
XML Tree Models
for Efficient Copy Operations

Michael Kay
Saxonica

<mike@saxonica.com>

Abstract

A large class of XML transformations involves making fairly small changes
to a document. The functional nature of the XSLT and XQuery languages
mean that data structures must be immutable, so these operations generally
involve physically copying the whole document, including the parts that are
unchanged, which is expensive in time and memory. Although efficient
techniques are well known for avoiding these overheads with data structures
such as maps, these techniques are difficult to apply to the XDM data model
because of two closely-related features of that model: it exposes node identity
(so a copy of a node is distinguishable from the original), and it allows navi-
gation upwards in the tree (towards the root) as well as downwards. This
paper proposes mechanisms to circumvent these difficulties.

1. Introduction
 An XSL transform takes linear time
 If the input and output are almost the same.
 Though the changes you make may be local and small
 You still pay the price of transforming it all.

Many XML transformations, whether expressed in XSLT or XQuery, copy large
chunks of the input directly to the output, without change. This is typically an
expensive operation, requiring both time and memory proportional to the size of
the subtree being copied. This cost is particularly painful when a transformation
operates incrementally, making many passes over the input, each of which only
makes small changes.

For an example of such a problem, see [2]. In that paper I explored the possi-
bility of writing an XSLT optimizer in XSLT. Optimization is essentially a series of
transformations applied to an expression tree, so it is in principle a task to which
XSLT should be well-suited; but my conclusion in that paper was that it wasn't
feasible to achieve adequate performance, largely because each transformation
step involved copying the large parts of the tree that remained unchanged.
Recently in Saxonica we have been revisiting this problem (see [4]) because we

33

are interested in making the entire XSLT compiler portable across platforms, and
the classic way of achieving this is to write the compiler in its own language. This
led me to look again at the efficiency of transformations that make small changes
to a large tree.

The fact that copying a subtree is expensive is a consequence of two particular
rules in the XDM data model: (a) nodes have identity (which means that the
expression copy-of(X) is X must return false – a copy of a node is not the same
thing as the original), and (b) nodes have parents (which means that
exists(copy-of(X)/..) must return false – when a node is copied, the copy is
parentless). Any implementation of a copy operation that retains these properties
without performing a physical copy of the subtree is going to be complicated.

In the XDM data model, the maps and arrays used to represent JSON struc-
tures do not have this property. In the tree representation of JSON, there is no
way of navigating from an object to its parent; and there is no way of distinguish-
ing two copies of the same object. This means that subtrees can be shared, which
makes copying logically unnecessary (or to put it another way, producing a logi-
cal copy does not require producing a physical copy).

Saxon1 implements maps and arrays using what I will call "versioned" data
structures. (The names "immutable" and "persistent" are also used, but both
adjectives have alternative meanings, so I will avoid them). In a versioned data
structure, after any update operation, both the old and the new values are availa-
ble for further processing, yet the new value shares memory with the old for
those parts of the data that have not changed. Appendix A describes briefly how
versioned maps and arrays work. A versioned data structure for XML trees is
more difficult to achieve, because of the problems of node identity and parent
navigation.

There's no intrinsic difference between XML and JSON at the lexical level that
accounts for this deep difference between the way that XDM models the two
cases. We could explore what happens when we add parent pointers to JSON
trees, or we could explore what happens when we remove them from XML trees.
This paper does the latter.

The ability to navigate from a node to a parent (and therefore, implicitly, to its
siblings) is extremely useful, because it makes it possible to identify nodes of
interest by their context as well as their content. In [3] I showed some use cases
where XSLT 3.0 is applied to the task of transforming JSON, and the inability to
access this contextual information proved a constant obstacle, to the extent that I
concluded the easiest way to accomplish many JSON transformations was to con-
vert the data to XML, transform the XML, and then convert it back to JSON.

1Some statements made here about the Saxon product refer to code that is implemented and tested
but not yet released.

