience in using XSLT 3.0 to develop
some sizable applications (such as an XSLT compiler: see [4], [3]), and also
from feedback from users, reported either directly to Saxonica in support
requests, or registered on internet forums such as StackOverflow.

1. Introduction

The W3C is no longer actively developing the XSLT and XPath languages, but this
does not mean that development has to stop. There is always the option of some
other organisation taking the language forward; the W3C document license
under which the specification is published 1 explicitly permits this, though use of
the XSLT name might need to be negotiated.

This paper is a sketch of new features that could be usefully added to the lan-
guage, based on experience and feedback from users of XSLT 3.0.

XSLT 3.0 (by which I include associated specifications such as XPath 3.1) intro-
duced some major innovations [18]. A major theme was support for streaming,
and by and large that aspect of the specification proved successful and complete;
I have not felt any need to propose changes in that area. Another major innova-
tion was packages (the ability to modularize a stylesheet into separate units of
compilation). I suspect that there is room for polishing the spec in this area, but to
date there has been relatively little feedback from users, so it is too early to know
where the improvement opportunities might lie. The third major innovation con-
cerns the data model, with the introduction of maps, arrays, JSON support, and
higher-order functions, and it is in these areas that most of the proposals in this

1See https://www.w3.org/Consortium/Legal/2015/doc-license

109

paper fall, reflecting that there has been signficant user experience gained in these
areas.

Some of this user experience comes from projects in which the author has
been directly involved, notably:
• Development of an XSLT compiler written in XSLT, reported in [4] and [3].

The resulting compiler, at the time of publication of this paper, is almost ready
for release.

• Development of an XSD validator written in XSLT, reported in [2] (The project
as described was 90% completed, but the code has never been released).

• An evaluation of the suitability of XSLT 3.0 for transforming JSON files, repor-
ted at XML Prague [1].

These projects stretched the capabilities of the XSLT language and in particular
involved heavy use of maps for representing data structures.

Other feedback has come from users attempting less ambitious projects, and
typically reporting difficulties either directly to Saxonica or on internet forums
such as StackOverflow.

The paper is concerned only with the technical content of the languages, and
not with the process by which any new version of the standards might be agreed.
In practice XSLT development is now being undertaken by only a small handful
of implementors, and therefore a more lightweight process for agreeing language
changes might be appropriate.

The proposal involves changes to the XPath language and the function library
as well as to XSLT itself. In this paper, rather than organise material according to
which specification is affected, I have arranged it thematically, so that the impact
of related changes can be more easily assessed. I have also tried to organise it so
that it can be read sequentially; I try never to use a new feature until it has been
introduced.

2. Types
Types are fundamental to everything else, so I will start with proposed modifica-
tions to the type system.

XSLT 3.0 (by which I include XPath 3.1) enriches the type system with maps
and arrays, which greatly enhances the power of the language. But experience
has shown some limitations.

2.1. Tuple types

Maps in XSLT 3.0 are often used in practice for structures in which the keys are
statically known. For example, a complex number might be represented as
map{"r": 1.0e0, "i": -1.0e0}. Declaring the type of this construct as

A Proposal for XSLT 4.0

110

map(xs:string, xs:double) doesn't do it justice: such a type definition allows
many values that don't actually represent complex numbers.

I propose instead to allow the type of these values to be expressed as tuple(r
as xs:double, i as xs:double).

Note that I'm not introducing tuples as a new kind of object here. The values
are still maps, and the set of operations that apply to tuples are exactly the same
as the operations that apply to maps. I'm only introducing a new way of describ-
ing and constraining the type.

A few details on the specification:
• The field names (here r and i) are always xs:string instances (for a map to

be valid against the tuple type definition, the keys must match these strings
under the same-key comparison rules). Normally the names must conform to
the rules for an xs:NCName; but to allow processing of any JSON object,
including objects with keys that contains special characters such as spaces, I
allow the field names to be arbitrary strings; if they are not NCNames, they must
be written in quotes.

• If the type allows the value of an entry to be empty (for example middle in
tuple(first as xs:string, middle as xs:string?, last as xs:string)
then the relevant entry can also be absent. Values where the entry is absent
can be distinguished from those where the entry is present but empty using
map:contains(), but both satisfy the type.

• The as clause may be omitted (for example tuple(r, i)). This is especially
useful when tuple types are used as match patterns, where it is only necessary
to give enough information to give an unambiguous match. Contrary to con-
vention, the default type for a field is not item()* but rather item()+: this
ensures that a type such as tuple(ssn) will only match a map if the entry
with key ssn is actually present.

• A tuple type may be defined as extensible by adding ,* to the list of fields, for
example tuple(first as xs:string, middle as xs:string?, last as
xs:string, *). An extensible tuple type allows the map to contain entries
additional to those listed, with no constraints on the keys or values; an inex-
tensible tuple type does not allow extra entries to appear.

• The subtype-supertype relation is defined across tuple types in the obvious
way: a tuple type T is a subtype of U if we can establish statically that all
instances of T are valid instances of U. This will take into account whether U is
extensible. Similarly a tuple type may be a subtype of a map type: for example
tuple(r as xs:double, i as xs:double) is a subtype of map(xs:string,
xs:anyAtomicType+). By transitivity, a tuple is therefore also a function.

• A processor is allowed to report a static error for a lookup expression X?N if it
can establish statically that X conforms to a tuple type which does not allow an

A Proposal for XSLT 4.0

111

entry named N. For example if variable $c is declared with the type tuple(r
as xs:double, i as xs:double), then the expression $c?j would be a static
error. (Note also that 1 to $c?i might give a static type error, because the
processor is able to infer a static type for $c?i)

However, a dynamic lookup in the tuple for a key that is not a known field
succeeds, and returns an empty sequence. This is to ensure that tuples are
substitutable for maps.

• If a variable or function argument declares its required type as a tuple type,
and a map is provided as the supplied value, then the map must strictly con-
form with the tuple type; no coercion is performed. For example if the
required type has a field declared with i as xs:double then the value of the
relevant entry in the map must actually be an xs:double; an xs:integer will
not be promoted.

2.2. Union Types
XSLT 3.0 and XPath 3.1 provide new opportunities for using union types. In par-
ticular, it is now possible to define a function that accepts an argument which is,
for example, either an xs:date or xs:dateTime. But this can only be achieved by
defining a new union type in a schema and importing the schema, which is a
rather cumbersome mechanism.

I therefore propose to allow anonymous union types to be defined inline: for
example <xsl:param name="arg" as="union(xs:date, xs:dateTime,
xs:time)"/>. The semantics are exactly the same as if the same union type were
defined in a schema.

The member types must be generalized atomic types (that is, atomic types or
simple unions of atomic types), which means that the union is itself a generalized
atomic type.

