
An XSLT compiler written in XSLT:
can it perform?

Michael Kay
Saxonica

<mike@saxonica.com>

John Lumley
jwL Research, Saxonica

<john@jwlresearch.com>

Abstract

This paper discusses the implementation of an XSLT 3.0 compiler written in
XSLT 3.0. XSLT is a language designed for transforming XML trees, and
since the input and output of the compiler are both XML trees, compilation
can be seen as a special case of the class of problems for which XSLT was
designed. Nevertheless, the peculiar challenges of multi-phase compilation
in a declarative language create performance challenges, and much of the
paper is concerned with a discussion of how the performance requirements
were met.

1. Introduction

Over the past 18 months we have been working on a new compiler for XSLT,
written in XSLT itself: see [1], [2]. At the time of writing, this is nearing functional
completeness: it can handle over 95% of the applicable test cases in the W3C XSLT
suite. In this paper we'll give a brief outline of the structure of this compiler (we'll
call it XX), comparing and constrasting with the established Saxon compiler writ-
ten in Java (which we will call XJ). And before we do that, we'll give a reminder
of the motivation for writing it, from which we can derive some success criteria to
decide whether it is fit for release.

Having got close to functional completeness, we now need to assess the com-
piler's performance, and the main part of this paper will be concerned with the
process of getting the compiler to a point where the performance requirements
are satisfied.

Because the compiler is, at one level, simply a fairly advanced XSLT 3.0 style-
sheet, we hope that the methodology we describe for studying and improving its
performance will be relevant to anyone else who has the task of creating perform-
ant XSLT 3.0 stylesheets.

223

2. Motivation
When XSLT 1.0 first emerged in 1999, at least a dozen implementations appeared
within a year or two, many of them of excellent quality. Each typically targeted
one particular platform: Java, Windows, Python, C, browsers, or whatever. What-
ever your choice of platform, there was an XSLT 1.0 processor available (although
on the browsers in particular, it took a few years before this goal was achieved).

For a variety of reasons, the W3C's goal of following up XSLT 1.0 with a quick
1.1 upgrade didn't happen, and it was over seven years before XSLT 2.0 came
along, followed by a ten year wait for XSLT 3.0. By this time there was a sizeable
XSLT user community, but very few of the original XSLT 1.0 vendors had an
appetite for the development work needed to implement 2.0 or 3.0. By this stage
the number of companies still developing XSLT technology was down to three:
Altova and Saxonica, who both had commercial products that brought in enough
revenue to fund further development, and a startup, Exselt, which had aspira-
tions to do the same.

This pattern is not at all unusual for successful programming languages. If
you look at any successful programming language, the number of implementa-
tions has declined over time as a few "winners" have emerged. But the effect of
this is that the implementations that remain after the market consolidates come
under pressure to cover a broader range of platforms, and that is what is happen-
ing with XSLT.

The bottom line is: there is a demand and an opportunity to deliver an XSLT
processor that runs on a broader range of platforms. Over the past few years
Saxon has slowly (and by a variety of bridge technologies) migrated from its orig-
inal Java base to cover .NET, C, and Javascript. Currently we see demand from
Node.js users. We're also having to think about how to move forward on .NET,
because the bridge technology we use there (IKVM) is no longer being actively
developed or maintained.

The traditional way to make a programming language portable is to write the
compiler in its own language. This was pioneered by Martin Richards with BCPL
in the late 1960s, and it has been the norm ever since.

Many people react with a slight horror to the idea of writing an XSLT com-
piler in XSLT. Surely a language that is mainly used for simple XML-to-HTML
conversion isn't up to that job? Well, the language has come on a long way since
version 1.0. Today it is a full functional programming language, with higher
order functions and a rich set of data types. Moreover, XSLT is designed for per-
forming transformations on trees, and transforming trees is exactly what a com-
piler does. So the language ought to be up to the job, and if it isn't then we would
like to know why.

As we submit this paper, we have produced an almost-complete working
XSLT compiler in XSLT 3.0, without encountering any serious obstacles in the lan-

An XSLT compiler written in XSLT: can it perform?

224

guage that made the task insuperable. We'll give an outline description of how it
works in the next section. But the challenging question when we started was
always going to be: will it perform? Answering that question is the main purpose
of this paper.

Back in 2007, Michael Kay gave a paper on writing an XSLT optimizer in
XSLT: see [3]. At that time, one conclusion was that tree copying needed to be
much more efficient; the paper gave an example of how a particular optimization
rewrite could only be achieved by an expensive copying operation applied to a
complete tree. Many optimizations are likely to involve recursive tree rewrites
which perform copying of the tree; there is a serious need to optimize this design
pattern.

At XML Prague 2018 (see [4]) the same author returned to this question of effi-
cient copying of subtrees, with a proposal for new mechanisms that would allow
subtrees to be virtually copied from one tree to another. One of the things exam-
ined in this paper is how much of a contribution this makes to the performance of
the XSLT compiler (spoiler: the results are disappointing).

3. The Compilers

In this section we will give an outline description of two XSLT compilers: the tra-
ditional Saxon compiler, written in Java, which for the purposes of this paper we
will call XJ (for "XSLT compiler written in Java"), and the new compiler, which we
will call XX (for "XSLT compiler written in XSLT").

Both compilers take as input a source XSLT stylesheet (or more specifically in
XSLT 3.0 a source XSLT package, because XSLT 3.0 allows packages to be com-
piled independently and then subsequently linked to form an executable style-
sheet), and both are capable of producing as output an SEF file, which is
essentially the compiled and optimized expression tree, serialized in either XML
or JSON. The expression tree can then form the input to further operations: it can
be directly interpreted, or executable code can be generated in a chosen inter-
mediate or machine language. But we're not concerned in this paper with how it
is used, only with how it is generated. The SEF file is designed to be portable. (We
have made a few concessions to optimize for a particular target platform, but that
should really be done as a post-processing phase.)

3.1. The XJ Compiler

In this section we will give an outline description of how the traditional XSLT
compiler in Saxon (written in Java) operates. This compiler has been incremen-
tally developed over a period of 20 years since Saxon was first released, and this
description is necessarily an abstraction of the actual code.

An XSLT compiler written in XSLT: can it perform?

225

It's conventional to describe a compiler as operating in a sequence of phases,
even if the phases aren't strictly sequential, and I shall follow this convention. The
main phases of the XJ compiler are as follows:
• The XSLT source code is processed using a standard SAX parser to produce a

sequence of events representing elements and attributes.
• The content handler that receives this stream of events performs a number of

operations on the events before constructing a tree representation of the code
in memory. This can be regarded as a pre-processing phase. The main opera-
tions during this phase (which operates in streaming mode) are:
• Static variables and parameters are evaluated
• Shadow attributes are expanded into regular attributes
• use-when expressions are evaluated and applied
• xsl:include and xsl:import declarations are processed.
• Whitespace text nodes, comments, and processing instructions are strip-

ped.
The result of this phase is a set of in-memory trees, one for each module in the
stylesheet package being compiled. These trees use the standard Saxon
"linked tree" data structure, a DOM-like structure where element nodes are
represented by custom objects (subclassing the standard Element class) to
hold properties and methods specific to individual XSLT elements such as
xsl:variable and xsl:call-template.

• Indexing: the top-level components in the stylesheet (such as global variables,
named templates, functions, and attribute sets) are indexed by name.

• Attribute processing: for each element in the stylesheet, the attributes are vali-
dated and processed as appropriate. This is restricted to processing that can
be carried out locally. Attributes containing XPath expressions and XSLT pat-
terns, and other constructs such as type declarations, are parsed at this stage;
the result of parsing is an in-memory expression tree.

• Contextual validation: elements are validated "in context" to ensure that they
appear in the proper place with the proper content model, and that consis-
tency rules are satisfied. Also during this phase, the first type-checking analy-
sis is carried out, confined to one XPath expression at a time. Type checking
infers a static type for each expression and checks this against the required
type. If the inferred type and the required type are disjoint, a static error is
reported. If the required type subsumes the inferred type, all is well and no
further action is needed. If the inferred type overlaps the required type, run-
time type checking code is inserted into the expression tree.

• Expression tree generation (referred to, rather unhelpfully, as "compiling").
This phase changes the data representation from the decorated XDM tree used

An XSLT compiler written in XSLT: can it perform?

226

so far to a pure tree of Java objects representing instructions and expressions
to be evaluated. At this stage the boundaries between XSLT and XPath con-
structs disappear into a single homogenous tree; it becomes impossible to tell,
for example, whether a conditional expression originated as an XPath if-
then-else expression or as an XSLT xsl:if instruction.