XML Tree Models for Efficient Copy Operations

34

 Now the freedom to navigate upwards and down,
 to parents, descendants, children and peers,
 Means the rule for transforming a node in your text
 Can refer to the context in which it appears.
 So if xml:lang says your paragraph's Dutch,
 This may affect formats for numbers and such,
 But to determine what language applies at each point
 You must know the container in which it is found.

In the latest incarnation of the Saxon-JS product, we are using a JSON-based
model internally to represent the interpreted expression tree, but we have found
it necessary to introduce parent pointers to allow access to context information
such as the static base URI and in-scope namespaces of an expression. This
doesn't cause any problems in this case because the expression tree, by the time
the compiler is finished with it, never changes.

Now: the main thrust of this paper is to show that providing the ability to
navigate from a node to its parent does not necessarily imply that the stored tree
needs to include parent pointers. There's another way to enable access to the
parent, which is to remember, when you get to a node, how you got there. There's
no way of getting to a node without going via its parent, so in principle you can
always retrace your steps. Knowledge of the parent can thus be part of the infor-
mation returned when a node is retrieved, even if the information is not actually
stored with the node. Equally, the identity of a node (affecting the result of the
XPath is operator) can be a function of how the node was reached: if we treat the
identity of a node as a list comprising the identities of all its ancestors, that is, a
path to the node from the root, then it does not matter if a physical subtree is
shared by several logically separate XML documents: a node can be reached by
more than one path, but it is the full path that establishes the node identity, so
such a node has multiple identities depending on how you got there. With this
insight, we can see that it should be possible to provide full XPath navigation
capability on a tree with no stored parent pointers and no built-in notion of node
identity.

The KL-tree described in section 3 is an implementation of this concept.

2. Push and Pull Processing

The semantics of XSLT 1.0 were written in terms of instructions such as
xsl:element writing nodes to the result tree: the narrative was written assuming a
push model where instructions push data to a destination. By contrast, for
XQuery and later XSLT versions, the specification uses pull language: element
constructors are expressions that return a result to their caller, namely a newly
constructed element. The pull model implies bottom-up tree construction, where

XML Tree Models for Efficient Copy Operations

35

leaf nodes are constructed first, and then grafted onto their new parents: this
inevitably involves copying the node to give it a new parent, at each level of con-
struction.

A processor that implements this literally as written is going to be very ineffi-
cient, because of the amount of tree copying needed. In practice there are a num-
ber of ways the repeated copying can be avoided:

• The implementation can use a push model internally. What happens here is
that an instruction like xsl:element starts by emitting a startElement event to
an output receiver; it then processes its child instructions (also in push mode),
and finally emits a corresponding endElement event. If the output receiver is a
serializer writing lexical XML, this approach means that the result nodes are
never actually constructed in memory at all: the processor emits a sequence of
events which are translated into lexical XML markup by the serializer. If the
output is an intermediate tree, the receiver will be a tree builder that uses the
stream of incoming events to construct an in-memory tree, but none of the
intermediate nodes will ever need to be copied. This is the approach used by
the Saxon-Java product.

• The implementation can use a bottom up model, and attempt to recognize
where leaf nodes do not need to be copied, but can instead be directly grafted
to their new parent by updating a parent pointer. This relies on being able to
recognize that the leaf node exists solely for the purpose of creating the con-
tent of the next container, and will never be used as a parentless node in its
own right. This isn't quite as effective as the push strategy, because it involves
materializing the result tree prior to serialization, but it can still perform well.
This is the approach used in Saxon-JS.

This paper suggests that a third approach might be possible, which is simply to
ensure that copying a tree of nodes is extremely fast: ideally it should cost noth-
ing. This is achieved by creating a virtual copy of the tree: a separate tree in terms
of XDM node identity, but sharing the same underlying storage as the original.
Our first attempt at this is the KL-tree, described in the next section.