2.3. Node types
The element() and attribute() node types are extended to allow the full range
of wildcards permitted in path expressions: for example element(*:local),
attribute(xml:*). This is partly just for orthogonality (there is no reason why
node types and node tests should not be 100% aligned, and this is one of the few
differences), and partly because it is actually useful, for example, to declare that a
template rule returns elements in a particular namespace.

This means that patterns such as match="element(xyz:*, xs:date) become
possible, matching all elements of type xs:date in a particular namespace. The
default priorities for such patterns are established intuitively: the priority when
foo:* or *:bar is used is midway between the priorities for a full name like
foo:bar, and the generic wildcard *. Since element(*, T) has priority 0, while

A Proposal for XSLT 4.0

112

element(N, T) is 0.25, this means the priority for element(p:*, T) is set at
0.125.

2.4. Default namespace for types
The XPath static context defines a default namespace for elements and types. I
propose to change this to allow the default namespace for types to be different
from the default namespace for elements. Since relatively few users write
schema-aware code, 99% of all type names in a typical stylesheet are in the XML
schema namespace (for example xs:integer) and it makes sense to allow these to
be written without a namespace prefix. For XSLT I propose to extend the xpath-
default-namespace attribute so it can define both namespaces, space-separated.
(Note however that when constructor functions are used, as in
xs:integer(@status), it is the default namespace for functions that applies.)

2.5. Named item types
In a stylesheet that uses maps to represent complex data structures, and espe-
cially when these are defined using the new tuple() syntax, you quickly find
yourself using quite complex type definitions repeatedly on many different varia-
ble and function declarations. This has several disadvantages: it means that when
the definition changes, code has to be changed in many different places; it fails to
capture the semantic intent of the type; and it exposes details of the implementa-
tion that might be of no interest to the user.

I therefore propose to introduce the concept of named item types. These can
be declared in a stylesheet using top-level declarations:

<xsl:item-type name="complex" as="tuple(r as xs:double, i as
xs:double)"/>

and can be referenced wherever an item type may appear using the syntax
type(type-name): for example <xsl:param name="arg" as="type(complex)"/
>. Type names, like other names, are QNames, and if unprefixed are assumed to
be in no namespace. The usual rules for import precedence apply. Types may be
defined with visibility private or final; the definition cannot be overridden in
another package.

Named item types also allow recursive type definitions to be created, for
example:

<xsl:item-type name="binary-tree"
 as="tuple(left as type(binary-tree)?, value as item()*,
right as type(binary-tree)?)"/>

This means that item type names (like function names) are in scope within their
own definitions. This creates the possibility of defining types that cannot be

A Proposal for XSLT 4.0

113

instantiated; I suggest that we leave implementors to issue warnings in such
cases.

2.6. Type testing in patterns
With types becoming more expressive, and with increasing use of values other
than nodes in <xsl:apply-templates>, the syntax match=".[. instance of
ItemType]" to match items by their type becomes increasingly cumbersome. This
syntax also has the disadvantage that there is no "smart" calculation of default
priorities based on the type hierarchy. I therefore propose to introduce new syn-
tax for patterns designed for matching items other than nodes.
• type(T) matches an item of type T, where T is a named item type. The default

priority for such a pattern depends on the definition of T, and is the same as
that of the pattern equivalent to T.

• A pattern in the form atomic(EQName), followed optionally by predicates,
matches atomic values of a specified atomic type. For example,
atomic(xs:string)[matches(., '[A-Z]*')] matches all xs:string values
comprising Latin upper-case letters.

Note, this syntax is needed because a bare EQName used as a pattern matches an
element node with a given name. Semantically, atomic(Q) is equivalent to union(Q)
(a singleton union).

• Item types in the form tuple(...), map(...), array(...), function(...), or
union(...) match any item that is an instance of the specified item type.

In fact, for template rules that need to match JSON objects, a tuple type
that names a selection of the fields in the object without giving their types will
often be perfectly adequate: for example match="tuple(ssn, first,
middle, last, *)" is probably enough to ensure that the right rule fires.

The default priority for these patterns is defined later in the paper.
Any of these patterns may be followed by one or more predicates.

The effect of these changes is that for any ItemType, there is a corresponding
pattern with the same or similar syntax:
• For the item type item(), the corresponding pattern is .
• For an item type expressed as an EQName Q, the corresponding pattern is

atomic(Q)

• For an item type written as type(...), map(...), array(...),
function(...), tuple(...), or union(...), the item type can be used as a
pattern as is

• For an item type written as a KindTest (for example element(P) or
comment()), the item type can be used as a pattern as is (this is because every
KindTest is a NodeTest). There is one glitch here: as an item type, node()

A Proposal for XSLT 4.0

114

matches all nodes, but as a pattern, it does not match attributes, namespace
nodes, or document nodes. I therefore propose to introduce the syntax
node(*), which is defined to match any node (of any node kind) whether it is
used as a step in a path expression or as the first step in a pattern.

These extensions to pattern syntax are designed primarily to make it easier to
process the maps that result from parsing JSON using the recursive-descent tem-
plate matching paradigm. For example, if the JSON input contains:

{ "ssn": "ABC12357", "firstName": "Michael", "dateOfBirth": "1951-10-11"}

then this can be matched by a template rule with the match pattern
match="tuple(ssn as xs:string, dateOfBirth, *)[?dateOfBirth castable as
xs:date]"

A possible extension, which I have not fully explored, is to allow nested patterns
within a tuple pattern, rather than only allowing item types. For example, this
would allow the previous example to be written:

match="tuple(ssn as xs:string, dateOfBirth[. castable as xs:date], *)"

Indeed, a further extension might be to allow a predicate wherever an item type
is used, for example in the declaration of a variable or a function argument. While
this is powerful, it creates considerable complications because of the fact that
predicates can be context-sensitive

2.7. Function Conversion Rules
The so-called function conversion rules define how the supplied arguments to a
function call are converted (where necessary) to the required type defined in the
function signature. In XSLT (though not XQuery) the same rules are also used to
convert the supplied value of a variable to its required type.

The name "function conversion rules" is rather confusing because the thing
being converted is not necessarily a function, nor is the operation exclusively trig-
gered by a function call, so my first proposal is to rename them "coercion rules".
This is consistent with the way the term "function coercion" is already used in the
spec.

The coercion rules are pragmatic and somewhat arbitrary: they are a compro-
mise between the convenience to the programmer of not having to do manual
conversion of values to the required type, and the danger of the system doing the
wrong conversion if left to its own devices.

I propose to change the coercion rules so that where the required type is a
derived atomic type (for example xs:positiveInteger), and the supplied value
after atomization is an instance of the same primitive type (for example the
xs:integer value 17) then the value is automatically converted -- giving a
dynamic error, of course, if the conversion fails. Currently no-one uses the

A Proposal for XSLT 4.0

115

derived atomic types such as xs:positiveInteger in a function signature
because of the inconvenience that you then can't supply the literal integer 17 in a
function call. This change brings atomic values into line with the way that other
values such as maps work: if a function declares the required type of a function
argument as map(xs:string, xs:integer) then the caller can supply any map
as an argument, and the function calling mechanism will simply check that the
supplied map conforms with the constraints defined by the function for what
kind of map it will accept; there is no need for the caller to do anything special to
invoke a conversion.

