
Task Abstraction for XPath Derived
Languages

Debbie Lockett
Saxonica

<debbie@saxonica.com>

Adam Retter
Evolved Binary

<adam@evolvedbinary.com>

Abstract

XPDLs (XPath Derived Languages) such as XQuery and XSLT have been
pushed beyond the envisaged scope of their designers. Perversions such as
processing Binary Streams, File System Navigation, and Asynchronous
Browser DOM Mutation have all been witnessed.

Many of these novel applications of XPDLs intentionally incorporate
non-sequential and/or concurrent evaluation and embrace side effects to
achieve their purpose.

To arrive at a solution for safely managing side effects and concurrent
execution, this paper first surveys both the available XPDL vendor exten-
sions and approaches offered in non-XPDLs, and then describes EXPath
Tasks, a novel solution derived for the safe evaluation of side effects in
XPDLs which respects both sequential and concurrent execution.

1. Introduction
XPath 1.0 was originally designed to “provide a common syntax and semantics
for functionality shared between XSL Transformations and XPointer” [1], and
XPath 2.0 pushed the abstraction further by declaring “XPath is designed to be
embedded in a host language such as XSL Transformations ... or XQuery” [2]. For
XML processing, XPath has enjoyed an arguably unparalleled level of language
adoption through reuse, forming the basis of XPointer, XSLT, XQuery, XForms,
XProc, Schematron, JSONiq, and others. XPath has also had a wide influence out-
side of XML, with concepts and syntax being reused in other languages like AQL
(Arrango Query Language), Cypher, JSONPath, and OData (Open Data Protocol)
amongst others.

As functional languages, XPDLs such as XQuery were designed to avoid strict
or ordered evaluation [21], thus leaving them open to optimisations which may
exploit concurrency or parallelism. XPDLs are thus good candidates for event

1

driven and task based concurrent and/or parallel processing. Since 2001, when
the first non-embedded multi-core processor the IBM Power 4 [11] was intro-
duced, CPU manufacturers have followed the trend of offering improved per-
formance through greater numbers of parallel hardware threads as opposed to
increased clock speeds. Unfortunately, exploiting the performance of additional
hardware threads puts an additional burden on developers by requiring the use
of low-level complex concurrent programming techniques [12]. Such low-level
concurrent programming is often error-prone [13], so it is desirable to employ
higher level abstractions such as event driven architectures [14], or task based
computation with Futures [16] and Promises [18]. This paper advances the use of
XPDLs in this context.

Indeed, the formal semantics for XPath state that “[XPath/XQuery] is a func-
tional language” [4]. From this we can infer that strict XPDLs must therefore also
be functional languages; this inference is strengthened by XQuery and XSLT
which are both functional languages. By placing restrictions on expression formu-
lation, composition, and evaluation, functional programming languages can ena-
ble advantageous classes of verification and optimisation when compared to
imperative languages.

One such restriction enforced by functional languages is the elimination of
side effects. A side effect is defined as a function or expression modifying some
state which is external to its local environment, this includes:
1. Modifying either: a global variable, static local variable, or variable passed by

reference.
2. Performing I/O.
3. Calling other side effect functions.
XPath and the XPDLs as defined by the W3C specifications address these con-
cerns and prevent side effects by enforcing that:
1. Global variables and static local variables are immutable, and that variables

are always passed by value and not reference.
2. I/O is frozen before evaluation, only documents known to the immutable

static context may be read, whilst the only output facility is the XDM result of
the program.

3. There are no side-effecting functions1.
In reality though many XPDL implementations offer additional vendor-specific
“extensions” which compromise functional integrity to permit side effects so that

1XPath 3.0 defines only one absolute non-deterministic function fn:error, and several other functions
(fn:analyze-string, fn:parse-xml, fn:parse-xml-fragment, fn:json-to-xml, and fn:transform)
which could be non-deterministic depending on implementation choices. We devalue the significance
of fn:error's side effect by tendering that, it could equally have been specified as a language expres-
sion for raising exceptions as opposed to a function.

Task Abstraction for XPath Derived Languages

2

I/O can be more easily achieved by the developer. Of concern for this paper is the
ability to utilize XPDLs for complex I/O requiring side effects without compro-
mising functional integrity or correctness of the application.

The key contributions of this paper are:
1. A survey of XPDL vendor implementations, detailing both how they manage

side effects and any proprietary extensions they offer for concurrent execu-
tion. See Section 2.

2. A survey of currently popular mechanisms for concurrent programming in
non-XPDLs, their ability to manage side effects, and their potential for XPDLs.
See Section 3

3. EXPath Tasks, a module of XPath functions defined for managing computa-
tional side effects and enabling concurrent and asynchronous programming.
To demonstrate the applicability of EXPath Tasks, we offer experimental refer-
ence implementations of this module in XQuery, XSLT, Java (for use from
XQuery in eXist-db), and JavaScript (for use from XSLT in Saxon-JS). See Sec-
tion 4.
We next briefly examine the original vision for XPath, XQuery, and XSLT, with

particular concern for how these languages should be evaluated by processors.
We then examine how the use of these languages has evolved over time and some
of the unexpected and novel ways in which they have been used.

1.1. The vision of XPDLs

The design requirements of XPath 2.0 [3] mostly focused on that of exploiting the
XDM (XQuery and XPath Data Model) and interoperability. As a language
designed to describe the processing abstractions of various host languages, it did
not need to state how the evaluation of such abstractions should take place,
although we find that it was not without sympathy for implementations, as one
of the stated Goals was: “Enable improved processor efficiency”; unfortunately,
we found little explicit public information on how or if that goal was met.

Examining the XQuery 1.0 requirements [6] we find a similar focus upon the
XDM, where querying different types of XML documents, and non-XML data
sources is possible, provided that both can present their data in an XDM form.
However, the XQuery 1.0 specification makes an explicit statement about evalua-
tion: “an implementation is free to use any strategy or algorithm whose result
conforms to the specifications in this document”, thus giving implementations a
great deal of freedom in how the query should be evaluated.

One of the requirements of XSLT 2.0 is labelled “2.11 Could Improve Effi-
ciency of Transformations on Large Documents” [5]. It describes both the situa-
tion where the tree representation of source documents may exceed memory
requirements, and a desire to still be able to process such large documents. It uses

Task Abstraction for XPath Derived Languages

3

non-prescriptive language to suggest two possible solutions: 1) a subset of the
language which would not require random access to the source tree, we could
likely recognise XSLT 3.0 Streaming as the implementation of that solution, and 2)
splitting a tree into sub-trees, performing a transformation on each sub-tree, and
then copying the results to the final result tree. Whilst XSLT 2.0 does not state
how an implementation should be achieved, many would likely recognise that (2)
is an embarrassingly parallel problem that would likely benefit from a MapReduce
[19] like approach.

An academic example of exploiting the implicit parallelisation opportunites of
XPDLs is PAXQuery, which compiles a subset of XQuery down into MapReduce
jobs which can execute in a highly-parallel manner over a cluster of Hadoop
nodes [24]. To the best of our knowledge, Saxon is the only commercial XPDL
processor which attempts implicit parallelisation. However, Michael Kay reports
that within the XSLT processor it can be difficult to determine when implicitly
parallelising operations will reduce processing time [20]. Saxon therefore also
offers vendor extensions which allow an XSLT developer with a holistic view of
both the XSLT and the data it must process, to explicitly annotate certain XSLT
instructions as parallelisable.

1.2. Novel applications of XPDLs

XPDLs have been used in many novel situations for which they were never envis-
aged, many of which utilise non-standardised extensions for I/O side effects and
concurrent processing to achieve their goals.

1.2.1. XPDLs as Web Languages

XPDLs, in particular XQuery, have been adopted with considerable success as
server-side scripting languages for the creation of dynamic web pages and web
APIs. A web page is by definition a document, and since an HTML document is
representable as an XML document, XPDLs' ability to build and transform such
documents from constituent parts has contributed to their uptake. Implementa-
tions such as BaseX, eXist-db, and MarkLogic all provide HTTP Servers which
execute XQuery in response to HTTP requests. Whilst a single XQuery may be
executed concurrently by many thousands of users in response to incoming
HTTP requests, stateful information often needs to be persisted and shared on the
server. This could be in response to either a user logging into a secure website, at
which point the server must establish a session for the user and memorize the
users identity; or multiple web users communicating through the server, for
example, updating stock inventory for a shopping basket or social messaging.
Regardless, such operations require the XPDL to make side-effecting changes to
the state of the server or related systems.

Task Abstraction for XPath Derived Languages

4

XSLT's main strength as a transformation language for XML is equally appli-
cable to constructing or styling HTML web pages. Web browsers offer limited
XSLT 1.0 facilities, which can be either applied to XML documents which include
an appropriate Processing Instruction, or invoked from JavaScript. The XSLT
process offered by the web browser vendors is a black-box transformation,
whereby an XSLT stylesheet is applied to an XML input document, which produ-
ces output. This XSLT process is completely isolated and has no knowledge of the
environment from which it is called; it can not read or write directly to or from
the web page displayed by the browser. In contrast, in recent years Saxonica has
provided JavaScript based processors which run directly within the web browser,
removing the isolation and allowing access to the web page state and events via
XSLT extensions. First with Saxon-CE, a ported version of the XSLT 2.0 Saxon
Java processor, and then with Saxon-JS, a clean implementation of XSLT 3.0 in
JavaScript. The XSLT extensions designed for use with these processors make use
of asynchronous processing (as demanded by JavaScript) and side effects to read
and write the DOM model of the web page.

Similar to Saxon-CE, although now unmaintained another notable example is
XQiB. XQiB implements an XQuery 1.0 processor in JavaScript which runs in the
web browser and provides a number of XQuery extension functions which cause
side effects by writing directly to the HTML DOM and CSS [25].

1.2.2. Binary Processing with XPDLs

The generation of various binary formats using XPDLs has also been demonstra-
ted. One such example is Philip Fennel's generation of TIFF format images, which
uses a Reyes pipeline written in XSLT [26]. One of Fennel's conclusions with
regard to execution was that “Certainly it is not fast and it is not very efficient
either”. It is not hard to imagine that if concurrent processing was applied to each
stage of the pipeline, so that stages were processed in parallel, then execution
time might be significantly reduced.

Two XPath function extension modules produced by the EXPath project, the
Binary [27] and File Module [28] specifications, allow the user to both read and
write files and manipulate binary data at the byte level from within XPDLs. In
particular, the File Module, which provides I/O functions, states that some func-
tions are labelled as non-deterministic; this specification lacks the detail required to
determine if implementations are forced to produce side effects when the func-
tions are evaluated, or whether they are allowed to operate on a static context and
only apply I/O updates after execution. The authors of this paper believe that it
would be beneficial to have a more formal model within that specification, possi-
bly one which allows implementers flexibility to determine the scope of side
effects.

Task Abstraction for XPath Derived Languages

5

1.3. Motivation
To enable side effects in a web application running in Saxon-JS, the IXSL (Interac-
tive XSLT) extensions (instructions, functions and modes) are provided (as previ-
ously developed for Saxon-CE, with some further additions and improvements).
These IXSL extensions allow rich interactive client-side applications to be written
directly in XSLT.

Saxon-CE used a Pending Update List (PUL) to make all HTML page DOM
updates (side effects) at the end of a transform (e.g. setting attributes on HTML
page nodes using ixsl:set-attribute; and adding content to the HTML page
using xsl:result-document.) Currently Saxon-JS does not use a PUL, instead
these side-effecting changes are allowed to execute immediately as the instruc-
tions are evaluated, and it is up to the developer of a Saxon-JS application to
ensure that adverse affects are avoided. Since inception, the intention has been to
eventually provide better implicit handling. Should the use of PULs be reinstated,
or is there an alternative solution?

Meanwhile, use of asynchronous (concurrent) processing is essential for user-
friendly modern web applications. Whenever the client-side needs to interact
with the server-side, to retrieve resources, or make other HTTP requests, this
should be done asynchronously. The application may provide a "processing,
please wait" message to the user, but it should not just stop due to blocking.

The ixsl:schedule-action instruction allows the developer to make use of
concurrent threads, and in particular allows for asynchronous processing. In
Saxon-JS, different attributes are defined to cater for specific cases where there is
a known need. The document attribute is used to initiate asynchronous document
fetches; the http-request attribute is used for making general asynchronous
HTTP requests; and the wait attribute was designed to force a delay (e.g. to ena-
ble animation), but actually simply provides a way to start any concurrent proc-
ess. Effectively this provides a mechanism for forking, but there is no offical
joining. Are there cases that require a join? Are there other operations which a
developer could want to make asynchronously? Rather than building IXSL exten-
sions for each operation, we would prefer to realise a general mechanism for
asynchronous processing in XPDLs and by extension XSLT. Continually updating
the syntax and implementation of ixsl:schedule-action, each time a new
requirement arises (e.g. how to allow HTTP requests to be aborted), is not ideal.
In particular, the IXSL HTTP request facility was based on the first EXPath HTTP
Client Module, recent work on a second version [23] of that module could be
advantageous for us. However, by itself it neither prescribes synchronous or
asynchronous operation. So, how could we implement in a manner which is both
asynchronous and more abstract, requiring few, if any, changes to add additional
modules in future?

