Implementing XForms
using interactive XSLT 3.0

O'Neil Delpratt
Saxonica
<oneil@saxonica.com>

Debbie Lockett
Saxonica
<debbie@saxonica.com>

Abstract

In this paper, we discuss our experiences in developing Saxon-Forms, a new
partial XForms implementation for browsers using "interactive” XSLT 3.0,
and suggest some benefits of this implementation over others. Firstly we
describe the mechanics of the implementation - how XForms features such
as actions are implemented using the interactive XSLT extensions available
with Saxon-JS, to update form data in the (X)HTML page, and handle user
input using event handling templates. Secondly we discuss how Saxon-
Forms can be used, namely by integrating it into the client-side XSLT of a
web application, and examples of the advantages of this architecture. As a
motivation and use case we use Saxon-Forms in our in-house license tool
application.

Keywords: XML, XSLT, XPath, XForms, Saxon, Saxon-JS
1. Introduction

1.1. Use-case: License Tool application

The motivation for developing Saxon-Forms was a specific use case - namely a
project to improve our in-house license tool application (a form-based application
for managing and generating licenses). The application used XForms [1] in the
browser (using XSLTForms [2]) in the front-end, with server-side XSLT (and Java)
processing in the back-end. The project was motivated first, by business needs to
improve functionality in an in-house application that has slowly become unmain-
tainable, and secondly, by the fact that we wanted to improve the capability of
Saxon-JS [3] to handle real-world applications with both front-end and back-end
processing. We felt that using the technology for an in-house application would
be the best way to discover what product enhancements were needed.

167

Implementing XForms using interactive XSLT 3.0

The license tool architecture redesign is discussed in detail in [4], where the
focus is on the redistribution of XSLT processing, by using Saxon-JS in the
browser for client-side XSLT. In this paper, our focus is another part of the
project: the use of XForms. Rather than using existing implementations of
XForms which run in the browser (such as XSLTForms), alongside the client-side
of the application which is written in interactive XSLT [5] [6] and runs in Saxon-
JS, we set out to work towards a new implementation of XForms 1.1 which would
also run in Saxon-JS. This would allow us to better integrate the use of XForms
into the client-side application, as well as being a further exercise in (and demon-
stration of) using interactive XSLT and Saxon-]JS.

The screenshot in figure [fig.1] shows the edit page form of new our license
tool application, rendered by Saxon-Formes.

Edit page Recent reports Set Password

License Tool

Retrieve Orders Relevant form fields are indicated in bold font.

Select Year: [Al + Redistribution (-R) only: Site (-S) only: Limit number of results 20

Edit Form Required fields are marked with *.
Licensee Details

First Name* O'Neil Last Name* Delpratt
Company Email* oneil@saxonica.com
Address Line 1 Address Line 2

Town/City County/State

Post Code Country* United Kingdom
Phone

License Details

Start Date 31/01/2018 cv

Expiry

January 2018 v < e | »
Upgrade Days Y

Maintenance Days Mon Tue Wed Thu Fri Sat Sun
Existing License
9 1 2 3 4 5 8 7

Invoicing Details 8 9 10 N 12 13 14
EU VAT No. 15 16 17 18 19 20 21
Order Ref E 22 23 24 25 26 27 28
Reseller 29 30 3

Despatch Email S—
Order Details
Date Order Placed 31/01/2018
Add Order
Code Edition [Platform Features [Quantity Unit Price
EE-EVAL % | EE J TQv 1 0 X

Select User: [Default¥ | Create/Save: @ Send: ¥

Submit Order

Figure 1. The edit page of the license tool application

1.2. XForms

Forms are a common feature of interactive web applications, allowing users to
enter data for submission. HTML forms can be generated in many ways: some

168

Implementing XForms using interactive XSLT 3.0

sites serve up form pages from servers using languages such as PHP, JSP, ASP, etc.
where the form submission and validation is handled on the server or via Ajax
techniques. One of the greatest shortcomings of HTML forms is that the combina-
tion of presentation and the content is cumbersome and chaotic to manage.
XForms was designed as a direct replacement for HTML forms to address these
problems and to do much more. In XForms the presentation and content are sep-
arate, and more complicated forms can be authored using form model and con-
troller logic.