• A second type-checking phase follows. This uses the same logic as the previ-
ous type-checking, but more type information is now available, so the job can
be done more thoroughly.

• Optimization: this optional phase walks the expression tree looking for
rewrite opportunities. For example, constant expressions can be evaluated
eagerly; expressions can be lifted out of loops; unnecessary sort operations (of
nodes into document order) can be eliminated; nested-loop joins can be
replaced with indexed joins.

• When XSLT 3.0 streaming is in use, the stylesheet tree is checked for conform-
ance to the streamability rules, and prepared for streamed execution. There is
also an option to perform the streamability analysis prior to optimization, to
ensure strict conformance with the streaming rules in the language specifica-
tion (optimization will sometimes rewrite a non-streamable expression into a
streamable form, which the language specification does not allow).

• Finally, a stylesheet export file (SEF file) may be generated, or Java bytecode
may be written for parts of the stylesheet.

Some of these steps by default are deferred until execution time. When a large
stylesheet such as the DocBook or DITA stylesheets is used to process a small
source document, many of the template rules in the stylesheet will never fire.
Saxon therefore avoids doing the detailed compilation and optimization work on
these template rules until it is known that they are needed. Bytecode generation is
deferred even longer, so it can focus on the hot-spot code that is executed most
frequently.

The unit of compilation is an XSLT package, so there is a process of linking
together the compiled forms of multiple packages. Currently a SEF file contains a
package together with all the packages it uses, expanded recursively. The SEF file
is a direct serialization of the expression tree in XML or JSON syntax. It is typi-
cally several times larger than the original XSLT source code. 1

1SEF files generated by the XX compiler are currently rather larger than those generated by XJ. This is
partly because XJ has a more aggressive optimizer, which tends to eliminate unnecessary constructs
(such as run-time type checks) from the expression tree; and partly because XX leaves annotations on
the SEF tree that might be needed in a subsequent optimization phase, but which are not used at run-
time. The SEF representation of the XX compiler as produced by XJ is around 2Mb in expanded
human-readable XML form; the corresponding version produced by XX is around 6Mb.

An XSLT compiler written in XSLT: can it perform?

227

3.2. The XX Compiler
The XSLT compiler written in XSLT was developed as a continuation of work on
adding dynamic XPath functionality to Saxon-JS ([1])). That project had construc-
ted a robust XPath expression compiler, supporting most of the XPath 3.1 func-
tionality, with the major exception of higher-order functions. Written in
JavaScript, it generated an SEF tree for subsequent evaluation within a Saxon-JS
context, and in addition determined the static type of the results of this expres-
sion.

Given the robustness of this compiler, we set about seeing if an XSLT compiler
could be written, using XSLT as the implementation language and employing this
XPath compiler, to support some degree of XSLT compilation support within a
browser-client. Initial progress on simpler stylesheets was promising, and it was
possible to run (and pass!) many of the tests from the XSLT3 test suites. We could
even demonstrate a simple interactive XSLT editor/compiler/executor running in
a browser. Details of this early progress and the main aspects of the design can be
found in [2])

Progress was promising, but it needed a lot of detailed work to expand the
functionality to support large areas of the XSLT specification correctly. For exam-
ple issues such as tracking xpath-default-namespaces, namespace-prefix map-
pings and correctly determining import precedence have many corner cases that,
whilst possibly very very rare in use, are actually required for conformance to the
XSLT3.0 specification.

At the same time, the possibility of using the compiler within different plat-
form environments, most noteably Node.js, increased the need to build to a very
high degree of conformance to specification, while also placing demands on usa-
bility (in the form of error messages: the error messages output by a compiler are
as important as the executable code), and tolerable levels of both compiling and
execution performance. Performance is of course the major topic of this paper, but
the work necessary to gain levels of conformance took a lot longer than might
originally have been supposed, and work on usability of diagnostics has really
only just started. The methodology used had two main parts:
• Checking the compiler against test-cases from the XSLT-3.0 test suite. This was

mainly carried out within an interactive web page (running under Saxon-JS)
that permitted tests to be selected, run, results checked against test assertions
and intermediate compilation stages examined. For example the earliest work
looked at compiling stylesheets that used the xsl:choose instruction and iter-
atively coding until all the thirty-odd tests were passing.

• At a later stage, the compiler had advanced sufficiently that it became possible
to consider it compiling its own source, which whilst not a sufficient condition
is certainly a necessary one. The test would be that after some 3-4 stages of
self-compilation, the compiled-compiler 'export' tree would be constant. This

An XSLT compiler written in XSLT: can it perform?

228

was found to be very useful indeed — for example it uncovered an issue
where template rules weren't being rank-ordered correctly, only at the third
round of self-compilation.

In this section we'll start by briefly discussing the (top-level) design of the com-
piler, but will concentrate more on considering the compiler as a program written
in XSLT, before it was 'performance optimised'.

In drawing up the original design, a primary requirement was to ease the
inevitable and lengthy debugging process. Consequently the design emphasised
visibility of internal structures and in several parts used a multiplicity of result
trees where essential processing could perhaps have been arranged in a single
pass. The top-level design has some six major sequential phases, with a complete
tree generated after each stage. These were:

• The first phase, called static, handles inclusion/importation of all stylesheet
modules, together with XSLT3.0's features of static variables, conditional
inclusion and shadow attributes. The result of this phase is a single XDM tree
representing the merged stylesheet modules, after processing of use-when and
shadow attributes, decorated with additional attributes to retain information
that would otherwise be lost: original source code location, base URIs, name-
space context, import precedence, and attributes such as exclude-result-
prefixes inherited from the original source structure. 2

• A normalisation phase where the primary syntax of the stylesheet/package is
checked, and some normalisation of common terms (such as boolean-valued
attributes 'strings', 'yes','false','0' etc), is carried out. In the absence of a full
schema processor, syntax checking involves two stages: firstly a map-driven
check that the XSLT element is known, has all required and no unknown
attributes and has permitted child and parent elements. Secondly a series of
template rules to check more detailed syntax requirements, such as
xsl:otherwise only being the last child of xsl:choose and cases where either
@select or a sequence constructor child, but not both, are permitted on an ele-
ment.

• Primary compilation of the XSLT declarations and instructions. This phase
converts the tree from the source XSLT vocabulary to the SEF vocabulary. This
involves collecting a simple static context of declaration signatures (user func-
tions, named templates) and known resources (keys, accumulators, attribute
sets, decimal formats) and then processing each top level declaration to pro-
duce the necessary SEF instruction trees by recursive push processing, using
the static context to check for XSLT-referred resource existence. Note that dur-

2We are still debating whether there would be benefits in splitting up this monolithic tree into a "for-
est" of smaller trees, one for each stylesheet component.

An XSLT compiler written in XSLT: can it perform?

229

ing this phase XPath expressions and patterns are left as specific single
pseudo-instructions for processing during the next phase3.

• Compilation of the XPath and pattern expressions, and type-checking of the
consequent bindings to variable and parameter values. In this phase the
pseudo-instructions are compiled using a saxon:compile-XPath extension
function, passing both the expression and complete static context (global func-
tion signatures, global and local variables with statically determined types, in-
scope namespaces, context item type etc.), returning a compiled expression
tree and inferred static type. These are then interpolated into the compilation
tree recursively, type-checking bindings from the the XPath space to the XSLT
space, i.e. typed XSLT variables and functions.

For pragmatic reasons, the XPath parsing is done in Java or Javascript, not
in XSLT. Writing an XPath parser in XSLT is of course possible, but we already
had parsers in Java and Javascript, so it was easier to continue using them.

• Link-editing the cross-component references in a component-binding phase.
References to user functions, named templates, attribute sets and accumula-
tors needed to be resolved to the appropriate component ID and indirected
via a binding vector attached to each component4

. After this point the SEF tree is complete and only needs the addition of a
checksum and serialization into the final desired SEF file.
Each of these phases involves a set of XSLT template rules organized into one

major mode (with a default behaviour of shallow-copy), constructing a new
result tree, but often there are subsidiary modes used to process special cases. For
example, a compiled XPath expression that refers to the (function) current() is
converted to a let expression that records the context item, with any reference to
current() in the expression tree replaced with a reference to the let variable.

The code makes extensive use of tunnel parameters, and very little use of
global variables. Indexes (for example, indexes of named templates, functions,
and global variables in the stylesheet being compiled) are generally represented
using XSLT 3.0 maps held in tunnel parameters.