3. The KL-Tree
This section describes the KL-Tree, an experimental implementation of the XML
part of the XDM data model.

The data that physically exists in memory is the K-Tree, and its nodes are
called K-nodes. Putting attributes and namespaces to one side for the moment,
we have five node kinds: documents, elements, text nodes, comments, and pro-
cessing instructions. Since comments and processing instructions behave just like
text nodes, we can ignore them for the purpose of this discussion.

So, as a first approximation, the K-tree contains:

XML Tree Models for Efficient Copy Operations

36

• Document nodes, which contain a sequence of child nodes
• Element nodes, which have a name, a sequence of child nodes, plus attributes

and namespaces
• Text nodes, which contain a string value
K-nodes do not contain enough information to enable navigation to ancestors or
siblings, or to enable sorting of nodes into document order. To achieve that, any
navigation through the K-tree returns not the K-node itself, but an L-node; an L-
node contains a reference to the K-node, plus additional information. Specifically,
the additional information in an L-node comprises a reference to its parent L-
node (with null used to indicate that the L-node is the root of the L-tree), plus the
position of the L-node among its siblings in the L-tree. With this additional infor-
mation, navigation from an L-node using any of the 13 XPath axes becomes possi-
ble, as does sorting into document order.
 Our initial invention to answer this question
 Was a tree in which nodes pointed down but not up.
 Elements reference children and text nodes;
 The link is one way: you can only descend.
 But now when a query selects a descendant,
 We remember the path for retracing our steps.
 The pointer to parent becomes now redundant
 We can find a container, whatever our depth.

The L-nodes are created on demand, when a node is retrieved in the course of
navigation, and they are garbage-collected as soon as they are no longer needed.
With a little bit of optimization, it is possible in many cases to avoid creating L-
nodes that aren't needed, for example with an XPath expression child::title,
we can arrange only to create L-nodes for those K-nodes that match the required
name.

Two L-nodes are identical (in the sense of the XPath is operator) if their
parents are identical and they have the same sibling position; so it's only root
nodes that have intrinsic identity. It doesn't matter whether the two L-nodes are
represented by the same Java object, or whether the K-nodes that they reference
are represented by the same Java object: one Java object can represent several
nodes, and several Java objects can represent the same node.

Similarly, sorting of L-nodes into document order can be achieved from
knowledge of the parent nodes and sibling positions.

4. KL-tree Performance
Appendix A summarizes the execution time of various important operations,
comparing the KL-tree implementation with Saxon's standard TinyTree imple-

XML Tree Models for Efficient Copy Operations

37

mentation as well as the more conventional LinkedTree model, and (for complete-
ness) the other tree implementation models supported by Saxon.

What these figures show is that the KL-tree is dramatically faster for one par-
ticular operation, that of grafting a tree into a new containing tree, but it is a little
bit slower than the existing TinyTree implementation for many other operations.
In particular, searching the KL tree is about 4 times slower. The KL-tree also uses
more memory. This is not because the model is intrinsically inefficient; it just fails
to reproduce some of the optimizations implemented in the TinyTree. The Tiny-
Tree achieves much of its fast search time by using arrays of data rather than
linked objects to represent nodes, and because scanning an array is faster than
following pointers in a linked list, it is hard for any implementation using linked
lists to achieve comparable performance.

Sadly, this appears to be a show-stopper as far as incorporation into Saxon is
concerned. The number of stylesheets that show an overall performance improve-
ment from the KL-tree is small, and moreover, it's difficult to recognize them by
static analysis. This means that the feature is only viable as a user-selected option,
and we know from experience that only a very small number of users who stand
to benefit from tweaking such features will actually understand the feature suffi-
ciently well to take advantage of it. If only 5% of stylesheets stand to gain, and if
only 5% of the authors of those stylesheets recognize the fact, then adding the fea-
ture will not create enough happiness in the user community to make it worth the
trouble.

So let's throw this idea out of the window for the time being (Prague being a
popular place for defenestration) and try something else. Since the TinyTree is
delivering good all-round performance, let's see if we can use that as our baseline,
and make incremental improvements.