Using XForms, a form consists of a section that describes what the form does,
called the XForms model (contained in an xforms:model element, where the
xforms prefix is used for elements in the XForms http:// www.w3.0rg/ 2002/
xforms namespace), and another section that describes how the form is to be pre-
sented. The model contains the instance (in an xforms: instance element) holding
the underlying data of the form in an XML structure, model item properties describ-
ing declarative validation information for constraining values (in xforms:bind
elements), and details for form data submission (in xforms:submission ele-
ments). The presentational part of a form contains XForms form controls (such as
input, select, and textarea elements) which act as a direct point of user interac-
tion, and can provide read/write access to the instance data. Typically form con-
trols will bind to instance data nodes (as defined by an XPath expression in the
ref attribute). Note that instance data is only presented to the user when such a
binding to a form control exists; and individual form controls are only included
in the user interface if the instance data node is relevant (as defined using a
relevant attribute on an xforms:bind element). Actions defining event responses
are specified on form controls using action elements, such as xforms:action and
xforms:setvalue.

For a form-based application such as the license tool, XForms is the right
choice. As described, it allows for data processing and validation in the form, and
of course we want to use XML technologies and maintain our data in XML!

We decided to write a new implementation of XForms to use in our license
tool, rather than using existing implementations which run in the browser,
because we could see the potential for better integration of XForms into a web
application which uses Saxon-JS technologies. As well as being able to use new
XSLT 3.0 features, the use of Saxon-JS technologies for our new XForms imple-
mentation provides the opportunity to do more at the boundary between the
XForms form and the containing application. For example in our license tool, the
application logic allows parsing of structured input pasted into a text field. That's
beyond the capability of XForms itself, but it can be done in XSLT, and can be
integrated into what is predominantly a form-based application. So it's not just
XForms; it's XForms integrated into declarative client-side applications.

169

Implementing XForms using interactive XSLT 3.0

1.3. XSLT 3.0 and interactive XSLT in the browser with Saxon-JS

Saxon-JS is an XSLT run-time which executes an SEF (stylesheet export file), the
compiled form of an XSLT stylesheet generated using Saxon-EE. The Saxon-
Forms XSLT stylesheet module is designed to be imported into the client-side
XSLT stylesheet of a web application, which is exported to SEF for use with
Saxon-JS. Details of how the use of XForms (via Saxon-Forms) can be integrated
into the application stylesheet will be covered later. In this section, we briefly
highlight the features of Saxon-JS which make it a good fit for implementing
XFormes:

1. XSLT 3.0 [7] (including XPath maps and dynamic evaluation)
2. Interactive XSLT - for browser event handling
3. Using global JavaScript variables and functions

In Saxon-Forms, we use a number of new XSLT 3.0 features, such as XPath
maps and arrays (e.g. for actions and bindings), and dynamic evaluation of XPath
with xsl:evaluate [8] (e.g. for XForms binding references for form controls). For
further details see Section 2. Another feature of Saxon-JS which is crucial to
Saxon-Forms is interactive XSLT, used to implement the dynamic interactive
functionality of XForms. The interactive XSLT extensions available with Saxon-JS
allow rich interactive web applications to be written directly in XSLT. Event han-
dling templates can respond to user input; and trigger template rules to modify
the content of the HTML page.

Furthermore, using the ixsl:schedule-action instruction with the http-
request attribute, HTTP requests can be made, and the responses handled. See
the submission example in Section 3.2 for further information on how this can be
used in the integration of XForms in an application.

A few parts of the XForms implementation are done using JavaScript rather
than XSLT. Using Saxon-JS, global JavaScript variables and functions are accessi-
ble within the XSLT stylesheet as functions in the http:// saxonica.com/ ns/
globalJS namespace, or using the ixsl:call () function. Script elements can be
inserted into the HTML page using interactive XSLT, providing global JavaScript
functions to be used later. Global JavaScript variables are very useful as mutable
objects, for example we use a JavaScript variable to hold the XForms instance as a
node, this can then be easily accessed and changed to process the form interac-
tion.