Task Abstraction for XPath Derived Languages

6

1.4. Our Requirements

Applications that cannot perform I/O and/or launch parallel processes are
unusual. Both I/O and starting parallel processes are side effects, and as dis-
cussed, explicitly forbidden within XPDLs, although often permitted by vendors
at the cost of imperative interpretation and lost optimisation opportunities.

We aim to break the trade-off between program correctness and deoptimisa-
tion in XPDLs. We require a mechanism that satisfies the following requirements:

• A mechanism for formulating processes which manage side effects, yet at the
same time remains within the pure functional approach dictated by the XPDL
formal semantics.

• Permits some form of parallel or concurrent operation, that is implementable
on systems that offer either preemptive or cooperative multitasking.

• Allows parallelisation to be explicitly described, but that should not limit the
opportunities for implicit parallelisation.

• Any parallel operation explicitly initiated by the developer, should be cancel-
lable.

• Composability: it should be possible to explicitly compose many side-effecting
processes together in a manner that is both pure and ensures correct order of
execution.

Regardless of the mechanism, we require that it should be as widely applica-
ble as possible, therefore it should be either:

• Formulated strictly in terms of XPath constructs so that it be reused by any
XPDL.

Ideally, rather than developing a superset of the XPath grammar, a module
of XPath extension functions should be defined. The module approach has
been successfully demonstrated by the EXPath project, and would likely lower
the barrier to adoption.

• A clearly defined abstract processing model which can have multiple syntacti-
cal expressions.

Such a model could for example provide one function-based syntax for
XQuery, and another instruction-based syntax for XSLT.

2. Current Approaches by Implementers
This survey provides a brief review of the offerings of the most visible XQuery
and XSLT implementations for both concurrent and/or asynchronous execution,
and how they manage side effects.

Task Abstraction for XPath Derived Languages

7

2.1. BaseX
For concurrent processing from within XQuery, BaseX provides two mechanisms:
a Jobs XQuery extension module [8], and an XQuery extension function called
xquery:fork-join. The latter is actually an adoption of xq-promises's
promise:fork-join function, which we cover in detail in Section 2.5. The former,
the Jobs Module, allows an XQuery to start another XQuery by calling either of
two XPath functions jobs:invoke or jobs:eval. Options can be supplied to both
of these functions, which instead of executing the query immediately, schedule it
for later execution. Whilst deferred scheduled queries are possibly executed con-
currently we will not consider them further here as our focus is concurrent pro-
cessing for the purposes of completing an immediate task. BaseX describes these
functions as asynchronous, and whilst technically true, unlike other asynchronous
programming models the caller neither provides a callback function nor receives
a promise, and instead has to either poll or wait in the main query for the result.
We believe these functions could more aptly be described as non-blocking.

Asynchronously starting another XQuery in BaseX returns an identifier which
can be used to either stop the asynchronously executing query, retrieve its result
(if it has completed), or to wait until it has completed. The lifetime of the asyn-
chronously executing query is not dependent on the initiating query, and may
continue executing after the main query has completed. In many ways this is very
similar to a Future (see Section 3.5).

BaseX implements XQuery Update [7] which allows updates to XML nodes to
be described from within XQuery via additional update statement syntax.
XQuery Update makes use of a PUL (Pending Update List) which holds a set of
Update Primitives. These Update Primitives describe changes that will be made,
but have not yet been applied. These changes are not visible to the executing
query, the PUL is output alongside the XDM when the query completes. This is
not entirely dissimilar to how Haskell eventually evaluates an IO monad (see Sec-
tion 3.4). To further facilitate additional common tasks required in a document
database without conflicting with XQuery Update or resorting to side effects
within an executing query, BaseX also provides many vendor specific Update
Primitives in addition to those of XQuery Update. These include primitives for
database operations to replace, rename and delete documents; manage users; and
backup and restore databases [29]. The use of an XQuery Update PUL avoids side
effects for updates, as it only describes what will happen at evaluation time, leav-
ing the actual updates to be applied at execution time. Ultimately BaseX applies
the PUL to modify the state of its database after the query completes and the
transaction is committed, thus making the updates visible to subsequent transac-
tions.

Regardless of its support for PULs, BaseX does not quite manage to entirely
avoid side effects during the execution of some queries. BaseX offers a number of

Task Abstraction for XPath Derived Languages

8

XQuery extension functions which are known to cause side effects, including for
example, those of the EXPath HTTP and File Modules. Internally such side-effect-
ing functions are annotated as nondeterministic, and will be treated differently by
BaseX's query compiler. By skipping a range of otherwise possible query optimi-
sations, BaseX ensures that the execution order of the functions within a query is
as a user would expect even when these nondeterministic functions are present.
In the presence of nondeterminism, optimisations that are skipped include: pre-
evaluation, reordering of let clauses, variable inlining, and disposal of expres-
sions that yield an empty sequence.

2.2. eXist-db

eXist-db does not present a cohesive solution for concurrent processing from
within XQuery. Until recently, eXist-db had a non-blocking XPath extension func-
tion named util:eval-async [9] which could start another XQuery asynchro-
nously. Like BaseX it returned an identifier for the executing query and did not
accept a callback function or provide a promise. Unlike BaseX however, there
were no additional functions to control the asynchronously executing query or
obtain its result, rather the asynchronously executing query would run to com-
pletion and its result would be discarded, although it may have updated the data-
base via side effects. This facility proved not to be particularly practical and has
since been removed. Similarly to BaseX, eXist-db provides a Scheduler XQuery
extension module [10] for scheduling the future (or immediate) execution of jobs
written in XQuery. Unfortunately even if an XQuery is scheduled for immediate
execution, there is no mechanism for obtaining the result of its execution from the
initiating XQuery.

eXist-db makes no attempts to avoid side effects during processing, and
instead offers many extension functions and a syntax for updating nodes that
cause side effects by immediately modifying external state and making the modi-
fications visible. eXist-db also relaxes the XPath deterministic constraint upon
Available Documents, and Available Collections, allowing a query to both modify
which documents and collections are available (a side effect), and to see changes
made by concurrently executing queries.

eXist-db is able to suffer side effects, through making several compromises:

• eXist-db offers the lowest transaction isolation level when executing XQuery -
Read Uncommitted.

eXist-db makes XQuery users somewhat aware of this, and provides XPath
extension functions which enable them to lock documents and collections on
demand if they require a stronger isolation level.

• eXist-db executes XQuery sequentially as though it was a procedural pro-
gram.

Task Abstraction for XPath Derived Languages

9

Whilst some query rewriting is employed to improve performance, eXist-
db cannot exploit many of the more advanced optimisations available to func-
tional language compilers: any reordering of the XQuery program's execution
path could cause the program to return incorrect results, due to side effects
being applied in an order that the XQuery developer had not intended.

Likewise, eXist-db cannot easily parallelise the execution of disjoint state-
ments within an XQuery: as shared-state modified by side effects could intro-
duce race conditions in the XQuery developer's application.

2.3. MarkLogic

MarkLogic provides an XPath extension function named xdmp:spawn, which
allows another XQuery to be started asynchronously from the calling query. This
is done by placing it on the task queue of the MarkLogic task server, and this
query may be executed concurrently if the task server has the available resources.
The function is non-blocking, and for our interests has two modes of operation
controlled by an option called result. When the result option is set to false, the
calling query has no reference to the queued query, and like eXist-db it can nei-
ther retrieve its result, enquire about its status, or abort its execution. When the
result option is set to true, the xdmp:spawn function returns what MarkLogic
describes as a “value future for the result of the spawned task”. This “value
future” is quite unusual, and certainly a vendor extension with no corresponding
type in XDM. Essentially, after calling xdmp:spawn with the return option set to
true, the calling query continues executing until it tries to access the value of the
variable bound to the result of the xdmp:spawn, at which point if the spawned
query has completed executing, the result is available, however if it has not com-
pleted then the main query thread blocks and waits for the spawned query to com-
plete and provide the result [30]. Similarly to BaseX and eXist-db, MarkLogic also
provides mechanisms for the scheduling of XQuery execution through its offline
batch processing framework called CPF (Content Processing Framework) [31],
and a set of XPath extension functions such as admin:group-add-scheduled-
task [32].

MarkLogic's value future is intriguing in its nature, albeit proprietary. The con-
cept of Futures appear in several programming languages, but unlike other lan-
guages (e.g., Java or C++11), MarkLogic's implementation provides no explicit call
to get the value of the future (possibly with a timeout), instead the wait and/or get
happen as one implicitly when accessing the value through its variable binding.

MarkLogic clearly documents where it allows side effects from within
XQuery. There are two distinct types of side effects within MarkLogic, state
changes that happen within the scope of the XQuery itself, and those state-
changes which are external to the XQuery. For use within the scope of an XQuery,
MarkLogic provides an XPath extension function xdmp:set, which explicitly

Task Abstraction for XPath Derived Languages

10

states that it uses “changes to the state (side effects)” [33] to modify the value of a
previously declared variable, thus violating the formal semantics of XPath [4]. For
modifying state external to an XQuery, MarkLogic provides a series of XPath
extension functions for updating nodes and managing documents within the
database. Similarly to BaseX, these extension functions do not cause side effects
by immediate application, and are invisible to both the executing query and con-
currently executing queries [34]. Unlike BaseX, MarkLogic does not implement
the XQuery Update specification, but similarly it utilizes a PUL, likewise leading
to a process whereby the updates are applied to the database after the query com-
pletes and the transaction is committed, thus making the updates visible to subse-
quent transactions.

Whilst MarkLogic utilizes both a well defined transaction isolation model and
deferred updates to mostly avoid side effects within an executing XQuery, we
suspect that the use of xdmp:set likely places some limitations on possible query
optimisations that could be performed.

We have focused on MarkLogic's XQuery implementation, but it is worth not-
ing that MarkLogic also implements XSLT 2.0. All of MarkLogic's XPath exten-
sion functions (e.g., xdmp:set and xdmp:insert-*) are also available from its
XSLT processor, and are subject to the same transactional mechanisms as the
XQuery processor; therefore our findings are equally applicable to running either
XQuery or XSLT on MarkLogic.

2.4. Saxon

Saxon-EE utilises parallel processing in certain specific instances [20]. By default
the parsing of input files for the fn:collection function is multithreaded, as is
the processing of xsl:result-document instructions. Note that the outputs pro-
duced by multiple xsl:result-document instructions are quite independent and
never need to be merged; so while this does allow parallel execution of user code
and requires careful implementation of features such as try/catch and lazy evalu-
ation, the fact that there is a "fork" with no "join" simplifies things a lot. Further-
more, multi-threading of xsl:for-each instructions using a MapReduce
approach can be enabled by the user, by setting the saxon:threads extension
attribute to specify the number of threads to be used.

Saxon-EE allows use of a number of extension functions with side effects,
including those in the EXPath File and Binary modules. Similar to the BaseX han-
dling, the Saxon compiler recognises such expressions as causing side effects, and
takes a pragmatic approach in attempting to avoid aggressive optimisations
which could otherwise disrupt the execution order. Usually instructions in an
XSLT sequence constructor will be executed sequentially in the order written, but
deviation can be caused by the compiler through lazy evaluation or loop lifting;
and this is where problems can arise when side effects are involved. Such optimi-

Task Abstraction for XPath Derived Languages

11

sations can cause the side effect to happen the wrong number of times (never, or
too often), or at the wrong time. It is relatively straightforward to prevent such
optimisations for static calls to side-effecting functions, but cannot always be
guaranteed for more nested calls, as "side-effecting" is not necessarily recognised
as a transitive property. For instance, a function or template which includes a call
to a side-effecting function may not itself be recognised as side-effecting. So it is
always recommended that side-effecting XPath expressions are "used with care".
One mechanism which gives the XSLT author better control when using side-
effecting expressions, is the recently added extension instruction saxon:do. It is
similar to the xsl:sequence instruction, but is designed specifically for use when
invoking XPath expressions with side effects. In contrast to xsl:sequence, when
using saxon:do any result is always discarded, and the processor ensures that
instructions in the sequence constructor are always evaluated sequentially in the
order written, avoiding any reordering from optimisations.

As previously mentioned, for use with the Saxon-JS runtime XSLT processor, a
number of Interactive XSL extension instructions and functions are available. To
enable non-blocking (asynchronous) HTTP requests and document fetching, the
ixsl:schedule-action instruction is provided. Attributes on the instruction are
used to specify an HTTP request, or document URI, and the associated HTTP
request is then executed in a new concurrent thread. The callback, for when an
HTTP response is returned or the document is fetched (or an HTTP error occurs),
is specified using the single permitted xsl:call-template child of the
ixsl:schedule-action instruction. When the document attribute has been used,
the called template can then access the document(s) using the fn:doc or fn:doc-
available functions; the document(s) will be found in a local cache and will not
involve another request to the server. When using the http-request attribute, the
HTTP response is supplied as the context item to the called template, in the form
of an XDM map. Alternatively, ixsl:schedule-action can simply be used to
start concurrent processing for any action, by using just the wait attribute (with a
minimal delay). Note that while this provides a "fork", there is no "join", and it is
up to the developer to avoid conflicts caused by side effects.