5. The TinyTree
At this stage we need to explain the workings of the TinyTree, which is Saxon's
default tree implementation. Although the data structure has been around for
many years, and has changed very little, the only published information is the
low-level internal Javadoc https://www.saxonica.com/documentation/index.
html#!javadoc/net.sf.saxon.tree.tiny/TinyTree, plus a slightly out-of-date
blog article [1].

The data structure consists of a set of arrays, held in the TinyTree object. The
arrays are in three groups, where in each group the arrays can be considered to
represent columns in a table. Using Java arrays to represent the columns of the
table, rather than the conventional approach of using one Java object per row,
accounts for much of the space saving benefits, and also provides for fast tree
construction and navigation.

XML Tree Models for Efficient Copy Operations

38

 The TinyTree structure makes no use of pointers;
 Its content instead is arranged using vectors.
 One holds the depth, a second the node kind,
 A third holds the names, coded as numbers.
 A search for descendants will step through these vectors
 Comparing the node kind and name for a match.
 With no pointer chasing, and no string comparing,
 The search for a node is impressive to watch.

The principal table contains one row for each node other than namespace and
attribute nodes. These rows are in document order. The following information is
maintained for each node:
• the depth in the tree
• the name code
• the index of the next sibling
• two fields labelled alpha and beta, described below
• the type annotation that results from schema validation (this array is absent

for untyped trees)
• the index of the preceding sibling. This array is created lazily only when nee-

ded, the first time that the preceding-sibling axis is used for any node in this
tree.

The meaning of alpha and beta depends on the node kind. For text nodes, com-
ment nodes, and processing instructions these fields index into a string buffer
holding the text. But for element nodes, alpha is an index into the attributes table,
and beta is an offset into the namespaces table. Either of these may be set to -1 if
there are no attributes or namespaces.

A name code is an integer value that indexes into the NamePool object: it can
be used to determine the prefix, local name, or namespace URI of an element or
attribute name. Name codes enable searching for elements and attributes using
fast integer comparisons rather than string comparisons.

The attribute table holds the following information for each attribute node:
• a pointer to the attribute's parent element
• prefix
• name code
• attribute type
• attribute value
Attributes for the same element are adjacent.

The namespace table holds one entry per namespace declaration or undeclara-
tion (not one per namespace node). The following information is held:

XML Tree Models for Efficient Copy Operations

39

• a pointer to the element on which the namespace was declared or undeclared
• namespace prefix
• namespace URI
The links between elements and attributes/namespaces are all held as integer off-
sets. This reduces size, and also makes the whole structure relocatable. All navi-
gation is done by serial traversal of the arrays, using the node depth as a guide.

Saxon attempts to remember the parent of the current node while navigating
down the tree, and where this is not possible it locates the parent by searching
through the following siblings; the last sibling points back to the parent. In the
case where there is a large number of siblings, occasional parent pointers are
inserted as pseudo-nodes to reduce the length of this search.

6. Virtual Copy
Existing Saxon releases include an optimization whereby an expression of the
form

<xsl:variable name="x">
 <xsl:copy-of select="$doc//a/b/c"/>
</xsl:variable>

creates a virtual copy of the selected <c> element nodes, rather than doing a
physical copy.

Rather like an L-node in the KL-tree model, the virtual copy is a wrapper
node that points to the original node of which it is a copy. Many of the properties
of the virtual node (for example, the name, type, and string value) are identical to
the corresponding properties of the original. The mechanism can also handle
some variation, for example there is scope for the original data to be schema-
typed, while the copy is untyped. Navigating around the virtual tree is done, by
and large, by navigating around the underlying physical tree, and then wrapping
the resulting node. The main way in which the virtual copy differs from the origi-
nal (apart from having a different identity) is that XPath navigation never strays
outside the subtree that has been copied. Navigation from any node in the tree to
its ancestors stops when it hits the root of the virtual copy; navigation from the
root to siblings or parent returns an empty sequence.