(I would have preferred a more radical change, whereby atomic values are labelled only
with their primitive type, and not with a restricted type. So the expression 17 instance of
xs:positiveInteger would return true, which is probably what most users would
expect. However, I think this change would probably be too disruptive to existing applica-
tions.)

I also propose to make a change to the way function coercion works. Function
coercion applies when you supply a function F in a context where the required
type is another function type G. The current rule is that this works provided that F
accepts the arguments supplied in an actual call, and returns a value allowed by
the signature of G; it doesn't matter whether F is capable of accepting everything
that G accepts, so long as it accepts what is actually passed to it.

Currently function coercion fails if F and G have different arity. I propose to
allow F to have lower arity than G; additional arguments supplied to G are simply
dropped.

Consider how this might work for the higher-order function fn:filter, by
analogy with the way it works in Javascript. Currently fn:filter expects as its
second argument a function of type $f as function(item()) as xs:boolean.
With this change to function coercion, we can extend this so the declared type is
$f as function(item(), xs:integer) as xs:boolean. The extended version
allows the predicate to accept a second argument, which is the position of the
item in the sequence being filtered. But you can still supply a single-argument
function; it just won't be told about the position.

The purpose of this change is to allow backwards-compatible extensions to
higher-order functions; the information made available to the callback function
can be increased without invalidating existing code.

2.8. Static type-checking rules

Some early XQuery developers favoured the use of "pessimistic static type check-
ing", whereby a static type error is reported if any expression is not type-safe.
(This is perhaps most commonly seen today in the implementation of XQuery
offered with Microsoft's SQL Server database product.) More specifically, pessi-
mistic static type checking signals an error unless the required type subsumes the

A Proposal for XSLT 4.0

116

supplied type. Experience has shown that pessimistic static type is rather incon-
venient for most applications (especially as most applications are not schema-
aware). XSLT fortunately steered clear of this area.2

The limited ability to perform "optimistic static type checking", whereby a
static type error can be reported if the required type and the supplied type are
disjoint, has been found to give considerable usability benefits; it is sufficient to
detect a great many programming mistakes at compile time, provided that users
are diligent in declaring the required types of variables and parameters, but it
doesn't force the user to use verbose constructs (such as treat as) to enforce
compile-time type safety.

I propose some modest changes to allow more obvious errors to be reported
at compile time.

• First, I propose to allow a static type error to be reported in the case where the
supplied type of an expression can satisfy the required type only in the event
that its value is an empty sequence. For example, if the required type is
xs:integer*, and the expression is a call on xs:date(), then it is not cur-
rently permitted to report a static error, because a call on xs:date() can yield
an empty sequence, which would be a valid instance of the required type. In
practice this situation is invariably a programmer mistake, and processors
should be allowed to report it as such.

• Second, I propose introducing rules that allow certain path expressions (of the
form A/B) to report an error if it is statically known that the result can only be
an empty sequence. If the processor knows the node-kind of A, by means of
static type inferencing, then it can report an error if B uses an axis that is
always empty for that node kind: so @A/@B becomes a static error. (This error
is suprisingly common, though it's not usually quite so blatant. It tends to
happen when a template rule that only matches attributes does <xsl:copy-of
select="@*"/>. Of course, this particular example is harmless, so we should
reject it only if the stylesheet version is upped to 4.0).

This ability is particularly useful in conjunction with schema-awareness.
Users expect spelling mistakes in element names to be picked up by the com-
piler if the name used in the stylesheet is inconsistent with its spelling in the
schema. Currently the language rules allow only a warning in this case.

2I have used the terms optimistic and pessimistic type checking for many years, but I cannot find any
definitions in the literature. By pessimistic static type checking I mean what is often simply called static
or strict type checking: a static error occurs if the inferred type of an expression is not a subtype of the
type required for the context in which the expression is used. By contrast, I use optimistic static type
checking to mean that a static error occurs only if the inferred type and the required type are disjoint
(they have no values in common); in cases where the inferred type overlaps the required type, code is
generated to perform run-time type checking.

A Proposal for XSLT 4.0

117

• Third, an expression like function($x){. + 3} currently throws a dynamic
error (XPDY0002) because the context item is absent. A strict reading of the
XSLT specification suggests that the processor cannot report this as a compile
time error (it only becomes an error if the function is actually evaluated).
XQuery, it turns out, has fixed this (for named functions, though not for inline
functions): it says that the static error XPST0008 can be raised in this situation.
I propose changing XPDY0002 to be a type error, which means it can now be
statically reported if detected during compilation, not just within function
bodies, but in other contexts (such as <xsl:on-completion>) where there is
no context item defined.

3. Functions
XSLT is a functional language, and version 3.0 greatly increases the role of func-
tions by making them first-class objects and thus allowing higher-order functions.
When you start to make extensive use of this capability, however, you start to
encounter a few usability problems.

Firstly, the syntax for writing functions starts to become restrictive. You can
either write global named functions in XSLT syntax, or local anonymous func-
tions in XPath; neither syntax is particularly conducive to the very simple func-
tions that you sometimes want to use in calls on fn:filter() or fn:sort(). It is
also cumbersome to define a family of functions of different arity allowing some
arguments to be omitted. I therefore propose to introduce some new syntax for
writing functions.

3.1. Dot Functions
The syntax .{EXPR} is introduced as a shorthand for function($x as item())
as item()* {$x ! EXPR}. For example, this allows you to sort employees by last
name then first name using the function call sort(// employee, .{lastName,
firstName}) where you would currently have to write sort(// employee,
function($emp) { $emp/lastName, $emp/firstName }).

Exprience with other programming languages suggests that a more concise
syntax for inline functions greatly encourages their use; indeed, we can imagine
non-programmer users of XSLT mastering this syntax without actually under-
standing the concepts of higher-order functions.

3.2. Underscore Functions
In dot functions, we are limited to a single argument whose value is a single item
(because that's the way the context item works). For the more general case, we
introduce another notation: the underscore function. By way of an example, _{$1
+ $2} is a function that takes two arguments (without declaring their type, so

A Proposal for XSLT 4.0

118

there are no constraints), and returns the sum of their values. This means that a
function call such as for-each-pair($seq1, $seq2, function($a1, $a2) {$a1
+ $a2}) can now be written more concisely as for-each-pair($seq1, $seq2,
_{$1 + $2}).

The arity of such a function is inferred from the highest-numbered parameter
reference. Parameter references act like local variable references, but identify
parameters by position rather than by name. There can be multiple references to
the same parameter, and the function body doesn't need to refer to any parame-
ters except the last (so the arity can be inferred). Parameters go "out of scope" in
nested underscore functions.