It's worth stating at this point that the compiler currently does not use a num-
ber of XSLT3.0 features at all, for example attribute sets, keys,accumulators,
xsl:import, schema-awareness, streaming, and higher-order functions. One rea-
son for this was to make it easier to bootstrap the compiler; if it only uses a subset
of the language, then it only needs to be able to compile that subset in order to
compile itself. Late addition of support for higher-order functions in the XPath
compiler makes the latter a distinct possibility, though in early debugging they

3In theory XPath compilation could occur during this phase, but the complexity of debugging ruled
this out until a very late stage of optimisation.
4This derives from combination of separately-compiled packages, where component internals need
not be disturbed.

An XSLT compiler written in XSLT: can it perform?

230

may have been counter-productive. It should also be noted that separate package
compilation is not yet supported, so xsl:stylesheet, xsl:transform and
xsl:package are treated synonymously.

A run of the compiler can be configured to stop after any particular stage of
this process, enabling the tree to be examined in detail.

We'll now discuss this program not as an XSLT compiler, but as an example of
a large XSLT transformation, often using its self-compilation as a sample stress-
testing workload.

The XX compiler is defined in some 33 modules, many corresponding to the
relevant section of the XSLT specification. Internally there is much use of static-
controlled inclusion (@use-when) to accommodate different debugging, opera-
tional and optimisation configurations, but when this phase has been completed,
the program (source) tree has some 536 declarations, covering 4,200 elements and
some 7,200 attributes, plus another 13,500 attributes added during inclusion to
track original source properties, referred to above. The largest declaration (the
template that 'XSLT-compiles' the main stylesheet) has 275 elements, the deepest
declaration (the primary static processing template) is a tree up to 12 elements
deep.

Reporting of syntax errors in the user stylesheet being compiled is currently
directed to the xsl:message output stream. Compilation continues after an error,
at least until the end of the current processing phase. The relevant error-handling
code can be overridden (in the usual XSLT manner) in a customization layer to
adapt to the needs of different platforms and processing environments.

Top level processing is a chain of five XSLT variables bound to the push ('ap-
ply-templates') processing of the previous (tree) result of the chain. We'll examine
each of these in turn:

3.2.1. Static inclusion

The XSLT architecture for collecting all the relevant sections of the package
source is complicated mainly by two features: firstly the use of static global varia-
bles as a method of meta-programming, controlling conditional source inclusion,
either through @use-when decorations or even through shadow attributes on inclu-
sion/importation references. Secondly it is critical to compute the import prece-
dence of components, which requires tracking importation depth of the original
source. Other minor inconveniences include the possibility of the XSLT version
property changing between source components and the need to keep track of
original source locations (module names and line numbers).

As static variables can only be global (and hence direct children of a style-
sheet) and their scope is (almost) following-sibling::*/ descendant-or-
self::*, the logic for this phase needs to traverse the top-level sibling
declarations maintaining state as it goes (to hold information about the static vari-

An XSLT compiler written in XSLT: can it perform?

231

ables encountered. The XSLT 3.0 xsl:iterate instruction is ideally suited to this
task. The body of the xsl:iterate instruction collects definitions of static varia-
bles in the form of a map. Each component is then processed by template applica-
tion in mode static, collecting the sequence of processed components as a
parameter of the iteration. Static expressions may be encountered as the values of
static variables, in [xsl:]use-when attributes, and between curly braces in
shadow attributes; in all cases they are evaluated using the XSLT 3.0
xsl:evaluate instruction, with in-scope static variables supplied as the @with-
params property.5The result of the evaluation affects subsequent processing:
• For [xsl:]use-when, the result determines whether the relevant subtree is

processed using recursive xsl:apply-templates, or discarded
• For static variables and parameters, the result is added to a map binding the

names of variables to their values, which is made available to following sib-
ling elements as a parameter of the controlling xsl:iterate, and to their
descendant instructions via tunnel parameters.

• For shadow attributes, the result is injected into the tree as a normal (non-
shadow) attribute. For example the shadow attribute
_streamable="{$STREAMING}" might be rewritten as streamable="true".

Errors found during the evaluation of static XPath expressions will result in
exceptions during xsl:evaluate evaluation - these are caught and reported.

After each component has been processed through the static phase, it is typ-
ically added to the $parts parameter of the current iteration. In cases where the
component was the declaration of a static variable or parameter, the @select
expression is evaluated (with xsl:evaluate and the current bindings of static
variables) and its binding added to the set of active static variables.

Processed components which are xsl:include|xsl:import declarations are
handled within the same iteration. After processing the @href property is
resolved to recover the target stylesheet6. The stylesheet is then read and pro-
cessed in the static mode. The result of this a map with two members — the
processed components and the number of prior imports. The processed compo-
nents are then allocated an importation precedence (recorded as an attribute)
dependent upon importation depth/position and any previous precedence and
added to the set of components of the including stylesheet7. Finally the complete

5There is a minor problem here, in that use-when expressions are allowed access to some functions,
such as fn:system-property(), which are not available within xsl:evaluate. In a few cases like this
we have been obliged to implement language extensions.
6A stack of import/included stylesheets is a parameter of the main stylesheet template, the check
against self or mutual recursive inclusion.
7This complexity is due to the possibility of an importation, referenced via an inclusion, preceding a
high-level importation - something permitted in XSLT3.0. Note that the current XX compiler does not
itself use xsl:import - linkage is entirely through xsl:include.

An XSLT compiler written in XSLT: can it perform?

232

sequence of self and included components are returned as a map with the 'local'
importation information. At the very top level the stylesheet is formed by copy-
ing all active components into the result tree.

In more general XSLT terms, the processing involves recursive template appli-
cation for the entire (extended) source tree, with stateful iteration of the body of
stylesheets, evaluation and interpolation of static variables with that iteration and
a complex multiple-copy mechanism for recording/adjusting importation prece-
dence.

3.2.2. Normalisation

The normalisation phase makes intensive use of XSLT template rules. Generally,
each constraint that the stylesheet needs to satisfy (for example, that the type and
validation attributes are mutually exclusive) is expressed as a template rule.
Each element in the use stylesheet is processed by multiple rules, achieved by use
of the xsl:next-match instruction.

The normalisation phase has two main mechanisms. The first involves check-
ing any xsl:* element for primary syntax correctness — is the element name
known, does it have all required attributes or any un-permitted attributes, do any
'typed' attributes (e.g. boolean) have permitted values and are parent/child ele-
ments correct? A simple schema-like data structure8 was built from which a map
element-name => {permitted attributes, required attributes, permitted parents, permitted
children...} was computed, and this is used during the first stage of syntax check-
ing through a high-priority template. The second mechanism is more ad-hoc, and
comprises a large set of templates matching either error conditions such as:

 <xsl:template match="xsl:choose[empty(xsl:when)]" mode="normalize">
 <xsl:sequence select="f:missingChild(., 'xsl:when')"/>
 </xsl:template>

which checks that a 'choose' must have a when 'clause', or normalising a value,
such as:

<xsl:template match="xsl:*/@use-attribute-sets" mode="normalize">
 <xsl:attribute name="use-attribute-sets"
 select="tokenize(.) ! f:EQName(., current()/..)"/>
</xsl:template>

which normalises attribute set names to EQNames.
As far as XSLT processing is concerned, this phases builds one tree in a single

pass over the source tree.

8Derived from the syntax definitions published with the XSLT3.0 specification

An XSLT compiler written in XSLT: can it perform?

233

3.2.3. XSLT compilation

The main compilation of the XSLT package involves three main processes — col-
lecting (properties of) all the global resources of the package, such as named tem-
plates, user-defined functions, and decimal formats; collecting all template rules
into same-mode groups; and a recursive descent compilation of XSLT instructions
of each component.

The process for the first is to define a set of some dozen variables, which are
then passed as tunnel parameters in subsequent processing, such as:

<xsl:variable name="named-template-signatures" as="map(*)">
 <xsl:map>
 <xsl:for-each-group select="f:precedence-sort(xsl:template)"
 group-by="@name">
 <xsl:variable name="highest" select="
 let $highest-precedence :=
 max(current-group()/@ex:precedence)
 return
 current-group()[@ex:precedence = $highest-precedence]"/>
 <xsl:if test="count($highest) gt 1">
 <xsl:sequence select="f:syntax-error('XTSE0660',
 'Multiple declarations of ' || name() || ' name=' || @name ||
 ' at highest import precedence')"/>
 </xsl:if>
 <xsl:variable name="params"
 select="$highest/xsl:param[not(@tunnel eq 'true')]"/>
 <xsl:map-entry key="$highest/@name" select="map{
 'params': f:string-map($params/map:entry(@name,
 map{'required': @required eq 'true',
 'type': @as})),
 'required': $params[@required eq 'true']/@name,
 'type': ($highest/@as,'item()*')[1]
 }"/>
 </xsl:for-each-group>
 </xsl:map>
</xsl:variable>

which both checks for conflicting named templates, handles differing preceden-
ces and returns a map of names/signatures. This can then of course be referenced
in compiling a xsl:call-template instruction to check both the existence of the
requested template and the names/types of its parameters, as well as the implied
result type.