Unlike the KL-tree, the virtual copy cannot be shared as a child of multiple
parents. In fact, a virtual copy is always a parentless copy of some original tree or
subtree: the original node may or may not have a parent, but the virtual copy
never has. This gives it limited usefulness. Indeed, one could argue that it is only
ever used to ameliorate code that was badly written in the first place, because it is
essentially used only to eliminate copying that was never necessary. The relevant
variable could equally well have been written as:

<xsl:variable name="x" select="$doc//a/b/c"/>

XML Tree Models for Efficient Copy Operations

40

with no copying needed.
Although this mechanism has limited usefulness in its current form, it turns

out not to be difficult to extend it. In particular, we can extend it so that:

• A virtual copy V is identified by a pair of nodes (R, P), typically in different
trees. P is referred to as the grafting host: we are effectively grafting the tree
rooted at R to a new parent P.

• V is deep-equal to R: they have isomorphic subtrees that share the same stor-
age

• The parent of V is P, which in general is not the parent of R.

When navigating V, the result of any navigation within the subtree is a wrapper
node (like the L-node described earlier) which remembers that the parent of V is
P rather than R; and any navigation that strays from the subtree (which in prac-
tice will always reduce to a call on V.getParent()) uses this information to
return to the tree containing the grafting host.

We can now look at extending the TinyTree model so that an element node in
the model (which in the normal way would be immediately followed by all its
descendant nodes in document order) can be replaced by a reference to an exter-
nal element node which is deemed to be copied at the relevant position.

So the tree representation produced by the following construct:

<xsl:variable name="x">
 <out>
 <xsl:copy-of select="$doc//a/b/c"/>
 </out>
</xsl:variable>

would contain an entry for the document node at level 0, then an entry for the
wrapper <out> element at level 1, then a number of "external element" nodes at
level 2, each containing some kind of reference to one of the selected <c> nodes.
For convenience, we'll call this the "host tree", and we'll refer to the trees contain-
ing the <c> nodes as "grafted trees". Of course, the process can be nested arbitra-
rily deep, in that grafted trees can themselves contain external element nodes to
further copied trees.

How do we navigate such a structure?
Firstly, if we are processing the descendant nodes in the outer tree in docu-

ment order, then when we hit an external element node, we have to remember
where we are on some stack, and continue by processing the descendants of the
grafted node. When we've finished scanning the grafted subtree, we pop the
stack. This part isn't too difficult.

More tricky is that when we're processing the grafted tree, we have to remem-
ber where we came from. The rules are similar to those for the current Virtual-
Copy described in the previous section, but with some key differences:

XML Tree Models for Efficient Copy Operations

41

• The parent of the root node in the grafted tree is no longer absent, it is the
parent of the external element node in the outer tree.

• Similarly, the siblings of the root node in the grafted tree are the siblings of the
external element node.

With these changes, a copy-of() operation on a TinyTree node creates a parent-
less VirtualCopy (as today), and an operation that attaches such a VirtualNode to
a new parent, in the course of building a new TinyTree, adds a reference to the
VirtualCopy. Both cases now take constant time independent of the tree size.

A minor refinement: for very small trees, for example those consisting of a sin-
gle element node with a single text node child, it may turn out to be cheaper to
perform a physical copy of the node.

Unfortunately, though, most of the implicit copying that happens during a
transformation isn't done with explicit copy-of() operations, it is done using the
recursive shallow copy implicit in the built-in template rules. So the next section
studies how we can make recursive shallow copy equally efficient.

