
Projection and Streaming: Compared,
Contrasted, and Synthesized

Michael Kay
Saxonica

<mike@saxonica.com>

Abstract

This paper describes, compares, and contrasts two techniques designed to
enable an XML document to be processed without building an entire tree
representation of the document in memory. Document projection analyses a
query to determine which parts of the document are relevant to the query,
and discards everything else during source document parsing. Streaming
attempts to execute a stylesheet "on the fly" while the source document is
being read.

For both techniques, the paper describes the way that they are implemen-
ted in the Saxon XSLT and XQuery engine.

Performance results are given that apply to both techniques, in relation
to the queries in the XMark benchmark applied to a 118Mb source docu-
ment.

The paper concludes with a discussion of ideas for combining the bene-
fits of both techniques and getting more synergy between them.

1. Overview
Document projection is a technique introduced by [1] designed to address the
problem that some XML documents are too large to fit as a tree in main memory
and therefore cannot be queried by XQuery processors that build a complete tree
in memory.1The idea is to perform static analysis on the query to determine
which parts of the source document are actually needed by the query, and then to
build a tree in memory that omits the parts of the document that the query never
visits.

Streaming, as we use the term in this paper, is a mechanism defined in the
XSLT 3.0 specification [8] that allows a subset of the XSLT language to be pro-
cessed in streaming mode. It attempts to identify those constructs in the language
that can be processed in "constant memory", that is, whose memory requirement

1Memories were smaller in those days: Marian and Siméon report a maximum document size of 50Mb
for Saxon, and as little as 7Mb for QuiP. But the fact that the limits are higher today does not mean the
problem has disappeared. Indeed we are now starting to see the 2Gb boundary imposed by 32-bit
addressing becoming a potential problem.

73

is independent of document size. Provided that the stylesheet conforms to these
static constraints on the use of language constructs, a streaming XSLT processor is
then expected to be able to handle documents of arbitrary size (with a few cav-
eats, which are well documented).

So projection and streaming are addressing essentially the same problem, and
there are similarities (but also significant differences) in the way they tackle it.
Both mechanisms are implemented in Saxon [6], essentially independently of
each other. Part of the motivation for this paper is to examine whether there are
synergies to be obtained by integrating the two mechanisms more closely, for
example by using common algorithms for the static analysis, or common data
structures for the result of the static analysis, or by using ideas from one of the
subsystems to improve the effectiveness of the other.

The paper starts with an overview of the two techniques of projection and
streaming, in each case presenting first the published specifications, and then
details of the implementation in Saxon. This is followed with an analysis section
which attempts to draw out the similarities and differences, and the strengths and
weaknesses of the two approaches. The final section presents ideas for how the
two mechanisms could be made to work more effectively in tandem, hopefully
giving a unified capability with the strengths of both and the weaknesses of nei-
ther.

2. Document Projection

2.1. Overview of the Marian/Siméon Technique
The essence of the Marian/Siméon document projection technique is as follows:
1. The query is analyzed (statically) to determine the paths to all elements and
attributes that are needed to evaluate the query.

2. This set of paths is used to create a projection filter. The filter is applied to
parsing events issued by a (typically) SAX-based parser to that some events
are passed on to a tree builder, while others are discarded. This has the effect
that only a subset of the elements and attributes in the original source docu-
ment are retained in the tree (for example, a DOM tree) that is built in mem-
ory.

3. If the filter is constructed correctly, then running the query against the
reduced (projected) tree produces the same result as running the same query
against a full tree containing all elements and attributes in the original docu-
ment.

Marian and Siméon illustrated this idea using query Q1 from the XMark bench-
mark [4], specifically:

for $b in /site/people/person[@id="person0"] return $b/name

Projection and Streaming: Compared, Contrasted, and Synthesized

74

For convenience, the XMark queries are listed in an appendix at the end of this
paper. Many people would write Q1 using the simpler XPath expression:

/site/people/person[@id="person0"]/name
But the authors of XMark came from a SQL background and like many users
from that tradition, their instinct was to write every query as a FLWOR expres-
sion. And document projection tries to handle the query in whatever form the
users chose to write it.

We'll make an assumption here which Marian and Siméon never state explic-
itly, namely that the authors of such a query expect the result to be delivered
either in serialized form (as lexical XML), or as a set of parentless element nodes,
specifically the name element and its descendants (in the XMark data, this will be
a single text node, but the analysis does not depend on any schema knowledge).
In particular, document projection won't work if the client application expects to
be able to do arbitrary navigation from the returned elements (for example, navi-
gating from the name up to its containing person).

The set of paths needed to evaluate this query is:

/site/people/person/@id
/site/people/person/name #

where the # symbol can be read as meaning "together with the subtree rooted at
this node".

In the case where the query was originally expressed as a FLWOR expression
using the range variable $b, the path analysis needs to associate a set of paths
with the variable binding, and then to expand these paths for all references to the
variable.

The filter operation essentially takes these paths and retains a node if (a) the
node matches one of these paths, or a prefix of one of these paths (for example /
site/people), or (b) it is a descendant (or an attribute of a descendant) of one of
the paths labelled #.