All template rules are first expanded into 'single mode' instances by copying
for each referred @mode token9

. From this all used modes can be determined and for each a mode component
is constructed and populated with the relevant compiled templates. A pattern

An XSLT compiler written in XSLT: can it perform?

234

matching template is compiled with a simple push template, that leaves the
@match as a pattern pseudo-instruction, and the body as a compiled instruction
tree. The design currently involves the construction of three trees for each tem-
plate during this stage.

The bulk of the XSLT compiling is a single recursive set of templates, some of
which check for error conditions10, most of which generate an SEF instruction
and recursively process attributes and children, such as:

<xsl:template match="xsl:if" mode="sef">
 <xsl:param name="attr" as="attribute()*" select="()"/>
 <choose>
 <xsl:sequence select="$attr"/>
 <xsl:call-template name="record-location"/>
 <xsl:apply-templates select="@test" mode="create.xpath"/>
 <xsl:call-template name="sequence-constructor"/>
 <true/>
 <empty/>
 </choose>
</xsl:template>

which generates a choose instruction for xsl:if, with any required attributes
attached (often to identify the role of the instruction in its parent), records the
source location, creates an xpath pseudo-instruction for the test expression, adds
the sequence constructor and appends an empty 'otherwise' case.

Local xsl:variable and xsl:param instructions are replaced by VARDEF and
PARAMDEF elements for processing during XPath compiling.

The final result of this phase is a package with a series of component children
corresponding to compiled top-level declarations and modes with their template
rules.

3.2.4. XPath compiling and type checking

In this phase the package is processed to compile the xpath and pattern pseudo-
instructions, determine types of variables, parameters, templates and functions
and propogate and type-check cross-references. As such the key action is an itera-
tion through the children of any element that contains VARDEF or PARAMDEF chil-
dren, accumulating variable/type bindings that are passed to the XPath compiler.
Unlike the similar process during the static phase, in this case the architecture is
to use a recursive named template, to build a nested tree of let bindings, propo-
gating variable type bindings downwards and sequence constructor result types
back upwards. In this case the result type is held as an @sType attribute value. The

9This has the unfortunate effect of duplicating bodies (and compilation effort thereof) for multi-mode
templates — an indexed design might be a possibility, but may require SEF additions
10And perhaps should exist in in the normalisation phase

An XSLT compiler written in XSLT: can it perform?

235

top of this process determines the type of a component's result, which can be
checked against any declaration (I.e.@as)

This phase requires a static type system and checker which generates a small
map structure (baseType, cardinality.….) from the XSchema string representation
and uses this to compare supplied and required types, determining whether there
is match, total conflict or a need for runtime checking. Written in XSLT, one draw-
back is that the type of result trees is returned as a string on an attribute, requir-
ing reparsing11.

Some instructions require special processing during this phase. Some, e.g.
forEach, alter the type of the context item for evaluation of their sequence con-
structor body. Others, such as choose, return a result whose type is the union of
those of their 'action' child instructions. These are handled by separate templates
for each case.

Finally the pattern instructions are compiled. For accumulators and keys
their result trees are left on their parent declaration. For template rules, in addi-
tion, the default priority of the compiled pattern is calculated if required and with
a priority and import precedence available for every template rule in a mode,
they can be rank ordered.

3.2.5. Component binding

At this point all the compiling is complete, but all the cross-component references
must be linked. This is via a two stage process: firstly building a component 'na-
me' to component number ('id') map. Then each component is processed in turn,
collecting all descendant references (call-template, user-function calls, key and
accumulator references etc.) and building an indirect index on the component
head, whose entries are then interpolated into the internal references during a
recursive copy.12

3.2.6. Reflections on the design

We must emphasise that this architecture was designed for ease of the (complex)
debugging anticipated, valuing visibility over performance. Several of the phases
could be coalesced, reducing the need for multiple copying of large trees. For
example the normalisation and the compiling phases could be combined into a
single set of templates for each XSLT element, the body of which both checked

11Changing the canonical return to a (map) tuple of (tree,type) could be attempted but it would make
the use of a large set of element-matching templates completely infeasible.
12In XSLT 2.0, all references to components such as variables, named templates, and functions could
be statically resolved. This is no longer the case in XSLT 3.0, where components (if not declared pri-
vate or final) can be overridden in another stylesheet package, necessitating a deferred binding proc-
ess which in Saxon is carried out dynamically at execution time. The compiler generates a set of
binding vectors designed to make the final run-time binding operation highly efficient.

An XSLT compiler written in XSLT: can it perform?

236

syntax and compiled the result13. Similarly the XSLT and XPath compilation pha-
ses could be combined, incorporating static type checking in the same operation.
And some ot the operations, especially in type representation, may be susceptible
to redesign. Some of these will be discussed in the following sections

3.3. Comparing the Two Compilers
At a high level of description, the overall structure of the two compilers is not
that different. Internally, the most conspicuous difference is in the internal data
structures.

Both compilers work initially with the XDM tree representation of the style-
sheet as a collection of XML documents, and then subsequently transform this to
an internal representation better suited to operations such as type-checking.

For the XJ compiler, this internal representation is a mutable tree of Java
objects (each node in the tree is an object of class Expression, and the references
to its subexpressions are via objects of class Operand). The final SEF output is then
a custom serialization of this expression tree. The expression tree is mutable, so
there is no problem decorating it with additional properties, or with performing
local rewrites that replace selected nodes with alternatives. It's worth noting,
however, that the mutability of the tree has been a rich source of bugs over the
years. Problems can and do arise through properties becoming stale (not being
updated when they should be), through structural errors in rewrite operations
(leading for example to nodes having multiple parents), or through failure to
keep the structure thread-safe.

For the XX compiler, the internal representation is itself an XDM node tree,
augmented with maps used primarily as indexes into the tree. This creates two
main challenges. Firstly, the values of elements and attributes are essentially limi-
ted to strings; this leads to clumsy representation of node properties such as the
inferred type, or the set of in-scope namespaces. As we will see, profiling showed
that a lot of time was being spent translating such properties from a string repre-
sentation into something more suitable for processing (and back). Secondly, the
immutability of the tree leads to a lot of subtree copying. To take just one exam-
ple, there is a process that allocates distinct slot numbers to all the local variable
declarations in a template or function. This requires one pass over the subtree to
allocate the numbers (creating a modified copy of the subtree as it goes). But
worse, on completion we want to record the total number of slots allocated as an
attribute on the root node of the subtree; the simplest way of achieving this is to

13This is something of an anathema to accepted XSLT wisdom in the general case, where a mutliplicity
of pattern-matching templates is encouraged, but in this case the 'processed target', i.e. the XSLT lan-
guage isn't going to change.

An XSLT compiler written in XSLT: can it perform?

237

copy the whole subtree again. As we will see, subtree copying contributes a con-
siderable part of the compilation cost.

4. Compiler Performance
The performance of a compiler matters for a number of reasons:

• Usability and Developer Productivity. Developers spend most of their time
iteratively compiling, discovering their mistakes, and correcting them. Reduc-
ing the elapsed time from making a mistake to getting the error message has a
critical effect on the development experience. Both the authors of this paper
have been around long enough to remember when this time was measured in
hours. Today, syntax-directed editors often show you your mistakes before
you have finished typing. In an XML-based IDE such as oXygen, the editing
framework makes repeated calls on the compiler to get diagnostics behind the
scenes, and the time and resource spent doing this has a direct impact on the
usability of the development tool.

• Production efficiency. In some environments, for example high volume trans-
action processing, a program is compiled once and then executed billions of
times. In that situation, compile cost is amortized over many executions, so
the cost of compiling hardly matters. However, there are other production
environments, such as a publishing workflow, where it is common practice to
compile a stylesheet each time it is used. In some cases, the cost of compiling
the stylesheet can exceed the cost of executing it by a factor of 100 or more, so
the entire elapsed time of the publishing pipeline is in fact dominated by the
XSLT compilation cost.