7. Shallow Copy and the Identity Template Pattern
Returning to the original use case, stylesheets that make small changes to large
trees are often written to use a design pattern with a fallback rule that shallow-
copies an element, overridden by higher-priority rules to make specific changes.
For example, a stylesheet to delete all <Note> elements might be written like this
in XSLT 3.0:

<xsl:mode on-no-match="shallow-copy"/>
<xsl:template match="Note"/>

In earlier XSLT releases the default action would be spelled out explicitly, for
example:

<xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="node()|@*"/>
 </xsl:copy>
</xsl:template>
<xsl:template match="Note"/>

The problem here is that the code is copying elements from the source tree to the
result tree one node at a time, which makes it difficult to take advantage of a fast
deep copy.

The first thing we have to do is to detect that this pattern is in use: this is
clearly easier to do with the declarative XSLT 3.0 approach. It's harder when the
identity template is written out explicitly, because there are many variations on
how it is written; however it should be possible to detect the common cases.

XML Tree Models for Efficient Copy Operations

42

When we detect that the template rules for a mode use shallow-copy as the
fallback action, with specific actions for a small number of match patterns, we can
attempt an optimization: if there is no explicit template rule for an element, or for
any of its descendants (or for their attributes, if applicable) then the element can
be deep-copied to the result, with no further processing of the subtree.
 The identity pattern in XSLT
 is troublesome mainly because you can't see
 which nodes have subtrees that don't change one jot
 and would benefit greatly from copying the lot.

If the stylesheet is schema-aware then there is potential to recognize statically that
there are some elements that will always be deep copied. Sadly, however, writing
schema-aware stylesheets seems to have remained a minority interest, so this
approach on its own won't get us very far. However, there might still be benefits
from doing a dynamic check.
Specifically, if the following situation arises dynamically:

• xsl:apply-templates selects a node N for which there is no matching tem-
plate rule

• the current mode (explicitly or implicitly) uses on-no-match="shallow-copy"
• N is a node in a TinyTree
• the instruction is evaluated in push mode
• the current output destination is a TinyTree builder
then it may be worth scanning the descendants of N to see whether any of them
matches an explicit template rule; and if not, performing a deep copy-of() opera-
tion rather than a recursive tree walk.

The approach could be further improved with a learning strategy: if (say) the
first ten nodes with a particular name M have been found to have descendants
matched by an explicit template rule, then it's probably not worth considering
this approach for any subsequent nodes named M.

An important caveat is that this tactic will never be used in the common case
where transformation results are being written directly to a serializer. The cost of
producing serialized XML will always increase with document size. The benefit
comes when a pipeline of transformation phases pass data to each other in the
form of in-memory trees (and it applies whether these transformation phases are
written as a sequence of separate XSLT stylesheet executions or as a single XSLT
execution).

8. Use in XQuery Update
In XQuery, the code for copying a tree with minor changes to selected nodes is
somewhat tedious to write: essentially, the xsl:apply-templates mechanism

XML Tree Models for Efficient Copy Operations

43

needs to be simulated with a recursive function that switches on the type of the
supplied node using a typeswitch expression, each branch typically containing a
recursive call to process child nodes using the same logic. In principle, the same
optimizations could be applied as for the XSLT shallow copy pattern; but it is
probably harder to detect this pattern in XQuery because there is more scope for
minor variation in the code.

A second way to make small changes to a document in XQuery is to use
XQuery Update. For example a query to delete all the Note elements at any level
could be simply written:

delete node //Note

The downside of this mechanism is that the updated document (with the Note
elements deleted) is not visible within the same query. Instead, some external
mechanism (perhaps XProc) is needed to insert the updating query into a pipe-
line of operations. The XQuery update specification states that modifying nodes
within a tree does not affect the node identity of other nodes: in effect, the tree
becomes mutable; except that there is no way within the XQuery language of
comparing the node identity before and after update to see whether the claim is
actually true.

If updates are to be made visible within a query, the only way to achieve this
is with the "copy-modify" expression (also known as a transform expression). An
example might be:

 copy $doc2 := $doc
 modify (delete node $doc//Note)
 return $doc2

In the sadly-abandoned 3.0 version of XQuery Update, this can be replaced with
the simpler syntax:

 $doc transform with {
 delete node .//Note
 }

The result of this expression is now a copy of the subtree rooted at $doc in which
the Note elements have been deleted. Pure functional behaviour and immutabil-
ity have been restored by constraining the in-situ modification to work on a tree
that is created as a copy of the original, where the copy becomes accessible to the
rest of the query only in its modified form.