To be able to write interactive applications directly in XSLT, it is necessary to
make use of side effects, for example to dynamically update nodes in the HTML
page. Almost all of the IXSL extension instructions and functions (such as
ixsl:set-attribute and ixsl:set-property which are used to set attributes on
nodes and properties on JavaScript objects respectively) have (or may have) side
effects. Note that Saxon-JS runs precompiled XSLT stylesheets, called SEFs (Style-
sheet Export Files) generated using Saxon-EE. As described above, during compi-
lation in Saxon-EE, such side-effecting functions and instructions are internally
marked as such to prevent optimisations from disrupting the intended execution
order.

Task Abstraction for XPath Derived Languages

12

2.5. xq-promise
Whilst xq-promise [35] is not an implementation of XQuery or XSLT, it is the first
known non-vendor specific proposal for a module of XPath extension functions
by which XPDL implementations can offer concurrent processing from within an
XPDL. It is valuable to review this proposal as theoretically it could be implemen-
ted by any XPDL implementation, at present we are only aware of a single imple-
mentation for BaseX [36].

xq-promise first and foremost provides a set of XPath extension functions
which were inspired by jQuery's Deferred Object utility, it claims to implement
the “promise pattern” (see Section 3.5), and focuses on the concept of deferring
execution. In its simplest form, the promise:defer function takes two parame-
ters: a function of variable arity, and a sequence of arguments of the same arity as
the function. Calling promise:defer returns a new zero arity function called a
“promise”, this promise function encapsulates the application of the function
passed as a parameter to the arguments passed as a parameter. The encapsulation
provided by the promise function defers the execution of the encapsulated func-
tion. The promise function also serves to enable chaining further actions which
are dependent on the result of executing the deferred function, such further
actions are also deferred. The chaining is implemented through function compo-
sition, but is opaque to the user who is provided with the more technically acces-
sible functions promise:then, promise:done, promise:always, promise:fail,
and promise:when.

The functions provided by xq-promise discussed so far allow a user to
describe a chain of related actions, where callback functions, for example estab-
lished through promise:then, can be invoked when another function completes
with success or failure. Considered in isolation these functions do not explicitly
prescribe any asynchronous or concurrent operation. To address this, xq-promise
secondly provides an XPath extension function named promise:fork-join based
on the Fork-join model of concurrency. This functions takes as a parameter a
sequence of promise functions, which may then be executed concurrently. The
promise:fork-join function is a blocking function, which is quite different from
those of BaseX, eXist-db, MarkLogic, or Saxon, which are all non-blocking. Rather
than scheduling a query for concurrent execution and then returning to the main
query so execution can continue, when promise:fork-join is invoked n query
sub-processes are forked from the main query which then waits for these to com-
plete, at which point the results of the sub-processes are joined together and
returned as the result of the function call.

An important insight we offer is that whilst sharing some terminology with
implementations in other languages (particularly JavaScript likely due to build-
ing upon jQuery's Deferred Object) the promise concept used in xq-promise is sub-
tly different [61]. JavaScript Promises upon construction immediately execute the

Task Abstraction for XPath Derived Languages

13

function that they are provided [38] [39], whereas an xq-promise is not executed
until either promise:fork-join is used or the promise function is manually
applied by the user. Conceptually the xq-promise promises appear to be at odds
with the fork-join approach, as once a promise has been constructed, it is likely
that useful computation could have been achieved in parallel to the main thread
by executing the promise(s) before reaching the fork-join point. The construction
of a JavaScript Promise requires an executor function, which takes two parameter
functions, a resolve function and a reject function. The executor must then call
one of these two functions to signal completion. When constructing a promise
with xq-promise, completion is instead signalled by the function terminating nor-
mally, or raising an XPath error. This may appear to be just syntactical differen-
ces, but the distinction is important: the JavaScript approach allows an error value
to explicitly be returned upon failure in a functional manner, the xq-promise
approach relies instead on fn:error... which is a side effect!

On the subject of xq-promise and side effects, xq-promise constructs chains of
execution where each step has an dependency on the result of the preceding step.
On the surface this may appear similar to how IO Monads (see Section 3.4) com-
pose. The composition of xq-promise through is much more limited, and whilst it
ensures some order of execution, its functional semantics are likely not strong
enough to ensure a total ordering of execution.

2.6. Conclusion of Implementers Survey
Our conclusion from this survey is twofold. Firstly, all surveyed implementations
offer some varying proprietary mechanism for performing asynchronous compu-
tations from within a main XPDL thread of execution. A standardised approach is
evidently missing from the W3C defined XPDLs, but a requirement has been
demonstrated by implementations presumably meeting a technical demand of
their users of XPDLs. Secondly, none of the XPDL implementations which we
examined adhere strictly to the functional processing semantics required by
XPath and/or the respectively implemented XPDL specification. Instead each
implementation to a lesser or greater extent offers some operations which cause
side effects. Most implementations appear to have taken a pragmatic approach to
deliver the features that their users require, often sacrificing the advantages of a
pure functional approach to offer a likely more familiar imperative programming
model.

3. Solutions offered for non-XPDLs
This survey provides a brief review of several options for non-XPDLs that pro-
vide solutions for both concurrent and/or asynchronous execution, and how side
effects are managed or avoided. This is not intended as an exhaustive survey,
rather the options surveyed herein were subjectively chosen for their variety.

Task Abstraction for XPath Derived Languages

14

3.1. Actor Model
The Actor Model defines a universal concept, the Actor, which receives messages
and undertakes computation in response to a message. Each Actor may also asyn-
chronously send messages to other Actors. A system is typically made up of
many of these Actors [40]. Actor systems are another class of embarrassingly par-
allel problem, as the messages sent between actors are immutable, there is no
shared-mutable state to synchronize access to, and so each Actor can run concur-
rently.

The Actor Model by itself is not enough to clearly describe, manage, or elimi-
nate side-effectful computation, however by nature of its message passing
approach it does eliminate the side effects of modifying the shared-state for com-
munication between concurrent threads of execution which is often found in non-
actor systems. Through encapsulation, actors may also help to reason about
programs with side effects. Systems utilising actors are often built in such a man-
ner that each task specific side-effectful computation is isolated and encapsulated
within a single Actor. For example, within an actor system there may only be a
single Actor which handles a particular file I/O, then since each Actor likely runs
as a separate process, the file I/O has been isolated away from other computation.

The Erlang programming language is possibly the most well known Actor
Model like implementation, wherein Actors are known as processes [41]. Erlang
itself makes no additional efforts to manage side effects, and additional synchro-
nization primitives are often employed. Within the JVM (Java Virtual Machine)
ecosystem, the Akka framework is available for both Java and Scala programming
languages [42]. Java as a non-functional language makes no attempts at limiting
side effects. Meanwhile, whilst Scala is often discussed as a functional language
and does provide many functional programming constructs, it is likely more a
general purpose language, as mutability and side effects are not restricted, and it
is quite possible to write imperative Scala code. Actor systems are also available
for many other programming languages [43], although they do not seem to have
gained the same respective popularity as Erlang or Akka.

3.2. Async/Await
The Async/Await concept was first introduced in C#, inspired by F#'s async work-
flows [44], which was in turn inspired by Haskell's Async Monad [45] [46] (see
Section 3.4). Async/Await provides syntax extensions to a programming language
in the form of the async and await keywords. Async/Await allows a developer to
write a program using a familiar synchronous like syntax but easily achieve asyn-
chronous operation of parts of the program.

Async/Await adds no further processing semantics for concurrency or manag-
ing side effects over that of Promises (see Section 3.5), which are often used to
implement Async/Await. Async/Await may be thought of as syntactic sugar for

Task Abstraction for XPath Derived Languages

15

utilising a Promise based implementation, and has recently become very popular
with JavaScript developers [47] [48].

3.3. Coroutines
Coroutines are a concept for cooperative multitasking between two (or more) pro-
cesses within a program. One process within an application, Process A, may
explicitly yield control to another process, Process B. When control is transferred,
the state of Process A is saved, the current state of Process B is restored (or a new
state created if there is no previous state), and Process B continues until it explic-
itly yields control back to Process A or elsewhere [49].

Like Actors, the impact of side effects of impure functions can be somewhat
isolated within a system by encapsulating them in distinct coroutines. Otherwise
Coroutines provide no additional facilities for directly managing side effects, and
global state is often shared between them. Unlike Actors, Coroutines are often
executed concurrently by means of explicitly yielding control. Without additional
control structures, coroutines typically operate on a single-thread, one exception
is Kotlin's Coroutines which can be structured to execute concurrently across
threads [52].

Some implementations of Coroutines, such as those present in Unity [50], or
JavaScript [51], attempt to bring a familiar synchronous programming style to the
developer. These implementations typically have a coroutine yield multiple
results to the caller, as opposed to yielding control. This masks the cooperative
multitasking aspect from the developer and presents the return value of a corou-
tine as an iterable collection of results.

3.4. IO Monads
Haskell is a statically typed, non-strict, pure functional programming language.
The pure aspect means that every function in Haskell must be pure, that is to say
akin to a mathematical function in the sense that mathematical functions cannot
produce side effects. Even though Haskell prohibits side effects by design, it still
enables developers to perform I/O and compute concurrently. This seemingly
impassable juxtaposition of academic purism and real-world engineering need is
made possible by its IO Monad [54]. Haskell trialled several other approaches in
the past, including streams and continuations, before the IO Monad won out as it
facilitated a more natural imperative programming style [55].

In Haskell, any function that performs I/O must return an IO type which is
monadic. This IO type represents an IO action which has not yet happened. For
example if you have a function that reads a string from a file, that function does
not directly return a String, instead it returns an IO String. This is not the result
of reading a line from the file, instead it can be thought of as an action that when
executed will read a line from the file and return a String. These IO actions

Task Abstraction for XPath Derived Languages

16

describe the I/O that you wish to perform, but critically defer its execution. The
IO actions adhere to monad laws which allow them to be composed together. For
example given two IO actions, one that reads a file and one that writes a file, they
could be composed together into a single IO action which first reads a file and
then writes a file, e.g. a copy file IO action.

Importantly, the formal definition for an IO type is effectively IO a = World -
> (a, World). That is to say that an IO is a state transformation function that
takes as input the current state of the world, and produces as the result both a
value and a new state of the new world. The World is a purely Abstract Data
Type, that the Haskell programmer cannot create. The important thing to note
here is that the World is threaded through the IO function. When multiple IO
actions are composed together using monadic application, such as bind, the World
output from a preceding function will be fed to the input of the succeeding func-
tion. In this manner the World will be threaded through the entire chain of IO
actions.

A Haskell program begins by executing a function named main that must
return an IO, it is typed as mainIO :: IO (). Haskell knows how to execute the
IO type function that the main function returns. Naively one can think of this as
Haskell's runtime creating the World and then calling our IO with it as an argu-
ment to execute our code; in reality the Haskell compiler optimises out the World
during compilation whilst still ensuring the correct execution order. (We may
remark that an IO action is similar to a PUL's Update Primitive, and the fact that
main returns an IO is not dissimilar to an XQuery Update returning both XDM
and a PUL.)

By using IO Monads which defer rather than perform I/O, all Haskell func-
tions are pure, and so a Haskell program at evaluation time exhibits no side
effects whatsoever, instead finally evaluating to an IO (), i.e. a state transforma-
tion function upon the world. As the developer has used monadic composition of
their IO actions, this has implicitly threaded the World between them, in the order
the developer would expect (i.e. in the order of the composition), therefore the
state transformation also ensures that the functions are executed in the expected/
correct order. At execution time, the machine code representation of the Haskell
program is run by a CPU which is side-effecting in nature, and the IO action's
side effects are unleashed.

It is possible to encapsulate stateful computations so that they appear to the rest of
the program as pure (stateless) functions which are guaranteed by the type system
to have no interactions whatever with other computations, whether stateful or oth-
erwise (except via the values of arguments and results, of course).

—from "State in Haskell", by John Launchbury and Simon Peyton Jones

Haskell provides further functions for concurrency, but critically these also return
IO actions. One such example is forkIO with the signature forkIO :: IO () ->

Task Abstraction for XPath Derived Languages

17

IO ThreadId [56]. The purpose of forkIO is to execute an IO in another thread, so
it takes an IO as an argument, and returns an IO. The important thing to remem-
ber here, is that calling the forkIO function does not create a new thread and exe-
cute an IO, rather it returns an IO action which describes and defers such
behaviour. Later when this IO action is finally executed at run-time, the thread
will be created at the appropriate point within the running program. There are
also a number of other higher-level abstractions for concurrency in Haskell, such
as Async [46], and whilst such abstractions may introduce additional monads,
they ultimately all operate with IO to defer any non-pure computation. One final
point on the IO Monad, is to mention that concurrently executing I/O actions,
may at runtime produce side effects that conflict with each other. The IO Monad
is only strong enough to ensure correct operation within a single thread of execu-
tion, its protections do not cross thread-boundaries. To guard against problems
with concurrent modifications additional synchronisation is required. Haskell
provides additional libraries of such functions and types for working with syn-
chronization primitives, many of which themselves produce IO actions!