• Spin-off benefits. For this project, we also have a third motivation: if the com-
piler is written in XSLT, then making the compiler faster means we have to
make XSLT run faster, and if we can make XSLT run faster, then the execution
time of other (sufficiently similar) stylesheets should all benefit. Note that
"making XSLT run faster" here doesn't just mean raw speed: it also means the
provision of instrumentation and tooling that helps developers produce good,
fast code.

4.1. Methodology

Engineering for performance demands a disciplined approach.

• The first step is to set requirements, which must be objectively measurable,
and must be correlated with the business requirements (that is, there must be
a good answer to the question, what is the business justification for investing
effort to make it run faster?)

An XSLT compiler written in XSLT: can it perform?

238

Often the requirements will be set relative to the status quo (for example,
improve the speed by a factor of 3). This then involves measurement of the
status quo to establish a reliable baseline.

• Then it becomes an iterative process. Each iteration proceeds as follows:
• Measure something, and (important but easily forgotten) keep a record of

the measurements.
• Analyze the measurements and form a theory about why the numbers are

coming out the way they are.
• Make a hypothesis about changes to the product that would cause the

numbers to improve.
• Implement the changes.
• Repeat the measurements to see what effect the changes had.
• Decide whether to retain or revert the changes.
• Have the project requirements now been met? If so, stop. Otherwise, con-

tinue to the next iteration.

4.2. Targets
For this project the task we want to measure and improve is the task of compiling
the XX compiler. We have chosen this task because the business objective is to
improve the speed of XSLT compilation generally, and we think that compiling
the XX compiler is likely to be representative of the task of compiling XSLT style-
sheets in general; furthermore, because the compiler is written in XSLT, the cost of
compiling is also a proxy for the cost of executing arbitrary XSLT code. Therefore,
any improvements we make to the cost of compiling the compiler should benefit
a wide range of other everyday tasks.

There are several ways we can compile the XX compiler (remembering that
XX is just an XSLT stylesheet).

We can describe the tasks we want to measure as follows:
E0: CEEJ(XX) ➔ XX0 (240ms ➔ 240ms)
Exercise E0 is to compile the stylesheet XX using the built-in XSLT compiler in

Saxon-EE running on the Java platform (denoted here CEEJ) to produce an output
SEF file which we will call XX0. The baseline timing for this task (the status quo
cost of XSLT compilation) is 240ms; the target remains at 240ms.

“E1: TEEJ(XX, XX0) ➔ XX1 (2040ms ➔ 720ms)”
Exercise E1 is to apply the compiled stylesheet XX0 to its own source code,

using as the transformation engine Saxon-EE on the Java platform (denoted here
TEEJ(source, stylesheet)), to produce an output SEF file which we will call XX1.
Note that XX0 and XX1 should be functionally equivalent, but they are not
required to be identical (the two compilers can produce different executables, so

An XSLT compiler written in XSLT: can it perform?

239

long as the two executables do the same thing). The measured baseline cost for
this transformation is 2040ms, which means that the XX compiler is 8 or 9 times
slower than the existing Saxon-EE/J compiler. We would like to reduce this over-
head to a factor of three, giving a target time of 720ms.

“E2: TJSN(XX, XX0) ➔ XX2 (90s ➔ 3s)”
Exercise E2 is identical, except that this time we will use as our transformation

engine Saxon-JS running on Node.js. The ratio of the time for this task compared
to E1 is a measure of how fast Saxon on Node.js runs relative to Saxon on Java, for
one rather specialised task. In our baseline measurements, this task takes 90s – a
factor of 45 slower. That's a challenge. Note that this doesn't necessarily mean that
every stylesheet will be 45 times slower on Node.js than on Java. Although we've
described XX as being written in XSLT, that's a simplification: the compiler dele-
gates XPath parsing to an external module, which is written in Java or Javascript
respectively. So the factor of 45 could be due to differences in the two XPath pars-
ers. At the moment, though, we're setting requirements rather than analysing the
numbers. We'll set ourselves an ambitious target of getting this task down to
three seconds.

“E3: TEEJ(XX, XX1) ➔ XX3 (2450ms ➔ E1 + 25%) ”
Exercise E3 is again similar to E1, in that it is compiling the XX compiler by

applying a transformation, but this time the executable stylesheet used to per-
form the transformation is produced using the XX compiler rather than the XJ
compiler. The speed of this task, relative to E1, is a measure of how good the code
produced by the XX compiler is, compared with the code produced by the XJ
compiler. We expected and were prepared to go with it being 25% slower, but
found on measurement that we were already exceeding this goal.

There are of course other tasks we could measure; for example we could do
the equivalent of E3, but using Saxon-JS rather than Saxon-EE/J. However, it's
best to focus on a limited set of objectives. Repeatedly compiling the compiler
using itself might be expected to converge, so that after a couple of iterations the
output is the same as the input: that is, the process should be idempotent.
Although technically idempotence is neither a necessary nor a sufficient condi-
tion of correctness, it is easy to assess, so as we try to improve performance, we
can use idempotence as a useful check that we have not broken anything. We
believe that if we can achieve these numbers, then we have an offering on Node.js
that is fit for purpose; 3 seconds for a compilation of significant size will not cause
excessive user frustration. Of course, this is a "first release" target and we would
hope to make further improvements in subsequent releases.

4.3. Measurement Techniques

In this section we will survey the measurement techniques used in the course of
the project. The phase of the project completed to date was, for the most part,

An XSLT compiler written in XSLT: can it perform?

240

running the compiler using Saxon-EE on the Java platform, and the measurement
techniques are therefore oriented to that platform.

We can distinguish two kinds of measurement: bottom-line measurement
intended directly to assess whether the compiler is meeting its performance
goals; and internal measurements designed to achieve a better understanding of
where the costs are being incurred, with a view to making internal changes.

• The bottom-line execution figures were obtained by running the transforma-
tion from the command line (within the IntelliJ development environment, for
convenience), using the -t and -repeat options.

The -t option reports the time taken for a transformation, measured using
Java's System.nanoTime() method call. Saxon breaks the time down into
stylesheet compilation time, source document parsing/building time, and
transformation execution time.

The -repeat option allows the same transformation to be executed repeat-
edly, say 20 or 50 times. This delivers results that are more consistent, and
more importantly it excludes the significant cost of starting up the Java Virtual
Machine. (Of course, users in real life may experience the same inconsistency
of results, and they may also experience the JVM start-up costs. But our main
aim here is not to predict the performance users will obtain in real life, it is to
assess the impact of changes we make to the system.)

Even with these measures in place, results can vary considerably from one
run to another. That's partly because we make no serious attempt to prevent
other background work running on the test machine (email traffic, virus
checkers, automated backups, IDE indexing), and partly because the operat-
ing system and hardware themselves adjust processor speed and process pri-
orities in the light of factors such as the temperature of the CPU and battery
charge levels. Some of the changes we have been making might only deliver a
1% improvement in execution speed, and 1% is unfortunately very hard to
measure when two consecutive runs, with no changes at all to the software,
might vary by 5%. Occasionally we have therefore had to "fly blind", trusting
that changes to the code had a positive effect even though the confirmation
only comes after making a number of other small changes whose cumulative
effect starts to show in the figures.

Generally we trust a good figure more than we trust a bad figure. There's
an element of wishful thinking in this, of course; but it can be justified on the
basis that random external factors such as background processes can slow a
test run down, but they are very unlikely to speed it up. The best figures we
got were usually when we ran a test first thing in the morning on a cold
machine.

• Profiling: The easiest way to analyse where the costs are going for a Saxon
XSLT transformation is to run with the option -TP:profile.html. This gener-

An XSLT compiler written in XSLT: can it perform?

241

ates an HTML report showing the gross and net time spent in each stylesheet
tempate or function, together with the number of invocations. This output is
very useful to highlight hot-spots.

Like all performance data, however, it needs to be interpreted with care.
For example, if a large proportion of the time is spent evaluating one particu-
lar match pattern on a template rule, this time will not show up against that
template rule, but rather against all the template rules containing an
xsl:apply-templates instruction that causes the pattern to be evaluated (suc-
cessfully or otherwise). This can have the effect of spreading the costs thinly
out among many other templates.

• Subtractive measurement: Sometimes the best way to measure how long some-
thing is taking is to see how much time you save by not doing it. For example,
this technique proved the best way to determine the cost of executing each
phase of the compiler, since the compiler was already structured to allow
early termination at the end of any phase. It can also be used in other situa-
tions: for example, if there is a validation function testing whether variable
names conform to the permitted XPath syntax, you can assess the cost of that
operation by omitting the validation. (As it happens, there's a cheap optimiza-
tion here: test whether names are valid at the time they are declared, and rely
on the binding of references to their corresponding declarations to catch any
invalid names used as variable or function references).