So we are once again in the situation where the cost of making this change
depends on the size of the document, and not only on the number of nodes being
changed.

With a construct like this, however, we have a very much better chance of
exploiting a virtual copy mechanism. The first stage in evaluating this copy-mod-
ify expression is to produce a pending update list, which is a list of actions to be

XML Tree Models for Efficient Copy Operations

44

applied to the tree, together with the nodes that they affect. We can then expand
this list to include all the ancestors of affected nodes. Then, when performing the
copy operation to construct $doc2, we can implement this by means of a recursive
copy on all its children, and in the course of this recursive deep copy, any node
that is not on the expanded list of affected nodes can be virtually-copied by creat-
ing a reference to the original node in $doc.
 In XQuery Update it's easy to see
 that the modified nodes form just part of the tree.
 Thus the list of those nodes that remain unaffected
 Is readily formed, as might be expected.
 And with virtual copies of parts that stay constant
 Applying small changes takes only an instant.

This promises to be sufficiently useful that we could consider providing XSLT
syntax with the same semantics: the above example might become:

 <uxsl:update select="$doc">
 <uxsl:delete select=".//Note"/>
 </uxsl:update>

while a more complex example might be:

 <uxsl:update select="$doc">
 <uxsl:delete select=".//Note"/>
 <uxsl:rename select=".//Comment" to="Remark"/>
 <uxsl:replace-value select=".//Salary" by=". * 1.1"/>
 </uxsl:update>

The result of the uxsl:update expression would be the updated copy of $doc

References

[1] Michael Kay Saxon: Anatomy of an XSLT Processor, 2005. Article published at
IBM DeveloperWorks. Available at https://www.ibm.com/developerworks/
library/x-xslt2/

[2] Michael Kay: Writing an XSLT Optimizer in XSLT. Presented at Extreme
Markup Languages: Montréal, Canada, 2007. Available at http://
www.saxonica.com/papers/Extreme2007/EML2007Kay01.html and at
http://conferences.idealliance.org/extreme/html/2007/Kay01/
EML2007Kay01.html

[3] Michael Kay: Transforming JSON using XSLT 3.0. Presented at XML Prague,
2016. Available at http://archive.xmlprague.cz/2016/files/
xmlprague-2016-proceedings.pdf and at http://www.saxonica.com/
papers/xmlprague-2016mhk.pdf

XML Tree Models for Efficient Copy Operations

45

[4] John Lumley, Debbie Lockett and Michael Kay: Compiling XSLT3, in the
browser, in itself. Presented at Balisage: The Markup Conference 2017,
Washington, DC, August 1-4, 2017. In Proceedings of Balisage: The Markup
Conference 2017. Balisage Series on Markup Technologies, vol. 19 (2017).
Available at https://doi.org/10.4242/BalisageVol19.Lumley01

[5] http://www.xml-benchmark.org

A. Measurements

This appendix gives measured timings (in milliseconds) for various operations on
various implementations of XDM trees. The measurements were made on an
experimental version of the Saxon XSLT processor; the precise measurement con-
figuration is not significant because we are only interested in the relative num-
bers. The data used was a 10Mb version of the XMark dataset[5].

The operations that we measured are as follows:
• Build: the time taken to build the tree by parsing a 10Mb source document.
• Scan: time taken to scan the tree in descendant order, sending SAX-like events

to a sink receiver that immediately discards the data.
• Graft: time taken to build a new tree consisting of a document node, a wrap-

ping element node, and a copy of the 10Mb source tree.
• Scan Grafted: time taken to scan the tree that results from the graft operation,

again sending SAX-like events to a sink receiver that immediately discards the
data.