The change to the function coercion rules means that if your function doesn't
need to use the last argument, it doesn't matter that your function now has the
wrong arity. For example, in a later section I propose an extension to the
<xsl:map> instruction that provides an on-duplicates callback, which takes two
values. To select the first duplicate, you can write <xsl:map on-
duplicates="_{$1}"/>; to select the second, you can write <xsl:map on-dupli-
cates="_{$2}"/>. Although the required type is a function with arity 2, you are
allowed to supply a function that ignores the second argument.

Nested anonymous functions are perhaps best avoided in the interests of
readability; but of course they are permitted. A numeric parameter reference such
as $1 is not directly available in the closure of a nested function, but it can be
bound to a conventional variable:

_{ let $x := $1, $g := _{$1 + $x} return $g(10) }(5)

3.3. Default Arguments

I propose to allow a single <xsl:function> declaration to define a family of func-
tions, having the same name but different arity, by allowing parameters to have a
default value. For example consider the declaration:

<xsl:function name="f:mangle" as="xs:integer">
 <xsl:param name="a" as="xs:string"/>
 <xsl:param name="options" as="map(*)" required="no" select="map{}"/>
 <xsl:sequence select="if ($options?upper) then upper-case($a) else
$a"/>
</xsl:function>

This declares two functions, f:mangle# 1 and f:mangle# 2, with arity 1 and 2
respectively, based on whether the second argument is supplied or defaulted.

A parameter is declared optional with the attribute required="no"; if the
attribute is optional, then its default value can be given with a select attribute. In
the absence of a select attribute, the default value of an optional parameter is the

A Proposal for XSLT 4.0

119

empty sequence. A parameter can only be optional if all subsequent arguments
are also optional.

The single <xsl:function declaration defines a set of functions having the
same name, with arities in the range M to N, where M is the number of
<xsl:param> elements with no default value, and N is the total number of
<xsl:param> elements. The construct is treated as equivalent to a set of separate
xsl:function declarations without optional parameters; for example, an overrid-
ing xsl:function declaration (one with higher import precedence, or one within
an xsl:override element) might override one of these functions but not the oth-
ers.

4. Conditionals
Conditional (if/then/else) processing can be done both in XPath and in XSLT. In
both cases, for such a commonly used construct, the syntax is a little cumber-
some. I believe that a few minor improvements can be made without difficulty
and will be welcomed by the user community.

4.1. The otherwise operator
A common idiom in XPath is to see constructs like (@discount, 0)[1] to mean:
take the value of the @discount attribute if present, or the default value 0 other-
wise.

There are two drawbacks with this construct: firsly, unless you've come across
it before, the meaning is far from obvious; and secondly, it only works if the first
value is a singleton, rather than an arbitrary sequence.

I propose the syntax @discount otherwise 0 as a more intuitive way of
expressing this. The expression returns the value of the first operand, unless it is
an empty sequence, in which case it returns the value of the second operand.

4.2. Adding @select to <xsl:when> and <xsl:otherwise>
Most XSLT instructions that allow a contained sequence constructor also allow a
select attribute as an alternative. The <xsl:when> and <xsl:otherwise> ele-
ments are notable exceptions, and I propose to remedy this. For example this
instruction:

<xsl:choose>
 <xsl:when test="@a=2">
 <xsl:sequence select="17"/>
 </xsl:when>
 <xsl:when test="@a=3">
 <xsl:sequence select="19"/>
 </xsl:when>

A Proposal for XSLT 4.0

120

 <xsl:otherwise>
 <xsl:sequence select="23"/>
 </xsl:otherwise>
</xsl:choose>

can be rewritten as:
<xsl:choose>
 <xsl:when test="@a=2" select="17"/>
 <xsl:when test="@a=3" select="19"/>
 <xsl:otherwise select="23"/>
</xsl:choose>

which makes it significantly more readable.

4.3. Adding @then and @else attributes to <xsl:if>

For the xsl:if instruction, rather than adding a select attribute, I propose to
add two attributes, then and else. If either attribute is present then the contained
sequence constructor must be empty. If one attribute is present and the other
absent, the other defaults to () (the empty sequence).

This enables a construct like:
<xsl:if test="@a='yes' then="0" else="1"/>
This is likely to be particularly useful for delivering function results, in place

of xsl:sequence; it will often enable a 2-way xsl:choose to be replaced with a 2-
way xsl:if.

Consider this example from the XSLT 3.0 specification:
<xsl:choose>
 <xsl:when test="system-property('xsl:version') = '1.0'">
 <xsl:value-of select="1 div 0"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="xs:double('INF')"/>
 </xsl:otherwise>
</xsl:choose>

which can (in all likelihood) be rewritten
<xsl:if test="system-property('xsl:version') = '1.0'"
 then="1 div 0"
 else="xs:double('INF')"/>

Of course, we could also use an XPath conditional here. But when the expressions
become a little longer, many users dislike using complex multi-line XPath expres-
sions (partly because some editors ruin the layout, whereas editors offer good
support for XML layout).

For another example, the function given earlier in this paper:

A Proposal for XSLT 4.0

121

<xsl:function name="f:mangle" as="xs:integer">
 <xsl:param name="a" as="xs:string"/>
 <xsl:param name="options" as="map(*)" select="map{}"/>
 <xsl:sequence select="if ($options?upper) then upper-case($a) else
$a"/>
</xsl:function>

can now be written:
<xsl:function name="f:mangle" as="xs:integer">
 <xsl:param name="a" as="xs:string"/>
 <xsl:param name="options" as="map(*)" select="map{}"/>
 <xsl:if test="$options?upper" then="upper-case($a)" else="$a"/>
</xsl:function>

4.4. xsl:message/@test attribute

Users have become familiar with the ability to "compile out" instructions using a
static use-when expression, for example

<xsl:message use-when="$debug"/>

Currently this only works if $debug is a static variable; if it becomes necessary to
use a non-static variable instead, the construct has to change to the much more
cumbersome

<xsl:if test="$debug">
 <xsl:message/>
</xsl:if>

I propose that <xsl:message> should have a test attribute, bringing it into line
with <xsl:assert>.

Verbose wrapping of instructions in <xsl:if> is also seen when constructing
output elements, for example one might see a long sequence of instructions of the
form:

<xsl:if test="in:maturity-date">
 <out:maturityDate>{maturity-date}</out:maturityDate>
</xsl:if>

I considered proposing that all instructions should have a test or when attribute,
defining a condition which allows the instruction to be skipped. Having experi-
mented with such a capability, however, I'm not convinced it improves the lan-
guage.

4.5. Equality Operators
There are in effect four different equality operators for comparing atomic values,
all with slightly different rules:

A Proposal for XSLT 4.0

122

• The "=" operator is implicitly existential, and converts untyped atomic values
to the type of the other operand: this leads to curiosities such as the fact that A
= B being different from not(A = B), and to non-transitivity (if X is
xs:untypedAtomic, then X = '4' and X = 4 can both be true, but 4 = '4'
gives a type error).