• A corresponding technique, which we had not encountered before this
project, might be termed additive measurement. Sometimes you can't cut out a
particular task because it is essential to the functionality; but what you can do
is to run it more than once. So, for example, if you want to know how much
time you are spending on discovering the base URIs of element nodes, one
approach is to modify the relevant function so it does the work twice, and see
how much this adds to total execution time.

• Java-level profiling. There's no shortage of tools that will tell you where your
code is spending its time at the Java level. We use JProfiler, and also the basic
runhprof reports that come as standard with the JDK. There are many pitfalls
in interpreting the output of such tools, but they are undoubtedly useful for
highlighting problem areas. Of course, the output is only meaningful if you
have some knowledge of the source code you are profiling, which might not
be the case for the average Saxon XSLT user. Even without this knowledge,
however, one can make inspired guesses based on the names of classes and
methods; if the profile shows all the time being spent in a class called
DecimalArithmetic, you can be fairly sure that the stylesheet is doing some
heavy computation using xs:decimal values.

• Injected counters. While timings are always variable from one run to another,
counters can be 100% replicable. Counters can be injected into the XSLT code

An XSLT compiler written in XSLT: can it perform?

242

by calling xsl:message with a particular error code, and using the Saxon
extension function saxon:message-count() to display the count of messages
by error code. Internally within Saxon itself, there is a general mechanism
allowing counters to be injected: simply add a call on
Instrumentation.count("label") at a particular point in the source code,
and at the end of the run it will tell you the number of executions for each dis-
tinct label. The label does not need to be a string literal; it could, for example,
be an element name, used to count visits to nodes in the source document by
name. This is how we obtained the statistics (mentioned below) on the inci-
dence of different kinds of XPath expression in the stylesheet.

The information from counters is indirect. Making a change that reduces
the value of a counter gives you a warm feeling that you have reduced costs,
but it doesn't quantify the effect on the bottom line. Nevertheless, we have
found that strategically injected counters can be a valuable diagnostic tool.

• Bytecode monitoring. Using the option -TB on the Saxon command line gives a
report on which parts of the stylesheet have been compiled into Java bytecode,
together with data on how often these code fragments were executed.
Although it was not orginally intended for the purpose, this gives an indica-
tion of where the hotspots in the stylesheet are to be found, at a finer level of
granularity than the -TP profiling output.

A general disadvantage of all these techniques is that they give you a worm's-eye
view of what's going on. It can be hard to stand back from the knowledge that
you're doing millions of string-to-number conversions (say), and translate this
into an understanding that you need to fundamentally redesign your data struc-
tures or algorithms.

4.4. Speeding up the XX Compiler on the Java Platform
The first task we undertook (and the only one fully completed in time for publica-
tion) was to measure and improve the time taken for compiling the XX compiler,
running using Saxon-EE on the Java platform. This is task E1 described above,
and our target was to improve the execution time from 2040ms to 720ms.

At this stage it's probably best to forget that the program we're talking about
is a compiler, or that it it is compiling itself. Think of it simply as an ordinary,
somewhat complex, XML transformation. We've got a transformation defined by
a stylesheet, and we're using it to transform a set of source XML documents into a
result XML document, and we want to improve the transformation time. The fact
that the stylesheet is actually an XSLT compiler and that the source document is
the stylesheet itself is a complication we don't actually need to worry about.

We started by taking some more measurements, taking more care over the
measurement conditions. We discovered that the original figure of 2040ms was
obtained with bytecode generation disabled, and that switching this option on

An XSLT compiler written in XSLT: can it perform?

243

improved the performance to 1934ms. A gain of 5% from bytecode generation for
this kind of stylesheet is not at all untypical (significantly larger gains are some-
times seen with stylesheets that do a lot of arithmetic computation, for example).

Figure 1. Example of -TP profile output

Our next step was to profile execution using the -TP option. Figure 1 shows part
of the displayed results. The profile shows that 25% of the time is spent in a single
template, the template rule with match="*:xpath. This is therefore a good candi-
date for further investigation.

4.4.1. XPath Parsing

The match="*:xpath template is used to process XPath expressions appearing in
the stylesheet. As already mentioned, the XPath parsing is not done in XSLT code,
but by a call-out to Java or Javascript (in this case, Java). So the cost of this tem-
plate includes all the time spent in the Java XPath parser. However, the total time
spent in this template exceeds the total cost of running the XJ compiler, which is
using the same underlying XPath parser, so we know that it's not simply an ineffi-
ciency in the parser.

Closer examination showed that the bulk of the cost was actually in setting up
the data structures used to represent the static context of each XPath expression.
The static context includes the names and signatures of variables, functions, and
types that can be referenced by the XPath expression, and it is being passed from
the XSLT code to the Java code as a collection of maps. Of course, the average
XPath expression (think select=".") doesn't use any of this information, so the
whole exercise is wasted effort.

Reducing this cost used a combination of two general techniques:
• Eager evaluation: A great deal of the static context is the same for every XPath

expression in the stylesheet: every expression has access to the same functions
and global variables. We should be able to construct this data structure once,
and re-use it.

An XSLT compiler written in XSLT: can it perform?

244

• Lazy evaluation: Other parts of the static context (notably local variables and
namespace bindings) do vary from one expression to another, and in this case
the trick is to avoid putting effort into preparing the information in cases
when it is not needed. One good way to do this would be through callbacks -
have the XPath parser ask the caller for the information on demand (through
callback functions such as a variable resolver and a namespace resolver, as
used in the JAXP XPath API). However, we decided to rule out use of higher-
order functions on this project, because they are not available on all Saxon ver-
sions. We found an alternative that works just as well: pass the information to
the parser in whatever form it happens to be available, and have the parser do
the work of digesting and indexing it only if it is needed.

These changes brought execution time down to 1280ms, a good step towards the
target of 720ms.
Profiling showed that invocation of the XPath parser still accounted for a large

proportion of the total cost, so we subsequently revisited it to make further
improvement. One of the changes was to recognize simple path expressions like .
and (). We found that of 5100 path expressions in the stylesheet, 2800 had 5 or
fewer tokens; applying the same analysis to the Docbook stylesheets gave similar
results. The vast majority of these fall into one of around 25 patterns where the
structure of the expression can be recognised simply from the result of tokeniza-
tion: if the sequence of tokens is (dollar, name) then we can simply look up a
function that handles this pattern and converts it into a variable reference,
bypassing the recursive-descent XPath parser entirely. Despite a good hit rate, the
effect of this change on the bottom line was small (perhaps 50ms, say 4%). How-
ever, we decided to retain it as a standard mechanism in the Java XPath parser.
The benefit for Java applications using XPath to navigate the DOM (where it is
common practice to re-parse an XPath expression on every execution) may be
rather greater.

4.4.2. Further investigations

After the initial success improving the interface to the XPath parser, the profile
showed a number of things tying for second place as time-wasters: there are
about 10 entries accounting for 3% of execution time each, so we decided to
spread our efforts more thinly. This proved challenging because although it was
easy enough to identify small changes that looked beneficial, measuring the effect
was tough, because of the natural variation in bottom-line readings.

Here are some of the changes we made in this next stage of development:

• During the first ("static") phase of processing, instead of recording the full set
of in-scope namespace bindings on every element, record it only if the name-
space context differs from the parent element. The challenge is that there's no

An XSLT compiler written in XSLT: can it perform?

245

easy way to ask this question in XPath; we had to introduce a Saxon extension
function to get the information (saxon:has-local-namespaces()).

• The template rule used to strip processing instructions and comments, merge
adjacent text nodes, and strip whitespace, was contributing 95ms to total exe-
cution time (say 7%). Changing it to use xsl:iterate instead of xsl:for-
each-group cut this to 70ms.

• There was a very frequently executed function t:type used to decode type
information held in string form. Our initial approach was to use a memo func-
tion to avoid repeated decoding of the same information. Eventually however,
we did a more ambitious redesign of the representation of type information
(see below).

• The compiler maintains a map-based data structure acting as a "schema" for
XSLT to drive structural validation. This is only built once, in the form of a
global variable, but when the compiler is only used for one compilation,
building the structure is a measurable cost. We changed the code so that
instead of building the structure programmatically, it is built by parsing a
JSON file.

• We changed the code in the final phase where component bindings are fixed
up to handle all the different kinds of component references (function calls,
global variable references, call-template, attribute set references, etc) in a sin-
gle pass, rather than one pass for each kind of component. There were small
savings, but these were negated by fixing a bug in the logic that handled
duplicated names incorrectly. (This theme came up repeatedly: correctness
always comes before performance, which sometimes means the performance
numbers get worse rather than better.)