Monads are by no means limited to Haskell, and can likely be used in any lan-
guage which supports higher-order functions. The preoccupation with Haskell is
centred around how it uses Monads to ensure a pure language in the face need-
ing to perform I/O. Several libraries exist which attempt to bring the IO Monad
concept to other programming languages, this seems to have been most visible
within the Scala ecosystem, where there are now at least five differing established
libraries [57]. Whilst all of these efforts are admirable and bring new mechanisms
for managing side effects, they all have one weakness which Haskell does not: in
Haskell one is forced to ensure that the entire program is pure, because the main
function must return an IO. The runtimes of other languages are not structured in
this way, and so these IO Monad libraries are forced to rely on workarounds to
evaluate the IO. These rely on the user structuring their program around the con-
cept of an IO, and only evaluating that IO as the last operation in their program.
For example Monix Task [58], where the user must eventually call runUnsafeSync
to evaluate the IO, describes the situation as thus:

In general prefer to ... structure your logic around asynchronous actions in a non-
blocking way. But in case you're blocking only once, in main, at the "edge of the
world" so to speak, then it's OK.

—Alexandru Nedelcu

3.5. Promises and Futures
There may be some confusion over the differences between the computer science
terms Promise, Future, or even Eventuals. However, these terms are academically
synonymous, as perhaps best explained by Baker and Hewitt, the fathers of the
term Future [16]:

Task Abstraction for XPath Derived Languages

18

the mechanism of futures, which are roughly Algol-60 "thunks" which have their
own evaluator process ("thinks"?). (Friedman and Wise [18] call futures "prom-
ises", while Hibbard [17] calls them "eventuals".)

—Henry G. Baker Jr. and Carl Hewitt

The confusion likely comes from implementations that offer both Future and
Promise abstractions to developers looking for safer concurrency facilities, yet use
differing terminology and provide vastly different APIs. Two examples of
extreme variation of terminology, are the Scala and Clojure programming lan-
guages, which each define Future and Promise as distinct classes. The Scala/
Clojure Future class is much more like the computer science definition of Future/
Promise which models computation; whereas the Scala/Clojure Promise class
serves a very different purpose, primarily as a memorized data provider for com-
pleting a Future class. We are strictly interested in the computer science definition
of Promise and Future, and herein will refer to them singly as Promise.

A Promise represents a value which may not yet have been computed. Typi-
cally when creating a Promise a computation is immediately started asynchro-
nously and returns a Promise. In implementation terms, a Promise is a reference
which will likely take the form of an object, function, or integer. At some point in
the future when the asynchronous computation completes, the Promise is fulfil-
led with the result of the computation which may be either a value or an error.
Promises provide developers with an abstraction for concurrent programming,
but whether that is executed via cooperative or preemptive multi-tasking is
defined by the implementation. Promises by themselves provide no mechanism
for avoiding side effects as they are likely eagerly evaluated, with multiple prom-
ises being unordered with respect to execution.

Some implementations, for example those based on Promise/A+ like Java-
Script, allow you to functionally compose Promises together [53]. This functional
composition can allow you to chain together side-effecting functions which are
encapsulated within Promises, thus giving an explicit execution order, in a man-
ner not dissimilar to Haskell's IO Monad (see Section 3.4). Unlike Haskell's IO
Monad however, this doesn't suddenly mean that your application is pure:
remember that JavaScript Promises are eagerly evaluated. It does though offer a
judicious JavaScript developer some measure to ensure the correct execution
order of her impure asynchronous code.

3.6. Reactive Streams
Reactive Streams enable the composition of a stream of computation, where the
Publisher, Subscriber, or a Processor in the stream (which act as both Subscriber
and Publisher), may operate asynchronously [59]. A key characteristic of Reactive
Streams is that of back-pressure, a form of flow control which can prevent slower
Subscribers from being overwhelmed by faster asynchronous Producers. This

Task Abstraction for XPath Derived Languages

19

built-in back-pressure facility appears to be unique to Reactive Streams, and
would otherwise have to be manually built by a developer atop other concur-
rency mechanisms.

The Reactive Streams initiative itself just defines a set of interfaces and princi-
ples for Reactive Stream implementations, it is up to the implementations to pro-
vide mechanisms for controlling concurrent and parallel processing of streaming
values. Typically implementations provide mechanisms for parallelising Process-
ors within a stream, or splitting a stream into many asynchronously executing
streams which are later resolved back to the main stream.

Reactive Streams offers little explicitly to help with side effects, however if we
consider that a data flow within a non-concurrent stream is always downwards,
then streams do provide an almost Monadic-like mechanism for composing pro-
cessing steps where the order of execution becomes explicit. Likewise, if one was
to ensure that the data that is passed from one step to another is immutable, then
when there are concurrent or asynchronous Subscribers, there can be no data-
driver side effects between them as the data provided by the publisher was
immutable, meaning that any changes to the data by a subscriber are isolated to a
localised copy of the data.

Examples of Reactive Streams implementations that support concurrent and
parallel processing at this time include: RxJava, Akka Streams, Monix, Most.js,
and Reactive Streams .NET#

3.7. Conclusion of non-XPDL Solutions Survey

Our survey shows several different options for concurrent/parallel programming.
It is possible to build the same application using any of these options, but each
offers a different approach and syntax for isolating and managing concurrently
executing processes. As well as the underlying computer science principles of
each option, the libraries or languages that implement these options can vary
between Cooperative Multitasking and Preemptive Multitasking. Coroutines,
Async/Await, and Promises are particularly well suited to Cooperative Multitask-
ing systems due to their explicit demarcation of computation boundaries, which
can be used to yield the CPU to another process. Likely this is why these options
have been adopted in the JavaScript community, where JavaScript Virtual
Machines are frequently designed as cooperatively multitasking systems utilising
an event loop [60].

We find that the IO Monad is the only surveyed option that is specifically
designed to manage computational side effects in a functional manner. This is
likely due to the fact that the IO Monad approach was explicitly developed for
use in a non-strict purely functional language, i.e. Haskell, whereas all of the
other approaches are more generalised, and whilst not explicitly limited to imper-
ative languages are often found in that domain.

Task Abstraction for XPath Derived Languages

20

Of all the approaches surveyed, to the best of our knowledge, only the devel-
opment of a Promise-like approach has been realised for XPDLs, namely xq-
promise (see Section 2.5). It seems likely that at least aspects of the IO Monad
approach (such as that demonstrated by Monix), or Reactive Streams options,
could be implemented by utilising XPath extension functions and a written speci-
fication of concurrent implementation behaviour, without resorting to propriet-
ary XPath syntax extensions. Conversely, whilst an XPath function based
implementation could likely be devised, both Async/Await and Coroutines
would likely benefit by extending the XPath language with additional syntax.

In conclusion, we believe that an IO Monad exhibits many of the desirable
properties that we set out to discover in Section 1.4. It has strong pure functional
properties, strict isolation of side effects, and acts as a building block for con-
structing further concurrent/parallel processing. Therefore we have chosen to use
this as the basis for a solution to handle side effects and sequential or concurrent
processing in XPDLs.

4. EXPath Tasks
Herein we describe EXPath Tasks, a module of extension XPath functions for per-
forming Tasks. These functions have been designed to allow an XPDL developer
to work with both side effects and concurrency in a manner which appears
imperative but is functionally pure, and therefore does not require processors to
sacrifice optimisation opportunities.

The specification of the functions and their behaviour is defined in Appen-
dix A. We have also developed four reference implementations:

XQuery task.xq is written in pure XQuery 3.1 with no extensions. It imple-
ments all functions, however all potentially asynchronous opera-
tions are executed sychronously. The source code is available
from https://github.com/adamretter/task.xq.

XSLT task.xsl is written in pure XSLT 3.0 with no extensions. There is a
lot of code overlap with task.xq, since much is actually XPath 3.1.
Like task.xq, it implements all functions, however all potentially
asynchronous operations are executed sychronously. The source
code is available from https:// github.com/ saxonica/ expath-task-
xslt.

Java An implementation of EXPath Tasks for XQuery in eXist-db. The
source code is available from https://github.com/ eXist-db/ exist/
tree/expath-task-module-4.x.x/extensions/expath/src/org/expath/
task.

JavaScript An implementation of EXPath Tasks for XSLT in Saxon-JS.

Task Abstraction for XPath Derived Languages

21

4.1. The Design of EXPath Tasks
From the findings of our survey on non-XPDL solutions (see Section 3), we felt
that the best fit for our requirements (see Section 1.4) was that of developing a
module of XPath Functions that could both ensure the correct execution ordering
of side-effecting functions, and provide facilities for asynchronous programming.

We decided to adopt the principles of the IO Monad, as we have previously
identified it as providing the most comprehensive approach to managing non-
deterministic functions in a pure functional language. Our design was heavily
influenced by both Haskell's IO [54] and Async [46] packages, and to a lesser
extent by Monix's Task [58].

Our decision to develop a module of extension functions rather than grammar
extensions, was influenced by a previous monadic approach for XQuery, called
XQuery!, which utilized grammar extensions but failed to gain adoption [63].

An astute reader may raise the question of why we didn't attempt a transla-
tion of IO actions to PUL Update Primitives. The issue that we saw is that a PUL
is an opaque collection, which cannot be computed over. With XQuery Update
there is no mechanism for directly working with the result of a previous Update
Primitive. We required a solution that was applicable to general computation, so
we focused on a task based approach. Of course there is the concern that we
would have also had to adopt much of the XQuery Update specification to make
this work in practice. For XPDLs that are not derived from XQuery this may have
been prohibitive to adoption. However, we see no reason why further work could
not examine the feasibility of lifting a Task to an Update Primitive.

4.1.1. Abstract Data Types

Haskell's IO Monad makes use of an ADT (Abstract Data Type) to represent the
World which it is transforming. The beauty of using an ADT here is that the Has-
kell programmer cannot themselves instantiate this type2, which makes it impos-
sible to execute IO directly. Instead the Haskell compiler is responsible for
compiling the application in such a manner that the IO will be implicitly executed
at runtime.

Recall that the IO type is really a state transformation function, with the signa-
ture

IO a = World -> (a, World)

To create an equivalent function for XPDLs we need some mechanism for model-
ling the World ADT. Unfortunately, without requiring Schema Awareness, the

2Haskell does provide an unsafePerformIO function which can conjure the world up, and execute the
IO. However, such behaviour is considered bad practice in the extreme.

Task Abstraction for XPath Derived Languages

22

XDM type system is sealed. It is not possible to define new types abstract or oth-
erwise within XPDLs.

To remain within the XPDL specifications we must therefore define the World
using some non-abstract existing type. Unfortunately, this means that the devel-
oper can also instantiate the World and potentially execute the IO. We developed
an initial prototype [62] where we modelled the World simply as an XDM Ele-
ment named io:realworld, thus our XPath IO type function was defined such:

declare function io:IO($realworld as element(io:realworld)) as item()+

Note the item()+ return type: in XPath there is no tuple type so we have to use a
less strict definition than we would prefer. This sequence of items will have 1+n
items, where the head of the sequence is always the new state of the world (i.e.
the XDM element named io:realworld), and the tail of the sequence is the result
of executing the IO.

Implementations written for XPDLs in non-XPDLs could likely enforce stron-
ger semantics by using some proprietary type outside of the XDM to represent
the World which is un-instantiable from the XPDL.

Like Haskell's GHC (Glasgow Haskell Compiler), whether there really is a
World that is present in the application at execution time or not is an implementa-
tion detail. Certainly it is crucial that the World is threaded through the chain of
IO actions at evaluation time to ensure ordering, but implementations are free to
optimise the world away as long as they preserve ordering.

4.1.2. Typing a Task

Ultimately we adopted the name Task instead of IO to represent our embracement
of more than just I/O.