• The "eq" operator eliminates the existential behaviour, and converts untyped
atomic values to strings. This avoids some of the worst peculiarities of the "="
operator, but the type promotion rules mean that it edge cases, it is still not
transitive. The result of the operator is context-sensitive; for example the
result of comparing two xs:dateTime values can depend on the implicit time-
zone.

The comparison performed by xsl:sort and xsl:merge is based on the
"eq" and "le" operators, but NaN is considered equal to itself. The lack of tran-
sitivity with edge cases involving mixed numeric types creates a potential
security weakness in that it might be possible to construct an artificial input
sequence to xsl:sort that causes the instruction not to terminate.

• The operator used by the deep-equal() function, and also (by reference) by
distinct-values(), index-of(), fn:sort(), and <xsl:for-each-group>,
differs from "eq" primarily in that it returns false rather than throwing an
error when comparing unrelated types; it also compares NaN as equal to itself.
Because it handles conversion among numeric types in the same way as "eq",
it is still non-transitive in edge cases, which is particularly troublesome when
the operator is used for sorting or grouping. Like "eq", the result is context-
sensitive.

• The "same key" operator used implicitly for comparing keys in maps (for
example in map:contains()) is designed to be error-free, context-free, and
transitive. So it always returns false rather than throwing an error; the result is
never context-sensitive; and it is always transitive.

It's difficult to sort all of this out while retaining an adequate level of backwards
compatibility, but I propose that:

• Type promotion when comparing numeric types should be changed to use the
rules of the "same key" operator throughout. In effect this means that all
numeric comparisons are done by converting both operands to infinite-preci-
sion xs:decimal (with special rules for infinity and NaN). This change makes
"eq" transitive. Although this creates a minor backwards incompatibility in
edge cases, I believe this change can be justified on security grounds; the cur-
rent rules mean there is a risk that sorting will not terminate for some input
sequences. These rules extend to other functions that compare numeric values,
for example min() and max(), but the promotion rules for arithmetic are

A Proposal for XSLT 4.0

123

unchanged: adding an xs:double and an xs:decimal still delivers an xs:dou-
ble.

• All four operators should handle timezones in the way that the "same key"
operator does: that is, a date/time value with a timezone is not considered
comparable to one without. This change makes the result of a comparison
independent of the dynamic context in which it is invoked, which enables
optimizations that are disallowed in 3.0 simply because of the remote possibil-
ity that the input data will contain a mix of timezoned and untimezoned
dates/times.

This change is perhaps more significant from the perspective of backwards
compatibility, and perhaps there needs to be a 3.0-compatible mode of execu-
tion that retains the current behaviour.

5. Template Rules and Modes
Template rules and modes are at the heart of the XSLT processing model. The
xsl:mode declaration in XSLT 3.0 usefully provides a central place to define
options and properties for template rule processing. Packages also help to create
better modularity. But anyone who has to debug a large complex stylesheet with
20 or more modules knows what a nightmare it can be to find out where a partic-
ular bit of logic is located, so further improvements are possible.

5.1. Enclosed Modes

I propose to allow template rules to be defined by using xsl:template as a child
of xsl:mode. An xsl:mode declaration that contains template rules is referred to
as an enclosed mode. Such template rules must have no mode attribute (it defaults
to the name of the containing mode). They must also have no name attribute. If a
mode is an enclosed mode, then all template rules for the mode must appear
within the xsl:mode declaration, other than template rules declared using
xsl:override in a different package. Specifying mode="#all" on a template rule
outside the enclosed mode is interpreted as meaning "all modes other than
enclosed modes". The default mode for xsl:apply-templates instructions within
the enclosed mode is the enclosing mode itself.

This feature is designed to make stylesheets more readable: it becomes easier
to get an overview of what a mode does, and it becomes easier to find the tem-
plate rules associated with a mode. It makes it easier to copy-and-paste a mode
from one stylesheet to another. It means that to find the rules for a mode, there
are fewer places you need to look: the rule will either be within the mode itself, or
(if the mode is not declared final) within an xsl:override element in a using
package.

A Proposal for XSLT 4.0

124

To further encourage the use of very simple template rules, I propose allowing
xsl:template to have a select attribute in place of a sequence constructor. This
allows for example:

<xsl:mode name="border-width" as="xs:integer">
<xsl:template match="aside" select="1"/>
<xsl:template match="footnote" select="2"/>
<xsl:template match="*" select="0"/>
</xsl:mode>

A template rule with a select attribute must not contain any xsl:param or
xsl:context-item declarations.

5.2. Typed modes
It is often the case that all template rules in a mode return the same type of value,
for example nodes, strings, booleans, or maps. This is almost a necessity, since
anyone writing an xsl:apply-templates instruction needs to have some idea of
what will be returned.

I propose therefore that the xsl:mode declaration should acquire an as attrib-
ute, whose value is a sequence type. If present, this acts as the default for the as
attribute in xsl:template rules using that mode. Individual template rules may
have an as attribute that declares a more precise type, but only if it is a true sub-
type.

The presence of this attribute enables processors to infer a static type for the
result of the xsl:apply-templates instruction.

In the interests of forcing good practice, the xsl:mode/ @as attribute is
required in the case of an enclosed mode.

5.3. Default Namespace for Elements
Anyone who follows internet programming forums such as StackOverflow will
know that the number one beginner mistake with XSLT is to assume that an
unprefixed name, used in a path expression or match pattern, will match an
unprefixed element name in the source document. In the presence of a default
namespace declaration, of course, this is not the case.

What's particularly annoying about this problem is that the consequences bear
no obvious relationship to the nature of the mistake. It generally means that tem-
plate rules don't fire, and path expressions don't select anything. Those are tough
symptoms for beginners to debug, when they have no idea where to start look-
ing.

It's worth noting that only a minority of documents actually use multiple
namespaces, and in those that do, there is rarely any ambiguity in the sets of local
names used. It's therefore unsurprising that beginners imagine that namespaces
are something they can learn about later if they need to.

A Proposal for XSLT 4.0

125

The xpath-default-namespace attribute in XSLT 2.0 was an attempt to tackle
this problem; but unfortunately it only solved the problem if you already knew
that the problem existed.

I want to propose a more radical solution:

• Unprefixed element names in path expressions and match patterns should
match by local name alone, regardless of namespace; that is, NNNN is interpre-
ted as *:NNNN.

This is a radical departure and for backwards compatibility, it must be pos-
sible to retain the status quo. My guess is that the vast majority of stylesheets
will still work perfectly well with this change.

• The syntax :local (with a leading colon) becomes available to force a no-
namespace match, regardless of default namespace.