• There's considerable use in the compiler of XSLT 3.0 maps. We realised there
were two unnecessary sources of inefficiency in the map implementation.
Firstly, the specification allows the keys in a map to be any atomic type (and
the actual type of the key must be retained, for example whether it is an
xs:NCName rather than a plain xs:string). Secondly, we're using an "immuta-
ble" or "persistent" map implementation (based on a hash trie) that's opti-
mized to support map:put() and map:remove() calls, when in fact these
hardly ever occur: most maps are never modified after initial construction. We
added a new map implementation optimized for string keys and no modifica-
tion, and used a combination of optimizer tweaks and configuration options
to invoke it where appropriate.

Most of these changes led to rather small benefits: we were now seeing execution
times of around 1120ms. It was becoming clear that something more radical
would be needed to reach the 720ms goal.

An XSLT compiler written in XSLT: can it perform?

246

At this stage it seemed prudent to gather more data, and in particular it occur-
red to us that we did not really have numbers showing how much time was spent
in each processing phase. We tried two approaches to measuring this: one was to
output timestamp information at the end of each phase, the other was "subtrac-
tive measurement" - stopping processing before each phase in turn, and looking
at the effect on the bottom line. There were some interesting discrepancies in the
results, but we derived the following "best estimates":

Table 1. Execution times for each phase of processing

Static processing 112ms
Normalisation 139ms
"Compilation" (generating initial SEF tree) 264ms
XPath parsing 613ms
Component binding 55ms

These figures appear to contradict what we had learnt from the -TP profile infor-
mation. It seems that part of the discrepancy was in accounting for the cost of
serializing the final result tree: serialization happens on-the-fly, so the cost
appears as part of the cost of executing the final phase of the transformation, and
this changes when the transformation is terminated early. It's worth noting also
that when -TP is used, global variables are executed eagerly, so that the evalua-
tion cost can be separated out; the tracing also suppresses some optimizations
such as function inlining. Heisenberg rules: measuring things changes what you
are measuring.

At this stage we decided to study how much time was being spent copying
subtrees, and whether this could be reduced.

4.4.3. Subtree Copying

At XML Prague 2018, one of the authors presented a paper on mechanisms for
tree copying in XSLT; in particular, looking at whether the costs of copying could
be reduced by using a "tree grafting" approach, where instead of making a physi-
cal copy of a subtree, a virtual copy could be created. This allows one physical
subtree to be shared between two or more logical trees; it is the responsibility of
the tree navigator to know which real tree it is navigating, so that it can do the
right thing when retracing its steps using the ancestor axis, or when performing
other context-dependent operations such as computing the base URI or the in-
scope namespaces of a shared element node.

In actual fact, two mechanisms were implemented in Saxon: one was a fast
'bulk copy" of a subtree from one TinyTree to another (exploiting the fact that
both use the same internal data structure to avoid materializing the nodes in a

An XSLT compiler written in XSLT: can it perform?

247

neutral format while copying), and the other was a virtual tree graft. The code for
both was present in the initial Saxon 9.9 release, though the "bulk copy" was disa-
bled. Both gave good performance results in synthetic benchmarks.

On examination, we found that the virtual tree grafting was not being exten-
sively used by the XX compiler, because the preconditions were not always satis-
fied. We spent some time tweaking the implementation so it was used more often.
After these adjustments, we found that of 93,000 deep copy operations, the graft-
ing code was being used for over 82,000 of them.

However, it was not delivering any performance benefits. The reason was
quickly clear: the trees used by the XX compiler typically have a dozen or more
namespaces in scope, and the saving achieved by making a virtual copy of a sub-
tree was swamped by the cost of coping with two different namespace contexts
for the two logical trees sharing physical storage.

In fact, it appeared that the costs of copying subtrees in this application had
very little to do with the copying of elements and attributes, and were entirely
dominated by the problem of copying namespaces.

We then experimented by using the "bulk copy" implementation instead of the
virtual tree grafting. This gave a small but useful performance benefit (around
50ms, say 4%).

We considered various ways to reduce the overhead of namespace copying.
One approach is to try and reduce the number of namespaces declared in the
stylesheet that we are compiling; but that's cheating, it changes the input of the
task we're trying to measure. Unfortunately the semantics of the XSLT language
are very demanding in this area. Most of the namespaces declared in a stylesheet
are purely for local use (for use in the names of functions and types, or even for
marking up inline documentation), but the language specification requires that
all these names are retained in the static context of every XPath expression, for
use by a few rarely encountered constructs like casting strings to QNames, where
the result depends on the namespaces in the source stylesheet. This means that
the namespace declarations need to be copied all the way through to the gener-
ated SEF file. Using exclude-result-prefixes does not help: it removes the
namespaces from elements in the result tree, but not from the run-time evaluation
context.

We concluded there was little we could do about the cost of copying, other
than to try to change the XSLT code to do less of it. We've got ideas about changes
to the TinyTree representation of namespaces that might help14, but that's out of
scope for this project.

Recognizing that the vast majority of components (templates, functions, etc)
contain no internal namespace declarations, we introduced an early check during

14See blog article: http://dev.saxonica.com/blog/mike/2019/02/representing-namespaces-in-xdm-tree-
models.html

An XSLT compiler written in XSLT: can it perform?

248

the static phase so that such components are labelled with an attribute
uniformNS="true". When this attribute is present, subsequent copy operations on
elements within the component can use copy-namespaces="false" to reduce the
cost.

Meanwhile, our study of what was going on internally in Saxon for this trans-
formation yielded a few further insights:
• We found an inefficiency in the way tunnel parameters were being passed

(this stylesheet uses tunnel parameters very extensively).
• We found some costs could be avoided by removing an xsl:strip-space dec-

laration.
• We found that xsl:try was incurring a cost invoking

Executors.newFixedThreadPool(), just in case any multithreading activity
started within the scope of the xsl:try needed to be subsequently recovered.
Solved this by doing it lazily only in the event that multi-threaded activity
occurs.

• We found that during a copy operation, if the source tree has line number
information, the line numbers are copied to the destination. Copying the line
numbers is inexpensive, but the associated module URI is also copied, and
this by default walks the ancestor axis to the root of the tree. This copying
operation seems to achieve nothing very useful, so we dropped it.

At this stage, we were down to 825ms.

4.4.4. Algorithmic Improvements

In two areas we developed improvements in data representation and associated
algorithms that are worth recording.

Firstly, import precedence.
All the components declared in one stylesheet module have the same import

precedence. The order of precedence is that a module has higher precedence than
its children, and children have higher precedence than their preceding siblings.
The precedence order can be simply computed in a post-order traversal of the
import tree. The problem is that annotating nodes during a post-order traversal is
expensive: attributes appear on the start-tag, so they have to be written before
writing the children. The existing code was doing multiple copy operations of
entire stylesheet modules to solve this problem, and the number of copy opera-
tions increased with stylesheet depth.

The other problem here is that passing information back from called templates
(other than the result tree being generated) is tedious. It's possible, using maps,
but generally it's best if you can avoid it. So we want to allocate a precedence to
an importing module without knowing how many modules it (transitively)
imported.

An XSLT compiler written in XSLT: can it perform?

249

The algorithm we devised is as follows. First, the simple version that ignores
xsl:include declarations.
• We'll illustrate the algorithm with an alphabet that runs from A to Z. This

would limit the number of imports to 26, so we actually use a much larger
alphabet, but A to Z makes things clearer for English readers.

• Label the root stylesheet module Z
• Label its xsl:import children, in order, ZZ, ZY, ZX, ...
• Similarly, if a module is labelled PPP, then its xsl:import children are label-

led, PPPZ, PPPY, PPPX, ...
• The alphabetic ordering of labels is now the import precedence order, highest

precedence first.
A slight refinement of the algorithm is needed to handle xsl:include. Modules
are given a label that reflects their position in the hierarchy taking both
xsl:include and xsl:import into account, plus a secondary label that is changed
only by an xsl:include, not by an xsl:import.