2. XForms implementation

The main work of our XForms implementation can be split into two parts, that we
will refer to as initialization and interaction handling. Initialization consists of trans-
forming the presentational part of an XForms form, to render this using HTML to

170

Implementing XForms using interactive XSLT 3.0

correctly display the form in a browser; as well as setting up various structures
which hold the details of the form (the model item properties, etc.), to be used
internally by the implementation. Interaction handling involves acting on user
interaction with form controls, to update the XForms instance and form display
accordingly, and handling user submission which means submitting the instance
to a server. In Section 2.1 we describe how we implement these two areas, using
interactive XSLT 3.0. In the early stages of development, we referred to the
XSLTForms implementation (which is based on XSLT 1.0 to compile XForms to
(X)HTML and JavaScript) for ideas on how to get started, but using XSLT 3.0 and
interactive XSLT provides many new ways of doing things and so our implemen-
tation is really written from scratch.

Following this, we briefly discuss the XForms coverage of the Saxon-Forms
implementation, to give an idea of how much of the XForms specification is
implemented.

2.1. Overview of how Saxon-Forms works

Initialization

XForms is designed to be integrated into other markup languages, e.g.
(X)HTML. For use with Saxon-Forms, a form is supplied as an XML document,
containing the XForms model and presentational part. This XForms form docu-
ment is supplied via the main entry template rule of the stylesheet, named
"xformsjs-main", as a template parameter. Further template parameters can be
used to also supply XML instance data, and details of where the form is to appear
in the HTML page (by giving the id of an HTML div element into which the ren-
dered form will be inserted).

The result of Saxon-Forms initialization should be that the form is rendered
using HTML, and inserted into the HTML page as directed. Behind the scenes,
various variables have also been initialized for internal use, and these are held in
the JavaScript global space, using a script element (with id="xforms-cache")
which is inserted into the HTML head. The script also includes corresponding
JavaScript set/get functions for these variables. (When such functions are called
from the Saxon-Forms XSLT stylesheet, e.g. using ixsl:call(), Saxon-JS will
convert the XML items supplied as parameters into JavaScript, and convert the
results back the other way, as described in [6]. Below we generally just refer to the
XML types.) We cache the following variables relating to the current XForms
document:

¢ the XForms document itself, as a node, required if we need to reset the form
e the instance in its initial state, as a node

* the instance, a node which is updated as a user interacts with the form

171

Implementing XForms using interactive XSLT 3.0

* actions map, a JSON object whose keys are unique identifiers for each action
defined in the form, and the corresponding value is an XPath map which
holds the details of the actions

* relevant attributes map, an XPath map which maps instance nodes to XPath
expressions, taken from the ref and relevant attributes on xforms:bind ele-
ments, for example:

map{"Document/Options/MaintenanceDate": "../MaintenanceDateSelected='true'",
"Document/Options/UpgradeDate": "../UpgradeDateSelected='true'", ...}
* vpending updates list, an XPath map which keeps a record of updates for
instance nodes which are not bound to form controls

Meanwhile, Saxon-Forms converts XForms form controls to equivalent (X)HTML
form control elements (inputs, drop-down lists, textareas, etc.), populated with
any bound data from the instance, and which are embellished with additional
attributes containing references for use internally. For example:

<xforms:input incremental="true"
ref="Document/Shipment/Order/MaintenanceDays">
<xforms:action ev:event="xforms-value-changed">

<xforms:setvalue ref="../../../Options/MaintenanceDate"
value="if (xs:integer(.) > 0) then
xs:date(../../../Options/StartDate) +
xs:dayTimeDuration (concat ('P',.,'D"))
else xs:date(../../../Options/StartDate) +
xs:dayTimeDuration (concat('-','P',abs(xs:integer(.)),'D"'))"/>
<xforms:setvalue
ref="../../../Options/Updated">true</xforms:setvalue>

</xforms:action>
</xforms:input>

Will be converted to:

<input data-element="MaintenanceDays" data-constraint="number(.) ge 0"
data-action="d26aApDhDa"
type="text" value="30"
data-ref="Document/Shipment/Order/MaintenanceDays"/>

Here, in the Saxon-Forms template rule which matches the xforms:input control
we get the string value from the ref attribute, which defines the binding to an
instance node, and use this XPath expression in two ways. Firstly, we call the
XSLT 3.0 xs1l:evaluate instruction to dynamically evaluate the XPath expression,
to obtain the relevant data value from the instance. This will be used to populate
the corresponding HTML form input element. Secondly, the ref attribute XPath
expression is copied into a data-ref attribute added to the input element, to pre-
serve the binding to the instance node. For each group of action elements in an
XForms form control we add an entry to the actions map in the "xforms-cache"