• The option to match by local name can be explicitly enabled (for any region of
the stylesheet) by specifying xpath-default-namespace="##any", while the
option for unprefixed names to match no-namespace names can be selected by
setting the attribute to either a zero-length string (as in XSLT 3.0) or, for
emphasis, to "##local" (a notation borrowed from XSD).

• The "default default" for xpath-default-namespace becomes implementa-
tion-defined, with a requirement that it be configurable; implementors can
choose how to configure it, and what the default should be. (This includes the
option to use the default namespace declared in the source document, if
known).

This gives implementors the option to provide beginners with an interface in
which unprefixed element names match the way that beginners expect: by local
name only. Users who understand namespaces can then switch to the current
behaviour if they wish, or can qualify all names (using the new syntax :name for
no-namespace names if necessary), to make sure that the problem does not arise.

This proposal is also motivated by the challenges posed by the way namespa-
ces are handled in HTML5. The HTML5 specification defines a variation on the
XPath 1.0 specification that changes the way element names in path expressions
match. The proposal to make unprefixed element names match (by default) by
local name alone removes the need for HTML5 to get special treatment.

6. Processing Maps and Arrays
The introduction of maps and arrays into the data model has enabled more com-
plex applications to be written in XSLT, as well as allowing JSON to be processed
alongside XML. But experience with these new features has revealed some of
their limitations, and a second round of features is opportune.

A Proposal for XSLT 4.0

126

6.1. Array construction
The XSLT instruction xsl:array is added to construct an array.

The tricky part is how to construct the array members (in general, a sequence
of sequences). The same problem exists for the square and curly array construc-
tors in XPath, and I propose to solve the problem in the same way.

First I propose a new function
array:of((function() as item()*)*) => array(*)

which takes a sequence of zero-arity functions as its input, and evaluates each of
those functions to return one member of the array. For example

array:of((_{1 to 5}, _{7 to 10}))

returns the array [(1,2,3,4,5), (7,8,9,10)]
(The underscore syntax for writing simple functions – in this case, zero-arity

functions – was described earlier in the paper).
For a more complex example,
array:of(for $x in 1 to 5 return _{1 to $x})

returns the array [(1), (1,2), (1,2,3), (1,2,3,4), (1,2,3,4,5)].
Now I propose an instruction xsl:array that accepts either a select attribute

or a contained sequence constructor, and processes the resulting sequence in the
same way as the array:of() function, with one addition: any item in the result
that is not a zero-arity function is first wrapped in a zero-arity function. For
example:

<xsl:array select="1 to 5"/>

returns the array [1,2,3,4,5]; while
<xsl:array>
 <a/>

 <c/>
</xsl:array>

returns the array [<a/>, , <c/>], and
<xsl:array select="1, 2, 3, _{}, ${4,5,6}"/>

returns the array [1, 2, 3, (), (4,5,6)]

6.2. Map construction
The <xsl:map> instruction acquires an attribute on-duplicates. The value of the
attribute is an XPath expression that evaluates to a function; the function is called
when duplicate map entries are encountered. For example, on-
duplicates="_{$1}" selects the first duplicate, on-duplicates="_{$2}" selects

A Proposal for XSLT 4.0

127

the last, on-duplicates="_{$1, $2}" combines the duplicates into a single
sequence, and on-duplicates="_{string-join(($1, $2), '|')}" concatenates
the values as strings with a separator.

6.3. The Lookup Operator ("?")
In 3.0, the right-hand side of the lookup operator (in both its unary and binary
versions) is restricted to be an NCName, an integer, the token "*", or a parenthe-
sized expression.

To provide slightly better orthogonality, I propose relaxing this by allowing (a)
a string literal, and (b) a variable reference. In both cases the semantics are equiv-
alent to enclosing the value in parentheses: for example $array?$i is equivalent
to $array?($i) (which can also be written $array($i)), and $map?"New York" is
equivalent to $map?("New York") (which can also be written $map("New York")).

6.4. Iterating over array members
The lookup operator $array?* allows an array to be converted to a sequence, and
often this is an adequate way of iterating over the members of the array. But
where the members of the array are themselves sequences, this loses information:
the result of array{(1,2,3), (4,5,6)}?* is (1,2,3,4,5,6).

To make processing such arrays easier, I introduce a new clause for FLWOR
expressions: for member $var in array-expression which binds $var to each
member of the array returned by the array-expression, in turn.

For example:
for member $var in array{(1,2,3), (4,5,6)} return sum($var)

returns (6, 15)
As with for and let, I allow for member as a free-standing expression in

XPath.
Currently the only way to achieve such processing is with higher-order func-

tions: array:for-each($array, sum#1).
We can also consider an XSLT instruction <xsl:for-each-member> but the

question becomes, how should the current member be referenced? I'm no great
enthusiast for yet more current-XXX() functions, but stylistic consistency is
important, and this certainly points to the syntax:

<xsl:for-each-member select="array{(1,2,3), (4,5,6)}">
 <total>{sum(current-member())}</total>
</xsl:for-each-member>

6.5. Rule-based recursive descent with maps and arrays
The traditional XSLT processing model for transforming node trees relies heavily
on the interaction of the xsl:apply-templates instruction and match patterns.

A Proposal for XSLT 4.0

128

The model doesn't work at all well for maps and arrays, for a number of reasons.
The reasons include:
• We don't have convenient syntax for matching maps and arrays in patterns; all

we have is general predicates, which are cumbersome to use.
• Because there is no parent or ancestor axis available when processing maps

and arrays, a template rule for processing part of a complex structure cannot
get access to information from higher in the structure unless it is passed down
in the form of parameters. In addition, there is no mechanism for defining a
template rule to match a map or array in a way that is sensitive to the context
in which it appears.

• There is no built-in template corresponding to the shallow-copy template that
works effectively for maps and arrays, allowing the stylesheet author to define
rules only for the parts of the structure that need changing

• Template rules always match items. But with a map, the obvious first level of
decomposition is not into items, but into entries (key-value pairs). Similarly,
with arrays, the first level of decomposition is into array members, which are
in general sequences rather than single items.

The following sections address these issues in turn.

6.5.1. Type-based pattern matching

In 3.0 it is possible to use a pattern of the form match=".[. instance of T]" to
match items by their type. This syntax is clumsy, to say the least. I therefore pro-
pose some new kinds of patterns with syntax closely aligned with item type syn-
tax. The following new kinds of pattern are introduced (by example):
• atomic(xs:date)

Matches an atomic value of type xs:date.
• union(xs:date, xs:dateTime, xs:time)

Matches an atomic value belonging to a union type.
• map(xs:string, element())

Matches a map belonging to a map type.
• tuple(first, middle, last)

Matches a map belonging to a tuple type.
• array(xs:integer)

Matches an array whose members are of a given type
• type(T)

Matches an an item belonging to a named type (declared using xsl:item-
type).