Secondly, types.
We devised a compact string representation of the XPath SequenceType con-

struct, designed to minimize the cost of parsing, and capture as much informa-
tion as possible in compact form. This isn't straightforward, because the more
complex (and less common) types, such as function types, require a fully recur-
sive syntax. The representation we chose comprises:
• A single character for the occurrence indicator (such as "?", "*", "+"), always

present (use "1" for exactly one, "0" for exactly zero)
• A so-called alphacode for the "principal" type, chosen so that if (and only if) T

is a subtype of U, the alphacode of U is a prefix of the alphacode of T. The
alphacode for item() is a zero-length string; then, for example:
• N = node()

• NE = element()

• NA = attribute()

• A = xs:anyAtomicType

• AS = xs:string

• AB = xs:boolean

• AD = xs:decimal

• ADI = xs:integer

• ADIP = xs:positiveInteger

• F = function()

• FM = map()

An XSLT compiler written in XSLT: can it perform?

250

and so on.
• Additional properties of the type (for example, the key type and value type

for a map, or the node name for element and attribute nodes) are represented
by a compact keyword/value notation in the rest of the string.

Functions are provided to convert between this string representation and a map-
based representation that makes the individual properties directly accessible. The
parsing function is a memo function, so that conversion of commonly used types
like "1AS" (a single xs:string) to the corresponding map are simply lookups in a
hash table.

This representation has the advantage that subtype relationships between two
types can in most cases be very quickly established using the starts-with()
function.

It might be noted that both the data representations described in this section
use compact string-based representations of complex data structures. If you're
going to hold data in XDM attribute nodes, it needs to be expressible as a string,
so getting inventive with strings is the name of the game.

4.4.5. Epilogue

With all the above changes, and a few others not mentioned, we got the elapsed
time for the transformation down to 725ms, within a whisker of the target.

It then occurred to us that we hadn't yet used any of Saxon's multi-threading
capability. We found a critical xsl:for-each at the point where we start XPath
processing for each stylesheet component, and added the attribute
saxon:threads="8", so effectively XPath parsing of multiple expressions hap-
pens in parallel. This brings the run-time down to 558ms, a significant over-ach-
ievement beyond the target. It's a notable success-story for use of declarative
languages that we can get such a boost from parallel processing just by setting
one simple switch in the right place.

4.5. So what about Javascript?
The raison-d'etre of this project is to have an XSLT compiler running efficiently on
Node.js; the astute reader will have noticed that so far, all our efforts have been
on Java. Phase 2 of this project is about getting the execution time on Javascript
down, and numerically this is a much bigger challenge.

Having achieved the Java numbers, we decided we should test the "tuned up"
version of the compiler more thoroughly before doing any performance work
(there's no point in it running fast if it doesn't work correctly). During the per-
formance work, most of the testing was simply to check that the compiler could
compile itself. Unfortunately, as already noted, the compiler only uses a fairly
small subset of the XSLT language, so when we went back to running the full test

An XSLT compiler written in XSLT: can it perform?

251

suite, we found that quite a lot was broken, and it took several weeks to repair the
damage. Fortunately this did not appear to negate any of the performance
improvements.

Both Node.js and the Chrome browser offer excellent profiling tools for Java-
script code, and we have used these to obtain initial data helping us to under-
stand the performance of this particular transformation under Saxon-JS. The
quantitative results are not very meaningful because they were obtained against a
version of the XX compiler that is not delivering correct results, but they are
enough to give us a broad feel of where work is needed.

Our first profiling results showed up very clearly that the major bottleneck in
running the XX compiler on Saxon-JS was the XPath parser, and we decided on
this basis to rewrite this component of the system. The original parser had two
main components: the parser itself, generated using Gunther Rademacher's REx
toolkit [reference], and a back-end, which took events from the parser and gener-
ated the SEF tree representation of the expression tree. One option would have
been to replace the back-end only (which was written with very little thought for
efficiency, more as a proof of concept), but we decided instead to write a complete
new parser from scratch, essentially as a direct transcription of the Java-based
XPath parser present in Saxon.

At the time of writing this new parser is passing its first test cases. Early indi-
cations are that it is processing a medium sized XPath expression (around 80
characters) in about 0.8ms, compared with 8ms for the old parser. The figures are
not directly comparable because the new parser is not yet doing full type check-
ing. Recall however that the XX compiler contains around 5000 XPath expres-
sions, and if the compiler is ever to run in 1s with half the time spent doing XPath
parsing, then the budget is for an average compile time of around 0.1ms per path
expression. We know that most of the path expressions are much simpler than
this example, so we may not be too far out from this target.

Other than XPath parsing, we know from the measurements that we available
that there are a number of key areas where Saxon-JS performance needs to be
addressed to be competitive with its Java cousin.

• Pattern matching. Saxon-JS finds the template rule for matching a node (selec-
ted using xsl:apply-templates) by a sequential search of all the template
rules in a mode. We have worked to try and make the actual pattern matching
logic as efficient as possible, but we need a strategy that avoids matching
every node against every pattern. Saxon-HE on Java builds a decision tree in
which only those patterns capable of matching a particular node kind and
node name are considered; Saxon-EE goes beyond this and looks for common-
ality across patterns such as a common parent element or a common predi-
cate. We've got many ideas on how to do this, but a first step would be to
replicate the Saxon-HE design, which has served us well for many years.

An XSLT compiler written in XSLT: can it perform?

252

• Tree construction. Saxon-JS currently does all tree construction using the
DOM model, which imposes considerable constraints. More particularly,
Saxon-JS does all expression evaluation in a classic bottom-up (pull-mode)
fashion: the operands of an expression are evaluated first, and then combined
to form the result of the parent expression. This is a very expensive way to do
tree construction because it means repeated copying of child nodes as they are
added to their parents. We have taken some simple steps to mitigate this in
Saxon-JS but we know that more needs to be done. One approach is to follow
the Saxon/J product and introduce push-mode evaluation for tree construction
expressions, in which a parent instructions effectively sends a start element
event to the tree builder, then invokes its child instructions to do the same,
then follows up with an end element event. Another approach might be to
keep bottom-up construction, but using a lightweight tree representation with
no parent pointers (and therefore zero-overhead node copying) until a subtree
needs to be stored in a variable, and which point it can be translated into a
DOM representation.

• Tree navigation. Again, Saxon-JS currently uses the DOM model, which has
some serious inefficiencies built in. The worst is that all searching for nodes by
name requires full string comparison against both the local name and the
namespace URI. Depending on the DOM implementation, determining the
namespace URI of a node can itself be a tortuous process. One way forward
might be to use something akin to the Domino model recently introduced for
Saxon-EE, where we take a third party DOM as is, and index it for fast
retrieval. But this has a significant memory footprint. Perhaps we should sim-
ply implement Saxon's TinyTree model, which has proved very successful.

All of these areas impact on the performance of the compiler just as much as on
the performance of user-written XSLT code. That's the dogfood argument for
writing a compiler in its own language: the things you need to do to improve run-
time performance are the same things you need to do to improve compiler per-
formance.

5. Conclusions
Firstly, We believe we have shown that implementing an XSLT compiler in XSLT
is viable.

Secondly, we have tried to illustrate some of the tools and techniques that can
be used in an XSLT performance improvement exercise. We have used these tech-
niques to achieve the performance targets that we set ourselves, and we believe
that others can do the same.

The exercise has shown that the problem of the copying overhead when exe-
cuting complex XSLT transformations is real, and we have not found good
answers. Our previous attempts to solve this using virtual trees proved ineffec-

An XSLT compiler written in XSLT: can it perform?

253

tive because of the amount of context carried by XML namespaces. We will
attempt to make progress in this area by finding novel ways of representing the
namespace context.
Specific to the delivery of a high-performing implementation of Saxon on the

Javascript platform, and in particular server-side on Node.js, we have an under-
standing of the work that needs to be done, and we have every reason to believe
that the same techniques we have successfully developed on the Java platform
will deliver results for Javascript users.

References
[1] John Lumley, Debbie Lockett, and Michael Kay. February, 2017. XMLPrague.

XPath 3.1 in the Browser. 2017. http://archive.xmlprague.cz/2017/files/
xmlprague-2017-proceedings.pdf

[2] John Lumley, Debbie Lockett, and Michael Kay. August, 2017. Balisage: The
Markup Conference. Compiling XSLT3, in the browser, in itself. 2017. https://
doi.org/10.4242/BalisageVol19.Lumley01

[3] Michael Kay. August, 2007. Extreme Markup. Montreal, Canada. Writing an
XSLT Optimizer in XSLT. 2007. http://conferences.idealliance.org/
extreme/html/2007/Kay01/EML2007Kay01.html

[4] Michael Kay. February, 2018. XML Prague. Prague, Czechia. XML Tree Models
for Efficient Copy Operations. 2018. http://archive.xmlprague.cz/2018/
files/xmlprague-2018-proceedings.pdf

An XSLT compiler written in XSLT: can it perform?

254