172

Implementing XForms using interactive XSLT 3.0

script element. For this actions map entry, the key will be a unique identifier,
and the value is an XPath map containing all the details of the actions (e.g. from
the xforms:setvalue elements, etc.) In this example, we add an entry to the
actions map object with key "d26aApDhDa", and value:

map{"@ref": "Document/Shipment/Order/MaintenanceDays",
"@event": "xforms-value-changed",
"setvalue": [map{"@value": "if (xs:integer(.) > 0) then ...",
"ref": "../../../Options/MaintenanceDate"},
map{"value": "true",
"ref":"../../../Options/Updated"}]}

Then, as in the example above, we use the data-action attribute to link the input
element to its relevant entry in the actions map. The conversion, and binding
preservation, of other XForms form control elements is achieved in a similar way.

Interaction handling

Interactive XSLT event handling templates are used to handle user interac-
tions with the form, such as data input in a form field or the click of a button. The
event handling templates correspond to onchange and onclick events. In figure
[fig.2] we illustrate the general pipeline of the processes involved when a user
interacts with the form. In this example the template rule with
mode="ixsl:onchange" and match="input" is triggered when a user makes a
change in an input box. Here the trigger of the template rule can only happen if
the input form control has one or more actions associated with it.

Firstly, we fetch the instance XML for the form and update it with any changes
made in the form controls which are not already in the instance. Secondly, we use
the value in the data-action attribute on the input element to get the associated
actions from the actions map. Recall that these associated actions are represented
in an XPath map. So we use XPath map functions to extract the details for these
actions (e.g. details for setvalue, add or delete) which are then executed. For
actions which update instance nodes that are bound to form controls we first
update the associated form control. Otherwise, for actions which update instance
nodes which are not bound to a form control, we add the changes to the pending
updates list.

Thirdly, after all actions have been executed we again update the instance
XML (applying the updates in the pending updates list, and picking up changes
within form controls) to maintain consistency between the data currently held in
the form controls and the instance itself. The final stage is to execute the relevant
properties tests for instance nodes (as defined in the relevant attributes map), to
determine whether the form controls that they bind to should be included in the
rendered form. The corresponding HTML form controls are hidden and revealed
by setting the display style property (using the ixsl:set-property interactive
XSLT extension instruction) to "none" or "inline" respectively.

173

Implementing XForms using interactive XSLT 3.0

xsl:template match="input[exist(@data-action)]"
mode="ixsl:onchange"

\ 4

Update Instance XML

A

get-Actions(@data-action)
Execute actions
(e.g. setvalue, delete, add)

N

Update associated add to penFiing
form control update list

\/

Update Instance XML
- fetch pending update list
- fetch form changes

A4

Execute XForms Relevant Tests
- get relevant attributes map
- filter relevant fields

Figure 2. Action handling pipeline diagram

As well as handling changes to form data, the other key user interaction that
needs to be handled is submission. However, the XForms submission element is
not yet fully implemented in Saxon-Forms. One reason for this is that submission
is one of the features where it is desirable, and possible, for more to be done from
the application stylesheet, than could be done by a direct implementation of
XForms submission. For instance, in our license tool, we use event handling tem-
plates (for onclick events on submit buttons) to override the XForms implementa-
tion for submission, in order to handle this processing and integrate handling of
the server response. Further details follow in Section 3.

2.2. Coverage of the XForms Specification

Saxon-Forms is a partial implementation of the XForms 1.1 specification. The
focus was on implementing the parts required to get the license tool application
working. But of course it is our intention that the implementation is general

174

Implementing XForms using interactive XSLT 3.0

enough for wider use (either used in a standalone way or as a component in an
application), and has the potential to be extended for full XForms conformance.
Here we summarise the main parts of the XForms specification that are imple-
mented in Saxon-Forms, but note that in all cases (except XPath expressions)
there is more which is not implemented:

* Document structure: Saxon-Forms currently supports just one model and one
instance. In the document structure we represent the model element, which
consists of the instance, bind and submission elements. This includes the
type, required, constraint and relevant model item properties.

® XPath expressions in XForms: The specification [1] states "XForms uses XPath to
address instance data nodes in binding expressions, to express constraints,
and to specify calculations". Saxon-Forms is conformant to the support of
XPath since Saxon-JS supports nearly all of XPath 3.1.