The first version of our Task Module was developed around the type defini-
tion of a Task as:

declare function task:task($realworld as element(adt:realworld))
 as item()+

We quickly realised that using this module led to verbose syntax, and that the
function syntax obscured the ordering of chains; the ordering of task execution
being the most deeply nested and then extending outwards:

task:fmap(
 task:fmap(

Task Abstraction for XPath Derived Languages

23

 task:value("hello"),
 upper-case#1
),
 concat(?, " adam")
)

Figure 1. Example of Tasks using Function based syntax

To provide a more natural imperative syntax, we realised that instead of mod-
elling a Task as a function type, we could model it as an XDM Map of functions
which can be applied. An XDM Map is itself a function from its key to its value. By
modelling a Task as Map, we could use the encapsulation concept from OOP
(Object Oriented Programming) to place functions in the Task (Map), that act
upon that task. Each function that we previously defined that operated upon a
Task, we recreated as a function inside the Map which operates on the Task repre-
sented by the Map. Thus yielding a fluent imperative-like API that utilises the
Map Lookup Operator to appear more familiar to imperative programmers:

task:value("hello")
 ? fmap(upper-case#1)
 ? fmap(concat(?, " adam"))
 ? RUN-UNSAFE()

Figure 2. Example of Tasks using fluent imperative-like syntax

So our Task type is finalised as:

map(xs:string, function(*))

More specifically our Task Map is defined as:

map {
 'apply': as function(element(adt:realworld)) as item()+,
 'bind': as function($binder as function(item()*) as map(xs:string,
function(*))) as map(xs:string, function(*)),
 'then': as function($next as map(xs:string, function(*))) as
map(xs:string, function(*)),
 'fmap': as function($mapper as function(item()*) as item()*) as
map(xs:string, function(*)),
 'sequence': as function($tasks as map(xs:string, function(*))+) as
map(xs:string, function(*)),
 'async': as function() as map(xs:string, function(*)),

Task Abstraction for XPath Derived Languages

24

 'catch': as function($catch as function(xs:QName?, xs:string,
map(*)) as map(xs:string, function(*))) as map(xs:string, function(*)),
 'catches': as function($codes as xs:QName*, $handler as
function(xs:QName?, xs:string, map(xs:QName, item()*)?) as item()*) as
map(xs:string, function(*)),
 'catches-recover': as function($codes as xs:QName*, $handler as
function() as item()*) as map(xs:string, function(*)),
 'RUN-UNSAFE': as function() as item()*
}

Observe that the apply entry inside the Task map retains our original Task type.
The Map provides us with encapsulation which allows for the creation of an
imperative-like API. By refactoring our existing Task functions we have been able
to preserve both the function syntax-like API and the fluent imperative-like API.
This provides developers the opportunity to choose whichever best suits their
needs, or to work with a mix of syntaxes as appropriate to them.

4.1.3. Asynchronous Tasks

We provide a mechanism which explicitly allows the developer to state that a
Task could benefit from being executed asynchronously. The task:async function
allows the developer to state their intention, however EXPath Tasks does not
specify whether, how, or if this actually executes asynchronously. This gives pro-
cessors the ability to make informed decisions about concurrent execution based
on input from the developer, but great freedom in how that is actually executed.
The only constraint on implemetations is that the order of execution within a task
chain must be preserved. Developers should rather think of task:async as pro-
viding a hint to the processor that asynchronous execution would be beneficial,
rather than assuming asynchronous execution will always take place.

Conversely, as the only constraint that we place on implementers is that the
order of execution within a task chain must be preserved, compliant processors
are free to implicitly parallelise operations at execution time providing that con-
straint holds.

4.1.4. Executing a Task

Recall that a Haskell application starts with a main that must return an IO, thus
framing the entire application as an IO action. The result of executing an XPDL is
always an instance of the XDM (and possibly a PUL). Whilst we could certainly
return a Task (map) as the result of the evaluation of our XPDL, what should the
processor do when it encounters it? If the processor decides to serialize the XDM
then we are likely at the mercy of the W3C XSLT and XQuery Serialization speci-
fication, which certainly won't execute our Task by applying it to transform the
state of the world.

Task Abstraction for XPath Derived Languages

25

Three potential solutions that present themselves from our research are:
• Prescribe in the specification of EXPath Tasks that an implementation must

execute a Task which is returned as the result of the XPDL in a certain manner.
• Incorporate the concept of a PUL into the specification of EXPath Tasks. Each

Task would create an Update Primitive which is added into the PUL. The
result of evaluating the XPDL would then be both an XDM and a PUL.

• Provide an explicitly unsafe function for evaluating a Task, similar to Haskell's
unsafePerformIO or Monix Tasks's runUnsafeSync.
We decided to adopt a hybrid approach. We provide a task:RUN-UNSAFE func-

tion, where we explicitly prescribe that this should only appear once within an
XPDL program, and that it must occur at the edge of the program, i.e. as the main
function. However, we also explicitly state that implementers are free to override
this function. For example, implementations that already support an XQuery
Update PUL, may choose to promote a Task chain to a set of Update Primitives
when this function is evaluated.

4.2. Using EXPath Tasks
We provide several examples to demonstrate key features of EXPath Tasks.

4.2.1. Composing Tasks

We can use monadic composition to safely compose together several tasks that
may at execution time cause side effects, but at evaluation time result in an
ordered chain of tasks.

Example 1. Safely Uppercasing a file

task:value("/tmp/my-file")
 ?fmap(file:read-text#1)
 ?fmap(fn:upper-case#1)
 ?fmap(fn:write-text("/tmp/my-file-upper", ?))

Consider the code in Example 1. We use the EXPath File Module to read the
text of a file, we then upper-case the text, and finally write the text out to a new
file. We start with a pure value Task holding the path of the source file, by map-
ping this through the read-text function a second new task is created. At evalua-
tion time nothing has been executed, instead we have a task that describes that
first there is a file path, and then secondly we should read a file from that path.
We have composed two operations into one operation which preserves the order-
ing of the original operations. We then continue by mapping through the upper-

Task Abstraction for XPath Derived Languages

26

case, which composes another new task representing all three operations (file
path, read-text, and upper-case) in order. Our last mapping composition results
in a final new task which represents all four operations in order. When this final
task is executed at runtime, each of the four operations will be performed in the
correct order.

Through using the EXPath Tasks module, we have safely contained the side
effects of the functions from the EXPath File Module, by deferring them from
evaluation time to execution time. As the Task is a state transformation, we have
also threaded the World through our task chain, which ensures that any XPDL
processor must execute them in the correct order even in the face of aggressive
optimisation.

4.2.2. Using Asynchronous Tasks

We can lift a Task to an Asynchronous Task, which can help provide the XPDL
processor with hints about how best to parallelise an XPDL application.

The following is a refactored version of the fork-join example from xq-promise
[35], to show how concurrent programming can be structured safely using
EXPath Tasks.

The example performs 25 HTTP requests to 5 distinct servers and returns the
results. First we show the synchronous version:

Example 2. Synchronous HTTP Fetching

let $tasks :=
 for $uri in ((1 to 5) !
 ('http://www.google.com', 'http://www.yahoo.com',
 'http://www.amazon.com', 'http://cnn.com',
 'http://www.msnbc.com'))
 let $task :=
 task:value($uri)
 ?fmap(http:send-request(<http:request method="GET" />, ?))
 ?fmap(fn:tail#1)
 ?fmap(fn:trace(?, 'Results found: '))
 ?fmap(function ($res) {
 $res//*:a[@href => matches('^http')]
 })
return
 task:sequence($tasks)
 ?RUN-UNSAFE()

Now we show the asynchronous version, where we have only needed to insert
two lines of code, the call to task:async which lifts each Task into an Asynchro-
nous Task, and a binding to task:wait-all:

Task Abstraction for XPath Derived Languages

27

Example 3. Asynchronous HTTP Fetching

let $tasks :=
 for $uri in ((1 to 5) !
 ('http://www.google.com', 'http://www.yahoo.com',
 'http://www.amazon.com', 'http://cnn.com',
 'http://www.msnbc.com'))
 let $task :=
 task:value($uri)
 ?fmap(http:send-request(<http:request method="GET" />, ?))
 ?fmap(fn:tail#1)
 ?fmap(fn:trace(?, 'Results found: '))
 ?fmap(function ($res) {
 $res//*:a[@href => matches('^http')]
 })
 ?async()
return
 task:sequence($tasks)
 ?bind(task:wait-all#1)
 ?RUN-UNSAFE()

4.2.3. Using Tasks with IXSL

We now consider how Tasks could be used within an IXSL stylesheet for a Saxon-
JS web application. Here we use Tasks to enable both concurrency (an asynchro-
nous HTTP request) and side effects (HTML DOM updates). The code in
Example 4 shows an IXSL event handling template for onclick events for the "go"
button, and associated functions. The main action of clicking the "go" button is to
send an asynchronous HTTP request. The intention is that the HTTP response
will provide new content for the <div id="target"> element in the HTML page,
as directed by the local f:handle-http-response function. But while awaiting
the HTTP response, the "target" div is first updated to provide a "Request pro-
cessing..." message, and the "go" button is hidden; as directed by the local
f:onclick-page-updates function.

Example 4. Asynchronous HTTP using Tasks in IXSL

 <xsl:template match="button[@id eq 'go']" mode="ixsl:onclick">
 <xsl:variable name="onclick-page-updates-task"
 select="task:of(f:onclick-page-updates#0)"/>
 <xsl:variable name="http-post-task"
 select="task:of(function(){http:post($request-body,
$request-options)})"/>
 <xsl:variable name="async-http-task"

Task Abstraction for XPath Derived Languages

28

 select="$http-post-task ? fmap(f:handle-http-
response#1) ? async()"/>
 <xsl:sequence select="task:RUN-UNSAFE(task:then($onclick-page-
updates-task, $async-http-task))"/>
 </xsl:template>

 <xsl:function name="f:onclick-page-updates">
 <ixsl:set-style name="display" select="'none'"
 object="ixsl:page()//button[id='go']"/>
 <xsl:result-document href="#target" method="ixsl:replace-content">
 <p>Request processing...</p>
 </xsl:result-document>
 </xsl:function>

 <xsl:function name="f:handle-http-response">
 <xsl:param name="response" as="map(*)"/>
 <xsl:for-each select="$response?body">
 <xsl:result-document href="#target"
 method="ixsl:replace-content">
 <p>Response from request:</p>
 <xsl:sequence select="."/>
 </xsl:result-document>
 </xsl:for-each>
 <ixsl:set-style name="display" select="'inline'"
 object="ixsl:page()//button[id='go']"/>
 </xsl:function>

Through using the EXPath Tasks module, we have safely contained the side
effects of the local functions. Meanwhile, the use of the task:async function
allows the Saxon-JS processor to use an asynchronous implementation of the
EXPath HTTP Client 2.0 http:post function. The task chain is created making
use of task:fmap to pass the HTTP response to the handler function; and
task:then to compose the initial $onclick-page-updates-task with the main
$async-http-task, ensuring the correct order for their side effects.

5. Conclusion
In this paper we have surveyed the current state-of-the-art mechanisms by which
XPDL processors allow side effects and concurrent programming, and the
options available to non-XPDLs for managing side effects and providing concur-
rent or parallel programming. From this research we have then developed and
specified EXPath Tasks, a module of XPath extension functions, that allow devel-
opers to safely encapsulate side-effecting functions so that at evaluation time they
appear as pure functions and enforce the expected order of execution. Finally, we

Task Abstraction for XPath Derived Languages

29

have developed several reference implementations of EXPath Tasks to demon-
strate the feasability of implementing our specification.

Were the necessary functions available for performing node updates, we
believe that the IO Monad approach taken by EXPath Tasks could even have ben-
efits over using XQuery Update. Whilst it provides similarly strong deferred
semantics like a PUL, a PUL is completely opaque, and one cannot compute over
it, unlike a Task chain where Tasks may be composed together.

Whilst at a casual glance it may appear that EXPath Tasks have some similari-
ties to xq-promise, we should be careful to point out that they work quite differ-
ently in practice. We believe that EXPath Tasks has the following advantages over
xq-promise:

• Correct Ordering of Execution.
Under aggressive functional optimisation, EXPath Tasks will still preserve

the correct order of execution even when tasks have no explicit dependency
between them. EXPath Tasks can guarantee the order because they transpar-
ently thread the World through the chain of computation as tasks are com-
posed, which implicitly introduces dependencies between the Tasks.

• Flexible Asynchronous Processing.
The asynchronous processing model of EXPath Tasks is very generalised,

and only makes guarantees about ordering of execution. This enables many
forms of concurrent programming to be expressed using EXPath Tasks,
whereas xq-promise only offers fork-join. In fact xq-promise can easily be reim-
plemented atop EXPath tasks, including fork-join:

declare function local:fork-join($tasks as task:Task(~An)+)
 as task:Task(array(~An)) {
 task:sequence($tasks ! task:async#1)
 ?bind(task:wait-all#1)
};

Interestingly, if the xq-promise API were reimplemented atop EXPath Tasks, it
would gain stronger guarantees about execution order.

Likewise our generalised approach, whilst making explicit the intention of
parallelism, does not restrict processors from making further implicit paralle-
lisation optimisations.

• Potential Performance
An xq-promise Promise is a deferred computation that cannot be executed

until its fork-join function is called. In comparison EXPath Tasks's Asyn-
chronous Tasks can begin execution at runtime as soon as their construct func-
tion is executed, thus making better use of computer resources by starting
computation earlier than would be possible in xq-promise.

Task Abstraction for XPath Derived Languages

30

It will certainly be interesting to see how the XML community responds to our
EXPath Tasks specification. We are hopeful that developers working with Tasks
need not necessarily have any understanding of Monads to be able to fully
exploit the benefits of EXPath Tasks.

We are still at an early stage of investigating how well use of the Task module
can be incorporated into IXSL stylesheets for Saxon-JS applications. Does the Task
module provide a good solution for handling asynchronous processing and side
effects in Saxon-JS? This may only be answerable once more examples have been
trialled, once the Saxon-JS implementation is more advanced.

Given an existing Saxon-JS application, a move to use the Task module could
involve a significant amount of restructuring. To use the Task module properly,
all side-effecting expressions should be wrapped in tasks, and care would need to
be taken to chain them together appropriately. Side-effecting expressions are
likely to be found in numerous different templates, and so bringing the tasks
together could be a challenge, and would likely involve considerable redesign.
These challenges are not necessarily a problem with the Task module, but given
that currently developers can be relatively free with how side effects and asyn-
chronous processes fit into their XSLT programs; the move to any solution which
requires explicit strict management of these is going to be a fairly radical change.
But this work would not be without benefit: the current lack of management of
side effects can easily result in unexpected results if the developer is not careful.
The use of Tasks would eliminate this risk.