A Proposal for XSLT 4.0

129

In each case the item type can be followed by predicates. For example, strings
starting with "#" can be matched using the pattern atomic(xs:string)[starts-
with(., '#')], while tuples representing female employees might be matched
with the pattern tuple(ssn, lastName, firstName, *)[?gender='F']

The following rules are proposed for the default priority of these patterns (in
the absence of predicates):

• For patterns corresponding to the generic type function(*) the priority is
-0.75; for map(*) and array(*) it is -0.5.

• For atomic patterns such as atomic(xs:string), the priority is 1 - 0.5N, where
N is the depth of the type in the type hierarchy. For example, xs:decimal is
0.5, xs:integer is 0.75, xs:long is 0.875. In all cases the resulting priority is
between zero and one.

atomic(xs:anyAtomicType) gets a priority of 0.
The rule extends to user-defined atomic types.
The rule ensures that if S is a subtype of T, then the priority of S is greater

than the priority of T.

• For union patterns such as union(xs:integer, xs:date), the priority is the
product of the priorities of the atomic member types. So for this example, the
priority is 0.375.

Again, this rule ensures that priorities reflect subtype relationships: for
example union(xs:integer, xs:date) has a lower priority than
atomic(xs:integer) but a higher priority than union(xs:decimal,
xs:date).

The rule does not ensure, however, that overlapping types have equal pri-
ority; for example when matching an integer, the pattern union(xs:integer,
xs:date, xs:time) will be chosen in preference to union(xs:integer,
xs:double). The rules will not, therefore, be a reliable way of resolving
ambiguous matches.

• For a specific array type array(M), the priority is the normalized priority of
the item type of M (the cardinality of M is ignored). Normalized priority is
calculated as follows: if the priority is P, then the normalized priority is (P
+1)/2. That is, base priorities in the range -1 to +1 are compressed into the
range 0 to +1.

• For a specific map type map(K, V), the priority is the product of the normal-
ized priorities of K and the item type of V (the cardinality of V is ignored).

• For a specific function type function(A1, A2, ...) as V, the priority is the
product of the normalized priorities of the item types of the arguments. The
cardinalities of the argument types, and the result type, are ignored.

A Proposal for XSLT 4.0

130

Enterprising users may choose to exploit the fact that
function(xs:integer) has a higher priority than function(xs:decimal) as
a way of implementing polymorphic function despatch.

• For a non-extensible tuple type tuple(A as t1, B as t2, ...), the priority
the product of the normalized priorities of the item types of the defined fields.

• For an extensible tuple type tuple(A as t1, B as t2, ..., *), the priority
is -0.5 plus (0.5 times the priority of the corresponding non-extensible tuple
type).

This rule has the effect that an extensible tuple type is never considered for
a match until all non-extensible tuple types have been eliminated from consid-
eration.

Like the existing rules for the default priority of node patterns, these rules are a
little rough-and-ready, and will not always give the result that is intuitively cor-
rect. However, they follow the general principle that selective patterns have a
higher priority than non-selective patterns, so it's likely that they will resolve
most cases in the way that causes least surprise. When things get complex, users
can always define explicit priorities.

The existing rules for node patterns often ensure that overlapping rules have
the same priority, thus leading to warnings or errors when more than one pattern
matches. That remains true for the new rules when predicates are used, but in the
absence of predicates, there are many cases where overlapping patterns do not
have the same priority.

The most important use case for the new kinds of pattern is to match maps
(objects) when processing JSON input, and in this case using tuples that name the
distinguishing fields/properties of each object should achieve the required effect,
regardless whether extensible or inextensible tuple types are used.

6.5.2. Decomposing Maps

I propose a function map:entries($map) which returns a sequence of maps, one
per key-value pair in the original map. The map representing each entry contains
the following fields:
• key: the key (an atomic value)
• value: the associated value (any sequence)
• container: the map from which this entry was extracted.
That is, the result matches the type tuple(key as xs:anyAtomicType, value as
item()*, container as map(*)). To process a map using recursive-descent
template rule processing, it is possible to use an instruction of the form
<xsl:apply-templates select="map:entries($map)"/ >, and then to process
each entry in the map using a separate template rule. The presence of the

A Proposal for XSLT 4.0

131

container field compensates for the absence of an ancestor axis: it gives access to
entries in the containing map other than the one being processed. For example:

<xsl:template match="tuple(key, value)[?key='ssn']">
 <xsl:if test="?container?location='London'" then="'UK'||?value"
else="'US'||?value"/>
</xsl:template>

This makes the immediate context of a map entry available to the called template
rule. For more distant context, it is generally necessary to pass the information
explicitly, typically using tunnel parameters. (Navigating further back using mul-
tiple container steps is feasible in theory, but clumsy in practice.)

An alternative to use of tunnel parameters is to add information to the map
being processed: instead of <xsl:apply-templates
select="map:entries($map)"/ >, you can write <xsl:apply-templates
select="$map:entries($map) ! map:put(., 'country-name': $country)"/>,
and the extra data will then be available in the called templates as ?country-
name.

7. New Functions

In this section, I propose various new or enhanced functions to add to the core
function library, based on practical experience. (Other new functions, such as
array-of(), have been proposed earlier in the paper).

7.1. fn:item-at

The function fn:item-at($s, $i) returns the same result as
fn:subsequence($s, $i, 1). It is useful in cases where the positional filter
expression $s[EXPR] is unsuitable because the subscript expression EXPR is focus-
dependent.

7.2. fn:stack-trace

I propose a new function fn:stack-trace() to return a string containing diag-
nostic information about the current execution state. The detailed content and for-
mat of the returned string is implementation-dependent.

I also propose a standard variable $err:stack-trace available within
xsl:catch to contain similar information about the execution state at the point
where a dynamic error occurred.

A Proposal for XSLT 4.0

132

7.3. fn:deep-equal with options

An extra argument is added to fn:deep-equal; it is a map following the "option
parameter conventions". The options control how the comparison of the two
operands is performed. Options should include:
• Ignore whitespace text nodes
• Normalize whitespace in text and attribute nodes
• Treat comments as significant
• Treat processing instructions as significant
• Treat in-scope namespace bindings as significant
• Treat namespace prefixes as significant
• Treat type annotations as signficant
• Treat is-ID, is-IDREF and nillable properties as signficant
• Treat all nodes as untyped
• Use the "same key" comparison algorithm for atomic values (as used for

maps), rather than the "eq" algorithm
• Ignore order of sibling elements

7.4. fn:differences()

A new function, like fn:deep-equal(), except that rather than returning a true or
false result, it returns a list of differences between the two input sequences. If the
result is an empty sequence, the inputs are deep-equal; if not, the result contains a
sequence of maps giving information about the differences. The map contains ref-
erences to nodes within the tree that are found to be different, and a code indicat-
ing the nature of the difference, plus a narrative explanation. The specification
will leave the exact details implementation-defined, but standardised in enough
detail to allow applications to generate diagnostics.