* XForms Function Library: XForms 1.1 defines a number of functions, of which
Saxon-Forms currently only implements index () and avg (). These are imple-
mented using stylesheet functions, which are then available in the static con-
text for calls on xs1:evaluate. Other XForms functions could be implemented
in the same way.

o Core Form Controls: Saxon-Forms implements the input, textarea and
selectl form control elements. Of the common support elements (child ele-
ments of the form controls), the 1abel and hint elements are implemented. Of
the container form controls (used for combining form controls), only the
repeat element is implemented.

* XForms Actions: Saxon-Forms implements the action, setvalue, insert and
delete elements.

3. Integrating Saxon-Forms into applications

3.1. Standard integration

Saxon-Forms includes a Saxon-JS stylesheet providing generic XSLT 3.0 code to
implement the XForms specification. This can be integrated with application-spe-
cific XSLT 3.0 code. Thus, the Saxon-Forms stylesheet module can either be
imported into a containing XSLT stylesheet (for the client-side of a web applica-
tion), or used directly. In either case, to run in Saxon-JS, the stylesheet must first
be exported to SEF using Saxon-EE. This can then be run from within an HTML
page: as with all Saxon-JS applications, first Saxon-JS is loaded in a script element,
and then the SEF can be executed wusing a JavaScript «call to
SaxondS.transform(). An XForms document is supplied to Saxon-Forms either
as a file or as a document node, along with the optional XForms instance data.

175

Implementing XForms using interactive XSLT 3.0

If the Saxon-Forms stylesheet is to be used directly, then the XForms docu-
ment can be supplied as the source to the transform, as in the example below:

<script>
window.onload = function () {
SaxonJS.transform({
"stylesheetLocation": "saxon-xforms.sef.xml",
"sourcelocation": "sampleBookingForm.xml"
})
}
</script>

Alternatively, when the Saxon-Forms stylesheet module is imported into the cli-
ent-side XSLT stylesheet of a web application (e.g. sample-app.xsl), this can be
run as follows:

<script>
window.onload = function () {
SaxonJS.transform({
"stylesheetLocation": "sample-app.sef.xml",
"initialTemplate": "main"
})
}
</script>

And in this case, the XForms document can be supplied at the point that the entry
template "xformsjs-main" of Saxon-Forms is called in the sample-app stylesheet:

<xsl:template name="call-saxon-forms">
<xsl:call-template name="xformsjs-main" >
<xsl:with-param name="xforms-doc" select="doc (SbookingForm)"/>
<xsl:with-param name="xFormsId" select="'xForm'"/>
</xsl:call-template>
</xsl:template>

Here the xFormsId parameter gives the id of a div element in the HTML page
where the form is to be inserted; the default is "xForm".

3.2. Integration with application logic

Saxon-Forms is more than just another XForms implementation for the browser,
because it allows for form enrichment from application logic in the application
stylesheet in which it is integrated. In this section we will present some examples
of this:

1. Parsing structured text from a form input textarea, to XML.
2. Overriding submission.

3. Using user defined functions in XPath expressions in the XForm.

176

Implementing XForms using interactive XSLT 3.0

Example 1. Parsing input from form textareas

This has proved very useful in our license tool. License orders are often received
by email using structured text of a standard form (e.g. for purchases from the
online shop, and for evaluation license requests). Because the text is structured, it
can be processed using XSLT to extract the data and convert it into XML format.
So this parsing can be done in the application stylesheet.

So, a user copies the structured text from an email and inputs it into the tex-
tarea of a form in the tool. When the "Parse" button is clicked, this is handled by
event handling templates in the application stylesheet which capture the text
string and process it to produce some XML output. This XML is then supplied as
the instance for another XForms form (in fact, the edit page form, as shown in

[fig.1]).
Example 2. Submission

The XForms implementation for submission can be overridden from the applica-
tion stylesheet, to allow further logic to be added to specify the exact form of the
submitted data, and the way a response is handled. For example in the license
tool stylesheet, we have event handling templates for onclick events on submit
buttons to handle this processing. The updated instance is obtained from the
global JavaScript variable (using the procedure in the Saxon-Forms submission
implementation), and this is submitted for server side processing using the inter-
active XSLT mechanism for asynchronous HTTP messages, i.e. using the
ixsl:schedule-action instruction with the http-request attribute. The value of
the http-request attribute is an XPath map which defines the HTTP request to
be made (e.g. specifying method, URI destination, body and media-type). When
it returns, the HTTP response is processed by the template specified within the
ixsl:schedule-action instruction (it has one xsl:call-template child); the
HTTP response is also represented as an XPath map, and this is provided as the
context item to the named template. For instance, this allows feedback from the
response to then be returned to the user within the HTML page.