Further work is also required to work out exactly how to use Tasks to accom-
plish some specific actions within a Saxon-JS application. For example, providing
a mechanism which allows a user to abort an asynchronous HTTP request. Com-
bining the use of Tasks with IXSL event handling templates, does not seem to
work. Instead it seems a solution requires another way to create event listeners
from within the XSLT; in which case, perhaps new IXSL extensions are needed.

5.1. Future Work
We have identified several areas for possible future research:
• Stronger/Stricter Explicit Typing

The explicit types we have specified in our Task Module are not as strict as
we would like. This is in general due to a lack of a stronger type system which
would allow us to express both abstract and generic types. At run-time the
correct types will be inferred by the processor. It would be interesting to
research modifications to the XDM so that we can statically express stricter
types. For instance, the Saxon processor provides the tuple type [64] syntax
extension as a way of defining a more precise type for maps.

We recognise there may also be an approach where function generation is
used, to generate Task functions with stricter types by type switching on

Task Abstraction for XPath Derived Languages

31

incoming parameters. Due to the large number of types in the XDM to switch
over, such generation would itself likely need to be computed.

• Side effects between Concurrent Tasks
We have provided no mechanisms for avoiding side effects across shared

state between parallel tasks at execution time, e.g. race conditions, data cor-
ruption, etc. Often such issues can be avoided by developers decomposing
asynchronous tasks into smaller asynchronous tasks which have to synchron-
ize via task:wait-all, and then begin asynchronously again. A set of func-
tional Task based synchronization primitives which could be used to help in
parallel situations would be an interesting extension.

• Additional convenience functions
Whilst we have provided the building blocks necessary for general compu-

tation, additional convenience functions could be added. For instance gather
(similar to task:sequence but with relaxed ordering), withAsync (which lifts
a normal function into an Asynchronous Task), and parZip (which asynchro-
nously zips the results of two tasks together).

We have provided mechanisms for working with XPath errors, however
we could also consider functions for working with error values. We see no rea-
son why something akin to an Either (disjoint union) could not be developed
to work with EXPath Tasks, where a result is either an error value or the result
of successful computation.

A. EXPath Tasks Module Definitions

A.1. Namespaces and Prefixes
This module makes use of the following namespaces to contain its application.
The URIs of the namespaces and the conventional prefixes associated with them
are:
• http://expath.org/ns/task for functions -- associated with task.
• http://expath.org/ns/task/adt for abstract data types -- associated with

adt.

A.2. Types
As an attempt at simplifying the written definition of the functions within the
Task Module, we have specified a number of type aliases. The concrete types are
likely of little interest to users of the Task Module who are more concerned with
behaviour than implementation detail. Implementers which need such detail may
substitute the aliases for the concrete types as defined below.

Task Abstraction for XPath Derived Languages

32

We have followed the XPath convention of using lower-cased names for our
functions, apart from task:RUN-UNSAFE where the use of continuous capital let-
ters is intended to draw developer attention. Our type aliases are described using
a capitalised-cased naming convention to visually distinguish them from function
names.

Alias Concrete Type
~A The ~ signifies that this is a generic type, and the A is just a pla-

ceholder for the actual type. Concretely this is at least an
item()*, however intelligent processors can likely infer and
enforce stricter types through the functionally composed Task
chain.

Task Abstraction for XPath Derived Languages

33

Alias Concrete Type
task:Task(~A) The task:Task type alias, is concretely map(xs:string,

function(*)).
The inner aliased generic type, indicates that the Task when exe-
cuted returns a result of type ~A.
Specifically the Task map has the following non-optional entries:

map {
 'apply': as function(World) as item()+,
 'bind': as function($binder $binder as function(~A) as
task:Task(~B)) as task:Task(~B),
 'then': as function($next as task:Task(~B)) as
task:Task(~B),
 'fmap': as function($mapper as function(~A) as ~B) as
task:Task(~B),
 'sequence': as function($tasks as task:Task(~An)+) as
task:Task(array(~An)),
 'async': as function() as task:Task(task:Async(~A)),
 'catch': as function($catch as function(xs:QName?,
xs:string, map(*)) as task:Task(~B)) as task:Task(~B),
 'catches': as function($codes as xs:QName*, $handler as
function(xs:QName?, xs:string, map(xs:QName, item()*)?) as
~B) as task:Task(~B),
 'catches-recover': as function($codes as xs:QName*,
$handler as function() as ~B) as task:Task(~B),
 'RUN-UNSAFE': as function() as ~A
}

Note: Each of the functions defined in the Task Map have the
exact same behaviour as their cousins of the same name residing
outside of the map. The only difference is that the functions
inside the Map don't need an explicit task argument.

Task Abstraction for XPath Derived Languages

34

Alias Concrete Type
task:ErrorObject The task:ErrorObject type alias, is concretely map(xs:QName,

item()*).
All entries in the map are optional, but otherwise it is structured
as:

map {
 xs:QName("err:value") : item()*,
 xs:QName("err:module") : xs:string?,
 xs:QName("err:line-number") : xs:integer?,
 xs:QName("err:column-number") : xs:integer?
 xs:QName("err:additional") : item()*
}

task:Async(~A) The task:Async type alias, is concretely
function(element(adt:scheduler)) as ~A.
The inner aliased generic type, indicates that the Async if it runs
to completion will compute a result of type ~A.

A.3. Functions

A.3.1. Basic Task Construction

This group of functions offer facilities for constructing basic tasks. They usually
form the starting point of a task chain.

A.3.1.1. task:value

Summary Constructs a Task from a pure value.

Signature task:value($v as ~A) as task:Task(~A).

Rules When the task is run it will return the value of $v.

Notes In Haskell this would be known as return or sometimes alterna-
tively unit.

In Scala Monix this would be known as now or pure.
In formal descriptive terms this is:

value :: a -> Task a

Task Abstraction for XPath Derived Languages

35

Example Example A.1. Task from a String

task:value("hello world")

A.3.1.2. task:of

Summary Constructs a Task from a function.
This provides a way to wrap a potentially non-pure (i.e. side-

effecting) function and delay its execution until the Task is execu-
ted.

Signature task:of($f as function() as ~A) as task:Task(~A).
Rules The function is lifted into the task, which is to say that the function

will not be executed until the task is executed. When the task is
run, it will execute the function and return its result.

Notes In Haskell there is no direct equivalent.
In Scala Monix this would be known as eval or delay.
In formal descriptive terms this is:

of :: (() -> a) -> Task a

Example Example A.2. Task which computes the system time from a side-
effecting function.

task:of(util:system-time#0)

A.3.2. Task Composition
This group of functions offer facilities for functionally composing tasks together.

A.3.2.1. task:bind

Summary Composes a new Task from an existing task and a binder function
which creates a new task from the existing task's value.

Signature task:bind($task as task:Task(~A), $binder as
function(~A) as task:Task(~B)) as task:Task(~B).

Rules When the resultant task is executed, the binder function processes
the existing task's value, and then the result of the task is returned.

Notes In Haskell this is also called bind and often written as >>=.
In Scala Monix this is known as flatMap.

Task Abstraction for XPath Derived Languages

36

In formal descriptive terms this is:

bind :: Task a -> (a -> Task b) -> Task b

Examples Example A.3. Using bind to Square a number

task:bind(task:value(99), function($v) {
 task:value($v * $v)
})

Example A.4. Using bind to Transform a value

task:bind(task:value("hello"), function($v) {
 task:value(fn:upper-case($v))
})

Example A.5. Using bind to conditionally raise an error

task:bind(task:value("hello"), function($v) {
 if ($v eq "goodbye")
 then
 task:error((), "It's not yet time to say goodbye!",
())
 else
 task:value($v)
})

Example A.6. Using bind to compose two tasks

let $task1 := task:value("hello")
let $task2 := task:value("world")
return
 task:bind($task1, function($v1) {
 task:bind($task2, function($v2) {
 task:value($v1 || " " || $v2)
 })
 })

Task Abstraction for XPath Derived Languages

37

A.3.2.2. task:then

Summary Composes a new Task from an existing task and a new task. It is
similar to task:bind but discards the existing task's value.

Signature task:then($task as task:Task(~A), $next as
task:Task(~B)) as task:Task(~B).

Rules When the resultant task is executed, the existing task is executed
and the result discarded, and then the result of the next task is
returned.

task:then($task, $next) is equivalent to task:bind($task,
function($_) { $next }).

Notes In Haskell this is also a form of bind which is sometimes called
then, and often written as >>.

In Scala Monix this is direct equivalent.
In formal descriptive terms this is:

then :: Task a -> (_ -> Task b) -> Task b

Example Example A.7. Sequentially composing two tasks

task:then(task:value("something we don't further need"),
task:value("something important"))

A.3.2.3. task:fmap

Summary Composes a new Task from an existing task and a mapping func-
tion which creates a new value from the existing task's value.

Signature task:fmap($task as task:Task(~A), $mapper as
function(~A) as ~B) as task:Task(~B).

Rules When the resultant task is executed, the mapper function processes
the existing task's value, and then the result of the task is returned.

Notes In Haskell this is also called fmap and often written as <$>.
In Scala Monix this is known as map.
In formal descriptive terms this is:

fmap :: Task a -> (a -> b) -> Task b

Task Abstraction for XPath Derived Languages

38

Examples Example A.8. Upper-casing a Task String

task:fmap(task:value("hello"), fn:upper-case#1)

Example A.9. Concatenating a Task String

task:fmap(task:value("hello"), fn:concat(?, " world"))

Example A.10. Extracting the code-points of a Task String (e.g.
type conversion, String to Integer+)

task:fmap(task:value("hello"), fn:string-to-codepoints#1)

A.3.2.4. task:sequence

Summary Constructs a new Task representating the sequential application of
one or more other tasks.

Signature task:sequence($tasks as task:Task(~An)+) as
task:Task(array(~An)).

Rules When the resultant task is executed, each of the provided tasks will
be executed sequentially, and the results returned as an XDM array.
The order of entries in the resultant array is the same as the order
of $tasks.

Notes In Haskell and Scala Monix this is known as sequence.
In formal descriptive terms this is:

sequence :: [Task a] -> Task [a]

Examples Example A.11. Sequencing three Tasks into one

task:sequence((task:value("hello"), task:value(54),
task:value("goodbye"))

A.3.3. Task Error Management
This group of functions offers facilities for using tasks in the face of XPath errors.
Several can be used along with task:error as a form of conditional branching or
downward flow control.

Task Abstraction for XPath Derived Languages

39

A.3.3.1. task:error

Summary Constructs a Task that raises an error.
This is a Task abstraction for fn:error.

Signature task:error($code as xs:QName?, $description as
xs:string, $error-object as task:ErrorObject?) as
task:Task(none).

Rules The error is not raised until the task is run.
The parameters $code, and $description have the same purpose

as those with the same name defined for fn:error.
The parameter $error-object has the same purpose but is a type

restriction of the parameter with the same name defined for
fn:error, it should be of type task:ErrorObject.

Notes In Haskell this would be closest to fail.
In Scala Monix this would be known as raiseError.
In formal descriptive terms this is:

error :: (code, description, error-object) -> Task none

Examples Example A.12. Constructing a simple Task Error

task:error(xs:QName("local:error001"), "BOOM!", ())

A.3.3.2. task:catch

Summary Constructs a Task which catches any error raised by another task.
This is similar to task:catches except that all errors are

caught.
Signature task:catch($task as task:Task(~A), $handler as

function(xs:QName?, xs:string, task:ErrorObject?) as
task:Task(~B)) as task:Task(~B).

Rules When the resultant task is executed, the handler function catches
any error from executing the existing task, and then the result of
the handler task is returned.

The handler function accepts three arguments, the first is the
QName of the error that was caught, the second is the description
of the error that was caught, and the third are the ancillary error
details collected as a task:ErrorObject.

If no errors are raised by the existing task, the handler will not
be called, and instead this task acts as an identity function.

Task Abstraction for XPath Derived Languages

40

Notes In Haskell this is similar to catch.
In Scala Monix this would be similar to onErrorHandleWith.
In formal descriptive terms this is:

catches :: Task a -> ([code, description, errorObject] -> Task b) -
> Task b

Example Example A.13. Using catch to recover from an error

let $my-error-code := xs:QName("local:error01")
return
 task:catch(task:error($my-error-code, "Boom!", ()),
function($actual-code, $actual-description, $actual-error-
object) {
 "Handled error: " || $actual-code
 })

A.3.3.3. task:catches

Summary Constructs a Task which catches specific errors of another task.
This is similar to task:catch-recover except that the error

handler receives details of the error.
Signature task:catches($task as task:Task(~A), $codes as

xs:QName*, $handler as function(xs:QName?, xs:string,
task:ErrorObject?) as ~B) as task:Task(~B).