For example, fn:differences(,) might return
map{0: $1/ @x, 1: $2/ @x, 'code': 'different-string-value',
'explanation': "The string value of the @x attribute differs ('3' vs
'4')"}

The values of entries 0 and 1 here are references to the attribute nodes in the
supplied input sequences.

7.5. fn:index-where($input, $predicate)

Returns a sequence of integers (monotonically ascending) giving the positions in
the the input sequence where the predicate function returns true.

A Proposal for XSLT 4.0

133

Example: subsequence($in, 1, index-where($in, .{exists(self::h1)})
returns the subsequence of the input up to and including the first h1 element.

Equivalent to
(1 to count($input)) [$predicate(subsequence($input, ., 1)]

7.6. fn:items-before(), fn:items-until(), fn:items-from(),
fn:items-after()

These new higher-order functions all take two arguments: an input sequence, and
a predicate that can be applied to items in the sequence to return a boolean.

If N is the index of the first item in the input sequence that matches the predi-
cate, then:

• fn:items-before() returns items with position() lt N

• fn:items-until() returns items with position() le N

• fn:items-from() returns items with position() ge N

• fn:items-after() returns items with position() gt N

7.7. map:index($input, $key)

Returns a map in which the items in $input are indexed according to the atom-
ized value of the $key function. For example map:index(// employee, .
{@location}) returns a map $M such that $M?London will return all employees
having @location='London'.

The $key function may return a sequence of values in which case the corre-
sponding item from the input will appear in multiple entries in the index.

7.8. map:replace($map, $key, $action)

If the map $map contains an entry for $key, the function calls $action supplying
the existing value associated with that key, and returns a new map in which the
value for the key is replaced with the result of the $action function.

If the map contains no entry for the $key, calls $action supplying an empty
sequence, and returns a new map containing all existing entries plus a new entry
for that key, associated with the value returned by the $action function.

For example, map:replace($map, 'counter', _{($1 otherwise 0) + 1})
sets the value of the counter entry in the map to the previous value plus 1, or to 1
if there is no existing value (and returns the new map).

A Proposal for XSLT 4.0

134

7.9. fn:highest() and fn:lowest()
Currently given as example user-written functions in the 3.1 specification, these
could usefully become part of the core library. For example, highest(// p,
string-length#1) returns the longest paragraph in the document.

7.10. fn:replace-with()
The new function fn:replace-with($in, $regex, $callback, [$flags]) is
similar to fn:replace(), but it computes the replacement string using a callback
function. For example, replace-with($in, '[0-9]+', .{string(number()
+1)}) adds one to any number appearing within the supplied string: "Chapter
12" becomes "Chapter 13".

7.11. fn:characters()
Splits a string into a sequence of single-character strings. Avoids the clumsiness
of string-to-codepoints(x)!codepoints-to-string().

7.12. fn:is-NaN()
Returns true if and only if the argument is the xs:float or xs:double value NaN.

7.13. Node construction functions
Once you start using higher-order functions extensively, you discover the prob-
lem that in order for a user-written function to create nodes, your code has to be
written in XSLT rather than in XPath. This is restrictive, because it means for
example that the logic cannot be included in static expressions, nor in expressions
evaluated using xsl:evaluate (I've seen people using fn:parse-xml() to get
around this restriction, for example fn:parse-xml("<foo/ >") to create an ele-
ment node named foo). A set of simple functions for constructing new nodes
would be very convenient. Specifically:
• fn:new-element(QName, content) – constructs a new element node with a

given name; $content is a sequence of nodes used to form the content of the
element, following the rules for constructing complex content.

• fn:new-attribute(QName, string) – constructs a new attribute node, simi-
larly

• fn:new-text(string) - constructs a new text node
• fn:new-comment(string) - constructs a new comment node
• fn:new-processing-instruction(string, string) - constructs a new pro-

cessing instruction node

A Proposal for XSLT 4.0

135

• fn:new-document(content) - constructs a new document node node

• fn:new-namespace(content) - constructs a new namespace node

Despite their names, these functions are defined to be non-deterministic with respect
to node identity: if called twice with the same arguments, it is system-dependent
whether or not you get the same node each time, or two different nodes. In prac-
tice, very few applications are likely to care about the difference, and leaving the
system to decide leaves the door open for optimizations such as loop-lifting.

Here's an example to merge the attributes on two sequences of elements,
taken pairwise:

<out>
 <xsl:sequence select="for-each-pair($seq1, $seq2,
 _{new-element(node-name($1),
($1/@*, $2/@*))})"/>
</out>

The functional approach to node construction is useful when elements are created
conditionally. Consider this example from the XSLT 3.0 specification:

<xsl:for-each-group select="node()"
 group-adjacent="self::ul or self::ol">
 <xsl:choose>
 <xsl:when test="current-grouping-key()">
 <xsl:copy-of select="current-group()"/>
 </xsl:when>
 <xsl:otherwise>
 <p>
 <xsl:copy-of select="current-group()"/>
 </p>
 </xsl:otherwise>
 </xsl:choose>
</xsl:for-each-group>

This can now be written:

<xsl:for-each-group select="node()"
 group-adjacent="self::ul or self::ol">
 <xsl:if test="current-grouping-key()"
 then="current-group()"
 else="new-element(QName("", "p"), current-group())"/>
</xsl:for-each-group>

References
[1] Michael Kay. Transforming JSON using XSLT 3.0. Presented at XML Prague,

2016. Available at http://archive.xmlprague.cz/2016/files/

A Proposal for XSLT 4.0

136

xmlprague-2016-proceedings.pdf and at http://www.saxonica.com/
papers/xmlprague-2016mhk.pdf

[2] Michael Kay. An XSD 1.1 Schema Validator Written in XSLT 3.0. Presented at
Markup UK, 2018. Available at http://markupuk.org/2018/Markup-
UK-2018-proceedings.pdf and at http://www.saxonica.com/papers/
markupuk-2018mhk.pdf

[3] Michael Kay, John Lumley. An XSLT compiler written in XSLT: can it perform?.
Presented at XML Prague, 2019. Available at http://archive.xmlprague.cz/
2019/files/xmlprague-2019-proceedings.pdf and at http://
www.saxonica.com/papers/xmlprague-2019mhk.pdf

[4] John Lumley, Debbie Lockett and Michael Kay. Compiling XSLT3, in the
browser, in itself. Presented at Balisage: The Markup Conference 2017,
Washington, DC, August 1-4, 2017. In Proceedings of Balisage: The Markup
Conference 2017. Balisage Series on Markup Technologies, vol. 19 (2017).
Available at https://doi.org/10.4242/BalisageVol19.Lumley01

[5] XSL Transformations (XSLT) Version 3.0. W3C Recommendation, 8 June 2017.
Ed. Michael Kay, Saxonica. http://www.w3.org/TR/xslt-30

A Proposal for XSLT 4.0

137