Example 3. User defined functions

Stylesheet functions defined in the application stylesheet can be used in XPath
expressions in the XForms document. The only requirement is that the saxon-
xforms.xsl stylesheet must include a namespace declaration binding the prefix
used in the form to the namespace of the stylesheet function.

For example, the following stylesheet function is defined in our license tool
application stylesheet, to obtain product price data from another XML document:

<xsl:function name="f:productCodeToPrice" as="xs:integer">
<xsl:param name="productCode" as="xs:string"/>
<xsl:variable name="products" select="doc (Sproductsboc)//Product"/>

177

Implementing XForms using interactive XSLT 3.0

<xsl:value-of select="xs:integer (Sproducts[@code = $productCode]/»

@price)"/>
</xsl:function>

This function can then be used in the XPath expressions in the value attribute of a
xforms:setvalue instruction in the XForm document, to calculate the order part
value from the price and quantity (where parts of an order are grouped by prod-
uct code).

4. Conclusion

In this paper we have presented a new XForms implementation, Saxon-Formes,
which makes use of interactive XSLT 3.0 to realize the initialization and process-
ing model of XForms. This project had three goals:

Firstly, our aim was to explore how XForms and client-side XSLT could coexist
to build applications with rich client-side functionality as well as access to
server-side functions.

Secondly, to develop the beginnings of a new XForms implementation taking
advantage of the Saxon-JS technology, and able to integrate with Saxon-JS
applications.

Thirdly, to use this technology platform to re-engineer the in-house Saxon
license tool application.

Our achievements so far against these goals are:

We have demonstrated that a forms-based application can be usefully aug-
mented with additional functionality implemented in XSLT 3.0, for example
parsing and validation of complex input fields, and access to reference data-
sets.

We have shown that many of the technical features of the Saxon-JS technology,
such as the ability to handle interactive user input using template rules, the
ability to issue asynchronous HTTP requests and process the results, and the
ability to dynamically evaluate XPath expressions, can be exploited as under-
pinnings to a client-side XForms implementation.

We have rewritten the Saxon license tool application with many new features,
with 90% of the code now being in either client-side or server-side XSLT,
reducing the Java to a small number of extension functions handling crypto-
graphic signing of licenses.

Further work taking this technology forwards to a fully compliant XForms imple-
mentation will depend on user feedback.

178

Implementing XForms using interactive XSLT 3.0

5. Acknowledgements

Many thanks to Michael Kay and Alain Couthures for helpful comments for
improving this paper, and Saxon-Forms itself.

Bibliography

[1] XForms 1.1 Specification. W3C Recommendation. 20 October 2009. John Boyer.
W3C. https://www.w3.0rg/TR/xforms11

[2] XSLTForms. Alain Couthures. http://www.agencexml.com/xsltforms

[3] Saxon-]JS: XSLT 3.0 in the Browser. Balisage: The Markup Conference 2016. Debbie
Lockett and Michael Kay. http://www.balisage.net/Proceedings/voll7/
html/Lockett0l/BalisageVoll7-Lockett0l.html

[4] Distributing XSLT Processing between Client and Server. O'Neil Delpratt and
Debbie Lockett. XML London. June, 2017. London, UK. http://
xmllondon.com/2017/xmllondon-2017-proceedings.pdf#page=8

[5] Interactive XSLT in the browser. Balisage: The Markup Conference 2013. O'Neil
Delpratt and Michael Kay. https://www.balisage.net/Proceedings/voll0/
html/Delpratt0l/BalisageVoll0-Delpratt0l.html

[6] Interactive XSLT extensions specification. Saxonica. http://www.saxonica.com/
saxon-js/documentation/index.html#!ixsl-extension

[7] XSL Transformations (XSLT) Version 3.0. W3C Recommendation. 7 February 2017.
Michael Kay. W3C. https://www.w3.0rg/TR/xs1t-30

[8] XPath 3.1 in the Browser. John Lumley, Debbie Lockett, and Michael Kay. XML
Prague. February, 2017. Prague, Czech Republic. http://archive.xmlprague.cz/
2017/files/xmlprague-2017-proceedings.pdf#page=13.

179