Rules When the resultant task is executed, the handler function catches
any matching errors identified by the parameter $codes from exe-
cuting the existing task, and then the result of the handler task is
returned.

The handler function accepts three arguments, the first is the
QName of the error that was caught, the second is the description
of the error that was caught, and the third are the ancillary error
details collected as a task:ErrorObject.

If no errors are raised by the existing task, the handler will not
be called, and instead this task acts as an identity function.

Notes In Haskell this is similar to catches.
In Scala Monix this would be similar to onErrorHandle.
In formal descriptive terms this is:

catches :: Task a -> ([code] -> ([code, description, errorObject] ->

Task Abstraction for XPath Derived Languages

41

b)) -> Task b

Example Example A.14. Using catches to recover from an error

let $my-error-code := xs:QName("local:error01")
return
 task:catches(task:error($my-error-code, "Boom!", ()),
($my-error-code, xs:QName("err:XPDY004")), function($actual-
code, $actual-description, $actual-error-object) {
 "Handled error: " || $actual-code
 })

A.3.3.4. task:catches-recover

Summary Constructs a Task which catches specific errors of another task.
This is similar to task:catches except that the error handler

does not receive details of the error.
Signature task:catches-recover($task as task:Task(~A), $codes as

xs:QName*, $handler as function() as ~B) as
task:Task(~B).

Rules When the resultant task is executed, the handler function catches
any matching errors identified by the parameter $codes from exe-
cuting the existing task, and then the result of the handler task is
returned.

If no errors are raised by the existing task, the handler will not
be called, and instead this task acts as an identity function.

Notes In Haskell this is similar to catches, but it does not pass the error
details to the $handler.

In Scala Monix this would be similar to onErrorRecover.
In formal descriptive terms this is:

catches-recover :: Task a -> ([code] -> (_ -> b)) -> Task b

Example Example A.15. Using catches-recover to recover from an error

let $my-error-code := xs:QName("local:error01")
return
 task:catches-recover(task:error($my-error-code,
"Boom!", ()), ($my-error-code), function() {
 "Recovering from error..."

Task Abstraction for XPath Derived Languages

42

 })

A.3.4. Asynchronous Tasks

This group of functions offers facilities for constructing asynchronous tasks and
acting upon their progress.

A.3.4.1. task:async

Summary Constructs an Asynchronous Task from an existing Task.

Signature task:async($task as task:Task(~A)) as
task:Task(task:Async(~A)).

Rules The existing task will be composed into a new task which may be
executed asynchronously.

This function makes no guarantees about how, when, or if the
asynchronous task is executed other than the fact that execution
will not begin before the task itself is executed.

Implementations are free to implement asynchronous tasks
using any mechanism they wish including cooperative multitask-
ing, preemptive multitasking, or even plain old single-threaded
synchronous. The only restriction on implementations is that the
processing order of task chains and asynchronous task chains must
be preserved, so that the user gets the result that they should
expect.

When the task is run, it may start an asynchronous process
which executes the task, regardless it returns a reference to the
(possibly) asynchronous process, which may later be used for can-
cellation or obtaining the result of the task.

If the function call results in asynchronous behaviour (i.e. a fork
of the execution path happens), then the asynchronous task inher-
its the Static Context, and a copy of the Dynamic Context where the
Context item, Context position, and Context size have been reinitial-
ised. If an implementation supports XQuery Update PUL, then any
Update Primitives generated in the Asynchronous Task are merged
back to the main Task only when task:wait or task:wait-all is
employed.

Notes In Haskell this is similar to async from the
Control.Concurrent.Async package.

In Scala Monix this would be known as executeAsync.
In formal descriptive terms this is:

Task Abstraction for XPath Derived Languages

43

async :: Task a -> Task (Async a)

Example Example A.16. Task which asynchronously posts a document

task:async(
 task:fmap(
 task:value("http://somewebsite.com"),
 http:post(?, <some-document/>)
)
)

A.3.4.2. task:wait

Summary Given an Async this function will extract its value and return a
Task of the value.

Signature task:wait($async as task:Async(~A)) as task:Task(~A).
Rules At execution time of the task returned by this function, if the Asyn-

chronous computation represented by the $async reference has not
yet completed, then this function will block until the asynchronous
computation completes.

This function makes no guarantees about how, when, or if
blocking occurs other than the fact that any blocking (if required)
will not begin before the task itself is executed.

Implementations are free to implement waiting upon asynchro-
nous tasks using any mechanism they wish. The only restriction on
implementations is that the processing order of task chains and
asynchronous task chains must be preserved, so that the user gets
the result that they should expect.

Notes In Haskell this is similar to wait from the
Control.Concurrent.Async package.

In Scala Monix this would be similar to Await.result.
In formal descriptive terms this is:

wait :: Async a -> Task a

Example Example A.17. Task waiting on an asynchronous task

let $async-task :=

Task Abstraction for XPath Derived Languages

44

 task:async(
 task:fmap(
 task:value("http://somewebsite.com"),
 http:post(?, <some-document/>)
)
)
return

 (: some further task chain of processing... :)

 (: wait on the asynchronous task to complete :)
 task:bind(
 $async-task,
 task:wait#1
)

A.3.4.3. task:wait-all

Summary Given multiple Asyncs this function will extract their values and
return a Task of the values.

Signature task:wait-all($asyncs as array(task:Async(~A))) as
task:Task(array(~A)).

Rules At execution time of the task returned by this function, if any of the
Asynchronous computations represented by the $asyncs referen-
ces have not yet completed, then this function will block until all
the asynchronous computations complete.

This function makes no guarantees about how, when, or if
blocking occurs other than the fact that any blocking (if required)
will not begin before the task itself is executed.

Implementations are free to implement waiting upon asynchro-
nous tasks using any mechanism they wish. The only restriction on
implementations is that the processing order of task chains and
asynchronous task chains must be preserved, so that the user gets
the result that they should expect.

This is equivalent to:

task:bind($task, function($asyncs as array(*)) as
map(xs:string, function(*)) {
 task:sequence(array:flatten(array:for-each($asyncs,
task:wait#1)))
})

Task Abstraction for XPath Derived Languages

45

Notes In Haskell there is no direct equivalent, but it can be modelled by a
combination of wait and sequence.

In Scala Monix there is no direct equivalent.
In formal descriptive terms this is:

wait-all :: [Async a] -> Task [a]

Example Example A.18. Task waiting on multiple asynchronous tasks

let $async-tasks :=
 (
 task:async(
 task:fmap(
 task:value("http://websiteone.com"),
 http:post(?, <some-document/>)
)
),
 task:async(
 task:fmap(
 task:value("http://websitetwo.com"),
 http:post(?, <some-document/>)
)
)
)
return

 (: some further task chain of processing... :)

 (: wait for all asynchronous tasks to complete :)
 task:bind(
 task:sequence($async-tasks),
 task:wait-all#1
)

A.3.4.4. task:cancel

Summary Given an Async this function will attempt to cancel the asynchro-
nous process.

Signature task:cancel($async as task:Async(~A)) as task:Task().
Properties This function is non-blocking.
Rules At execution time of the task returned by this function, cancella-

tion of the Asynchronous computation represented by the $async
reference may be attempted.

Task Abstraction for XPath Derived Languages

46

This function makes no guarantees about how, when, or if
cancellation occurs other than the fact that any cancellation (if
required/possible) will not begin before the task itself is executed.
Regardless the Asynchronous reference is invalidated by this
function.

Implementations are free to implement cancellation of asyn-
chronous tasks using any mechanism they wish, they are also free
to ignore cancellation as long as the Asynchronous reference is
still invalidated. The only restriction on implementations is that
the processing order of task chains and asynchronous task chains
must be preserved, so that the user gets the result that they
should expect.

Notes In Haskell this is similar to cancel from the
Control.Concurrent.Async package.

In Scala Monix this is known as `cancel`.
In formal descriptive terms this is:

cancel :: Async a -> Task ()

Example Example A.19. Cancelling an asynchronous task

let $async-task :=
 task:async(
 task:fmap(
 task:value("http://somewebsite.com"),
 http:post(?, <some-document/>)
)
)
return

 (: some further task chain of processing... :)

 (: cancel the asynchronous task :)
 task:bind(
 $async-task,
 task:cancel#1
)

A.3.4.5. task:cancel-all
Summary Given multiple Asyncs this function will attempt to cancel all of

the asynchronous processes.

Task Abstraction for XPath Derived Languages

47

Signature task:cancel-all($asyncs as array(task:Async(~A))) as
task:Task().

Properties This function is non-blocking.
Rules At execution time of the task returned by this function, cancella-

tion of all Asynchronous computations represented by the
$asyncs references may be attempted.

This function makes no guarantees about how, when, or if
cancellation occurs other than the fact that any cancellation (if
required/possible) will not begin before the task itself is executed.
Regardless the Asynchronous references are invalidated by this
function.

Implementations are free to implement cancellation of asyn-
chronous tasks using any mechanism they wish, they are also free
to ignore cancellation as long as the Asynchronous references are
still invalidated. The only restriction on implementations is that
the processing order of task chains and asynchronous task chains
must be preserved, so that the user gets the result that they
should expect.

Notes In Haskell there is no direct equivalent, but it can be modelled by
a combination of cancel and sequence.

In Scala Monix there is no direct equivalent.
In formal descriptive terms this is:

cancel-all :: [Async a] -> Task ()

Example Example A.20. Cancelling asynchronous tasks

let $async-tasks :=
 (
 task:async(
 task:fmap(
 task:value("http://websiteone.com"),
 http:post(?, <some-document/>)
)
),
 task:async(
 task:fmap(
 task:value("http://websitetwo.com"),
 http:post(?, <some-document/>)
)
)
)

Task Abstraction for XPath Derived Languages

48

return

 (: some further task chain of processing... :)

 (: cancel all asynchronous tasks :)
 task:bind(
 task:sequence($async-tasks),
 task:cancel-all#1
)

A.3.5. Unsafe Tasks

This defines a single function task:RUN-UNSAFE, which is useful only when a task
chain needs to be executed. If an XPDL implementation cannot provide a better
mechanism, then this may be implemented and used as a last resort.

A.3.5.1. task:RUN-UNSAFE

Summary Executes a Task Chain and returns the result.
This function is inherently unsafe, as it causes any side effects

within the Task chain to be actualised.
If this function is used within an application, it should only be

invoked once, and it should be at the edge of the application, i.e.
in the position where it is the first and only thing to be directly
executed by the application at runtime. No further computation,
neither on the result of this function, or after this function call
should be attempted by the application.

Signature task:RUN-UNSAFE($task as task:Task(~A)) as ~A.
Properties This function is nondeterministic.
Rules At execution time, the task chain is evaluated and the result

returned.
However, if implementations can provide a safer mechanism

for the execution of a Task after the XPDL has completed evalua-
tion, then they are free to override this as they see fit. Once such
mechanism could be to promote the Task chain to a set of Update
Primitives within a PUL and then demote this to an identity func-
tion.

Notes In Haskell the closest equivalent is unsafePerformIO.
In Scala Monix the closest approach would be a combination

of runToFuture and Await.result.
In formal descriptive terms this is:

Task Abstraction for XPath Derived Languages

49

RUN-UNSAFE :: Task a -> a

Example Example A.21. Unsafely executing a Task

(:~
 : Just a utility function for calculating
 : previous sightings of Halley's comet
 :)
declare function local:halleys-sightings($before-year) {
 let $start := 1530
 let $interval := 76

 for $range in
 ($start - $interval to $before-year - $interval)
 let $visible := $range + $interval
 where (($visible - $start) mod $interval) eq 0
 return
 $visible
};

let $task := task:fmap(
 task:fmap(
 task:of(util:system-time#0),
 fn:year-from-date#1
),
 local:halleys-sightings#1
)
return

 task:RUN-UNSAFE($task)

Bibliography
[1] James Clark. Steve DeRose. XML Path Language (XPath) Version 1.0. W3C

Recommendation 16 November 1999 (Status updated October 2016).
1999-11-16. https://www.w3.org/TR/1999/REC-xpath-19991116/.

[2] Anders Berglund. Scott Boag. Mary Fernández. Scott Boag. Michael Kay.
Jonathan Robie. Jérôme Siméon. XML Path Language (XPath) 2.0 (Second
Edition). W3C Recommendation 14 December 2010 (Link errors corrected 3
January 2011; Status updated October 2016). 2010-12-14. https://www.w3.org/
TR/xpath20/.

Task Abstraction for XPath Derived Languages

50

[3] Mary Fernandez. K Karun. Mark Scardina. XPath Requirements Version 2.0.
W3C Working Draft 3 June 2005. 2005-06-03. https://www.w3.org/TR/
xpath20req/.

[4] Denise Draper. Peter Fankhauser. Mary Fernández. Ashok Malhotra. Kristoffer
Rose. Michael Rys. Jérôme Siméon. Philip Wadler. XQuery 1.0 and XPath 2.0
Formal Semantics (Second Edition). W3C Recommendation 14 December 2010
(revised 7 September 2015). 2015-09-07. https://www.w3.org/TR/xquery-
semantics/.

[5] Steve Muench. Mark Scardina. XSLT Requirements Version 2.0. W3C Working
Draft 14 February 2001. 2001-02-14. https://www.w3.org/TR/xslt20req/.