• Search Grafted: time to execute the XPath query count(// *[@id]) (which
returns 6075 elements) on the tree that results from the graft operation.

These operations were timed with the following implementations of the XDM
tree model:
• TinyTree (old): the TinyTree as available in the released Saxon product, with-

out special support for virtual copying
• TinyTree (new): the TinyTree modified as described in this paper, to allow

grafting of a virtual copy of a subtree
• Linked Tree: the Saxon Linked Tree, a conventional tree implementation

where nodes are Java objects with pointers to children and parent nodes
• KL-Tree: the experimental KL-Tree model described in this paper
• DOM: the implementation of the W3C DOM interface packaged in the Oracle

JDK
• Domino: a hybrid tree implementation introduced in Saxon 9.8, consisting of a

DOM supported by additional indexes for fast searching

XML Tree Models for Efficient Copy Operations

46

• XOM: see https://xom.nu
• JDOM2: see https://www.jdom.org
• DOM4J: see https://dom4j.github.io
• AXIOM: see https://ws.apache.org/axiom/
Here are the measurements:

Table A.1. Measurements of various operations on various tree
implementations

Model Build Scan Graft Scan Grafted Search Grafted
TinyTree (old) 120 6.6 85 9.2 6.3
TinyTree (new) 120 7.2 0.8 6.8 7.4
LinkedTree 125 19 65 25 15
KL-Tree 118 20 0.005 20 58
DOM 133 127 216 120 37
Domino 211 51 114 56 14
XOM 184 55 197 90 42
JDOM2 133 64 164 86 30
DOM4J 134 96 188 108 205
AXIOM 145 82 158 98 127

How it was measured: using a microbenchmarking environment in Java, calling
low-level interfaces to simulate the run-time activity of an XSLT or XQuery pro-
cessor. Each test was run repeatedly for 10 seconds or more to warm up the Java
hotspot compiler; this was then repeated for another 10 seconds to get an average
execution time, and only the figures for the second run were recorded.

B. Versioned Maps and Arrays
Given a map such as

let $old := map{"a":1, "b":2, "c":3}
it is possible in XPath 3.1 to perform an operation such as

let $new := map:put($old, "b", 17)
whose result is a new map,

map{"a":1, "b":17, "c":3}
After this operation, $old still refers to the original map, while $new refers to the
new map. But the map:put() operation does not copy parts of the map that have

XML Tree Models for Efficient Copy Operations

47

not been changed: the cost of the map:put() operation is essentially independent
of the size of the map that is being modified.

Various data structures can be used to achieve this effect. The one that Saxon
uses is a hash trie.

To simplify the actual implementation, we can consider that for each possible
key value there is a hash code which can be viewed as a sequence of seven 5-bit
integers. A tree of depth 7 with a fan-out of 32 can then be used to locate any
value: an entry in the leaf nodes of this tree is a list of key-value pairs, where the
keys are those sharing the same hash code.

Modifying the entry for one particular key then involves replacing 7 nodes in
the hash trie, one for each level corresponding to the 7 components of the hash
code. This will always involve a replacement for the root of the tree. All nodes in
the tree other than these 7 can be shared between the old tree and the new. Modi-
fication thus has a constant cost: whether the map contains one entry or a billion,
the put() operation creates exactly 7 new nodes in the tree.

In practice the actual hash trie implementation has optimizations that reduce
the cost of handling very small maps, because these are quite common. For exam-
ple a map of less than five entries is implemented as a simple list of key-value
pairs.

A similar solution is used for arrays. In concept, an array is simply implemen-
ted as a map whose keys are integers. But because the structure needs to handle
operations other than get() and put() efficiently (notably, retrieval of entries in key
order), and because integers are not limited to 35 bits, the actual trie structure
used internally is different.

See also: Wikipedia, Persistent Data Structures, https:// en.wikipedia.org/
wiki/Persistent_data_structure

XML Tree Models for Efficient Copy Operations

48