[6] Don Chamberlin. Peter Fankhauser. Massimo Marchiori. Jonathan Robie. XML
Query (XQuery) Requirements. W3C Working Group Note 23 March 2007.
2007-03-27. https://www.w3.org/TR/xquery-requirements/.

[7] John Snelson. Jim Melton. XQuery Update Facility 3.0. Pending Update Lists.
W3C Working Group Note 24 January 2017. 2017-01-24. https://www.w3.org/
TR/xquery-update-30/#id-pending-update-lists.

[8] Christian Grün. BaseX. 2018-10-31T16:11:00Z. Jobs Module. BaseX. http://
docs.basex.org/wiki/Jobs_Module.

[9] Adam Retter. eXist-db. eXist-db Util XQuery Module. Git Hub. http://
www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/
xquery/
util&location=java:org.exist.xquery.functions.util.UtilModule&details=true.

[10] Adam Retter. eXist-db. eXist-db Scheduler XQuery Module. Git Hub. http://
www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/
xquery/
scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModul
e.

[11] IBM. 2012-03-07. IBM100 - Power 4 : The First Multi-Core, 1GHz Processor.
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/.

[12] Michael Perrone. 2009. Multicore Programming Challenges. IBM, TJ Watson
Research Lab. 978-3-642-03868-6. 10.1007/978-3-642-03869-3_1. Springer.
https://link.springer.com/chapter/10.1007%2F978-3-642-03869-3_1. Euro-Par
2009 Parallel Processing, Lecture Notes in Computer Science. 5704.

[13] Pedro Fonseca. Cheng Li. Rodrigo Rodrigues. 2011-04-10. Finding complex
concurrency bugs in large multi-threaded applications. EuroSys '11 Proceedings of
the sixth conference on Computer systems. 215-228. ACM. 978-1-4503-0634-8.
10.1145/1966445.1966465. https://dl.acm.org/citation.cfm?id=1966465.

Task Abstraction for XPath Derived Languages

51

[14] Matthew Loring. Mark Marron. Daan Leijen. 2017-10-24. Semantics of
Asynchronous JavaScript. DLS 2017 Proceedings of the 13th ACM SIGPLAN
International Symposium on on Dynamic Languages table of contents. 51-62. ACM.
978-1-4503-5526-1. 10.1145/3133841.3133846. https://dl.acm.org/citation.cfm?
id=3133846.

[15] Cosmin Radoi. Stephan Herhut. Jaswanth Sreeram. Danny Dig. 2015-01-24.
Are Web Applications Ready for Parallelism?. Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 289-290.
ACM. 978-1-4503-3205-7. 10.1145/2688500.2700995. https://dl.acm.org/
citation.cfm?id=2700995.

[16] Henry G. Baker, Jr.. Carl Hewitt. 1977-08-15. The Incremental Garbage Collection
of Processes. Proceedings of the 1977 symposium on Artificial intelligence and
programming languages. 55-59. ACM. 10.1145/800228.806932.

[17] Peter Hibbard. 1976. Parallel Processing Facilities. New Directions in Algorithmic
Languages. 1-7.

[18] Daniel Friedman. David Wise. 1976. The Impact of Applicative Programming on
Multiprocessing. International Conference on Parallel Processing 1976. 263–272.
ACM.

[19] Jeffrey Dean. Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. OSDI'04: Sixth Symposium on Operating System Design and
Implementation. 137-150. https://research.google.com/archive/mapreduce-
osdi04.pdf.

[20] Michael Kay. 2015-02-14. Parallel Processing in the Saxon XSLT Processor. XML
Prague 2015 Conference Proceedings. 978-80-260-7667-4. http://
www.saxonica.com/papers/xmlprague-2015mhk.pdf.

[21] Jonathan Robie. 2016-03-03T12:05:03-05:00. EXPath Mailing List. Re: [expath]
Re: New Modules? Promise Module, Async Module. https://groups.google.com/
forum/#!msg/expath/Isjeez-5op4/-DCn-KJGBAAJ.

[22] O'Neil Delpratt. Michael Kay. 2013-08-06. Interactive XSLT in the browser.
Balisage Series on Markup Technologies, vol. 10 (2013). 10. https://doi.org/10.4242/
BalisageVol10.Delpratt01. https://www.balisage.net/Proceedings/vol10/html/
Delpratt01/BalisageVol10-Delpratt01.html.

[23] Adam Retter. 2018-10-03. EXPath and Asynchronous HTTP. https://
blog.adamretter.org.uk/expath-and-asynchronous-http/.

[24] Jesús Camacho-Rodríguez. Dario Colazzo. Ioana Manolescu. 2015.
PAXQuery: Efficient Parallel Processing of Complex XQuery. IEEE Transactions on
Knowledge and Data Engineering. Institute of Electrical and Electronics

Task Abstraction for XPath Derived Languages

52

Engineers. 1977-1991. 10.1109/TKDE.2015.2391110. https://hal.archives-
ouvertes.fr/hal-01162929/document.

[25] Ghislain Fourny. Donald Kossmann. Markus Pilman. Tim Kraska. Daniela
Florescu. Darin Mcbeath. WWW 2009 MADRID! Track: XML and Web Data /
Session: XML Querying XQuery in the Browser. 2009-04-20. XQuery in the
Browser. http://www2009.eprints.org/102/1/p1011.pdf.

[26] Philip Fennell. 2013-06-15. XML London 2013 Conference Proceedings. 1.
978-0-9926471-0-0. Extremes of XML. https://xmllondon.com/2013/
xmllondon-2013-proceedings.pdf#page=80.

[27] Jirka Kosek. John Lumley. 2013-12-03. Binary Module 1.0. EXPath. http://
expath.org/spec/binary/1.0.

[28] Christian Grün. 2015-02-20. File Module 1.0. EXPath. http://expath.org/spec/
file/1.0.

[29] BaseX. 2018-08-26T16:13:04Z. Concepts: Pending Update List. BaseX. http://
docs.basex.org/wiki/XQuery_Update#Pending_Update_List.

[30] MarkLogic. 2018. xdmp:spawn — MarkLogic 9 Product Documentation.
MarkLogic. https://docs.marklogic.com/xdmp:spawn?
q=spawn&v=9.0&api=true.

[31] MarkLogic. 2018. Developing Modules to Process Content (Content Processing
Framework Guide) — MarkLogic 9 Product Documentation. MarkLogic. https://
docs.marklogic.com/guide/cpf/modules.

[32] MarkLogic. 2018. admin:group-add-scheduled-task — MarkLogic 9 Product
Documentation. MarkLogic. https://docs.marklogic.com/admin:group-add-
scheduled-task.

[33] MarkLogic. 2018. xdmp:set — MarkLogic 9 Product Documentation. MarkLogic.
https://docs.marklogic.com/xdmp:set.

[34] MarkLogic. 2018. Understanding Transactions in MarkLogic Server (Application
Developer's Guide) — MarkLogic 9 Product Documentation. Visibility of Updates.
MarkLogic. https://docs.marklogic.com/guide/app-dev/transactions#id_85012.

[35] James Wright. 2016-02-13. XML Prague 2016 Conference Proceedings. 1.
978-80-906259-0-7. Promises and Parallel XQuery Execution. http://
archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#page=151.

[36] James Wright. xq-promise. 2016-04-29. Git Hub. https://github.com/james-jw/
xq-promise.

[37] Conway Melvin. 1963. A Multiprocessor System Design. ACM.
10.1145/1463822.1463838. Proceedings of the November 12-14, 1963, Fall Joint
Computer Conference. 139-146.

Task Abstraction for XPath Derived Languages

53

[38] 2018-11-15T06:49:39Z. Promise | MDN. Syntax. https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#Syntax.

[39] 2015. 6th Edition. Standard ECMA-262. ECMAScript® 2015 Language
Specification. Ecma International. http://www.ecma-international.org/
ecma-262/6.0/#sec-promise-executor.

[40] Carl Hewitt. Peter Bishop. Richard Steiger. 1973. A Universal Modular ACTOR
Formalism for Artificial Intelligence. Proceedings of the 3rd International Joint
Conference on Artificial Intelligence. IJCAI'73. 235-245. Morgan Kaufmann
Publishers Inc.. http://dl.acm.org/citation.cfm?id=1624775.1624804.

[41] Joe Armstrong. Ericsson AB. 2007. A History of Erlang. Proceedings of the Third
ACM SIGPLAN Conference on History of Programming Languages. HOPL III.
6-1--6-26. ACM. 978-1-59593-766-7. 10.1145/1238844.1238850.

[42] Lightbend, Inc.. Akka Documentation. Actors. 2018-12-07T11:55:00Z. https://
doc.akka.io/docs/akka/2.5.19/actors.html.

[43] 2019-01-17T21:11:00Z. Actor model. Actor libraries and frameworks. Wikipedia.
https://en.wikipedia.org/wiki/Actor_model#Actor_libraries_and_frameworks.

[44] Anders Hejlsberg. Microsoft. 2010-10-28T10:13:00Z. Channel 9. Introducing
Async – Simplifying Asynchronous Programming. https://channel9.msdn.com/
Blogs/Charles/Anders-Hejlsberg-Introducing-Async.

[45] Don Syme. Microsoft Research. 2007-10-10. Introducing F# Asynchronous
Workflows. https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-
asynchronous-workflows/.

[46] Simon Marlow. 2012. async-2.2.1: Run IO operations asynchronously and wait for
their results. Control.Concurrent.Async. Hackage. http://hackage.haskell.org/
package/async/docs/Control-Concurrent-Async.html.

[47] Mostafa Gaafar. 2017-03-26. 6 Reasons Why JavaScript’s Async/Await Blows
Promises Away (Tutorial). Hacker Noon. https://hackernoon.com/6-reasons-
why-javascripts-async-await-blows-promises-away-tutorial-c7ec10518dd9.

[48] Ilya Kantor. 2019. Promises, async/await. Async/await. JavaScript.info. https://
javascript.info/async-await.

[49] Melvin Conway. 1963-07. Design of a Separable Transition-diagram Compiler.
ACM Communications. 6. 396-408. 10.1145/366663.366704. ACM.

[50] Unity Technologies. 2018. Unity - Manual: Coroutines. https://
docs.unity3d.com/Manual/Coroutines.html.

[51] Harold Coopper. 2012-12. Coroutine Event Loops in Javascript. https://x.st/
javascript-coroutines/.

Task Abstraction for XPath Derived Languages

54

[52] Kotlin. 2018-12-06. Kotlin Documentation. Shared mutable state and concurrency.
GitHub. https://github.com/Kotlin/kotlinx.coroutines/blob/1.1.1/docs/shared-
mutable-state-and-concurrency.md.

[53] Domenic Denicola. 2012-10-14. You're Missing the Point of Promises. https://
blog.domenic.me/youre-missing-the-point-of-promises/.

[54] Simon Peyton Jones. Philip Wadler. 1992. 1993-01. Imperative Functional
Programming. ACM. Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL '93. 71-84. 0-89791-560-7.
10.1145/158511.158524. https://www.microsoft.com/en-us/research/wp-
content/uploads/1993/01/imperative.pdf.

[55] Paul Hudak. John Hughes. Simon Peyton Jones. Philip Wadler. 2007-04-16. A
History of Haskell: Being Lazy with Class. Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages. HOPL III. 12-1--12-55.
978-1-59593-766-7. 10.1145/1238844.1238856. ACM. https://
www.microsoft.com/en-us/research/wp-content/uploads/2016/07/history.pdf.

[56] The University of Glasgow. 2010. base-4.12.0.0: Basic libraries.
Control.Concurrent. Hackage. http://hackage.haskell.org/package/base/docs/
Control-Concurrent.html#v:forkIO.

[57] John A De Goes. 2017-09-16. There Can Be Only One...IO Monad. http://
degoes.net/articles/only-one-io.

[58] Alexandru Nedelcu. 2018-11-09. Task - Monix. Documentation. GitHub. https://
monix.io/docs/3x/eval/task.html.

[59] Viktor Klang. Lightbend, Inc.. 2017-12-19. Reactive Streams. GitHub. http://
www.reactive-streams.org/.

[60] Mozilla. 2018-09-23T04:04:54Z. JavaScript - Concurrency model and Event Loop.
Mozilla. https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop.

[61] Adam Retter. xq-promise Terminology vs. JavaScript/jQuery. 2018-11-30. GitHub.
https://github.com/james-jw/xq-promise/issues/19.

[62] Adam Retter. 2019-01-13. Haskell I/O and XPath. https://
blog.adamretter.org.uk/haskell-io-and-xpath/.

[63] Giorgio Ghelli. Christopher Ré. Jérôme Siméon. 2006. XQuery!: An XML query
language with side effects. Current Trends in Database Technology -- EDBT 2006.
Springer Berlin Heidelberg. 178-191. 978-3-540-46790-8.

[64] Saxonica. 2018-12-06. Saxon Documentation. Tuple types. Saxonica. http://
www.saxonica.com/documentation/index.html#!extensions/syntax-extensions/
tuple-types.

Task Abstraction for XPath Derived Languages

55