In a refinement of the technique, called optimized projection, the analysis con-
siders not only which nodes are reachable, but how they are used by the query.
For example, given the query if (@discounted) then price else price -
discount, the query tests for the existence of the attribute @discounted; it is capa-
ble of returning the price element; but on the else branch, the price and
discount elements are always atomized (though Marian and Siméon do not use
quite this terminology).

Clearly the analysis becomes increasingly complex as additional XQuery fea-
tures are used. Handling additional axes such as preceding and following sibling
axes is one example; use of user-written functions is another. Marian and Siméon
address these complications in part by reducing the XQuery language to a small
core language which is more amenable to analysis. Despite this, they don't

Projection and Streaming: Compared, Contrasted, and Synthesized

75

present the full analysis in their main VLDB paper, but refer to internal technical
reports for some of the detail.

With the kind of queries used in the XMark benchmark, document projection
will often dramatically reduce the size of the tree that needs to be built. With one
exception, all the queries in the benchmark can be executed on a document occu-
pying only 5% of the memory of the full tree. As well as a big saving in memory,
the technique gives a (smaller) improvement in execution time, because less time
is spent building and searching unnecessary parts of the tree.

The main limitations of document projection, of course, are (a) that it is only
effective in cases where the source document is parsed, and a source tree built, for
the purpose of executing a single query, and (b) that it is only useful in cases
where the query requires a small amount of information from the document.
Nevertheless, these conditions apply sufficiently often in real life that the techni-
que should probably be far more widely known and used than it is, especially as
it is available in a number of popular XQuery processors.

2.2. Document Projection in Saxon: XMark Performance
Document projection has been implemented in Saxon's XQuery processor for
many years, though there is little evidence that it is widely used.2When running a
query from the command line, it can be activated simply by use of the -
projection command line option. Statistics on its effectiveness are displayed
when the -t option is on3. From the Java API it is possible to separate the two
steps of analyzing a query to create a projection filter, and applying the filter to
create a projected document. (This makes it possible, if you really want, to write a
query whose sole purpose is to define a document projection, and then to run a
variety of queries or transformations on the projected document. In this case, of
course, you lose the guarantee that the results will be the same as on the full
document. More realistically, you may well want to run the same query repeat-
edly, against the same projected source document, but with different query
parameters.)

The benefits obtained by document projection in Saxon, when running the
XMark benchmark queries, are very much in line with the results reported by
Marian and Siméon.

For XMark Q1, against a 119Mb source document, the metrics with document
projection off are:

2This is perhaps an understatement. In preparing examples for this paper, I found and corrected sev-
eral bugs in the implementation. Since no bugs have been reported by users over several years, this
leads one to suspect that the feature is essentially unused.
3Some of the metrics given in this paper were obtained using internal instrumentation that is not
available via any public API.

Projection and Streaming: Compared, Contrasted, and Synthesized

76

Analysis time: 375.619 ms
Tree built in 1405.714 ms
Tree size: 4787932 nodes, 79425460 characters, 381878 attributes
Memory used: 368,331,992 [bytes]
Average execution time [across 20 runs]: 0.233 ms

Switching projection on changes this to:

Analysis time: 373.619 milliseconds
Document projection: Input nodes 5072525; output nodes 102002; reduction ►
= 98%
Tree built in 1032.552 ms)
Tree size: 78822 nodes, 364998 characters, 25500 attributes
Memory used: 74,333,216 [bytes]
Average execution time: 0.228 ms

So we're seeing a reduction in the size of text nodes alone from 79M characters to
364K characters, together with a 98% reduction in the number of element nodes,
leading overall to a reduction in the total memory requirement for the query from
368Mb to 74Mb4. There's negligible impact on the time for static query analysis,
and a useful 40% speed-up in tree building time (useful because this is the domi-
nant cost). The query execution time is negligible compared with the tree build-
ing time, so the fact that the query runs a little faster on the projected document is
of no practical importance.

For the full range of XMark queries we see the following size reductions. The
first figure is the reduction in the number of nodes, the second is the reduction in
the number of characters in text nodes:

Q1 97.99% 99.95%
Q2 96.24% 99.67%
Q3 96.24% 99.67%
Q4 96.01% 99.96%
Q5 99.42% 99.94%
Q6 99.57% 100.00%
Q7 98.69% 100.00%
Q8 97.91% 99.55%
Q9 96.62% 99.42%
Q10 91.97% 97.40%
Q11 97.28% 99.47%
Q12 97.28% 99.47%
Q13 98.79% 96.40%
Q14 88.27% 65.51%
Q15 98.90% 99.99%
Q16 98.52% 99.99%

4Figures for memory usage are not very accurate or reliable, because garbage collection happens
unpredictably.

Projection and Streaming: Compared, Contrasted, and Synthesized

77

Q17 97.99% 99.09%
Q18 99.53% 99.96%
Q19 97.86% 99.20%
Q20 98.99% 100.00%

I have used slightly different metrics from those used by Marian and Siméon
(they reported on the size of the document in memory and on disc, rather than
the total number of nodes and the size of the text nodes) so the figures are not
directly comparable; however, there is a strong correlation. Marian and Siméon
reported:

The projected document is less than 5% of the size of the document for most of the
queries. On Query 19, Projection only reduces the size of the document by 40%,
and it has no effects for Queries 6, 7, and 14. In contrast, Optimized Projection
results in projected documents of at most 5% of the document for all queries but
Query 14 (33%). The reason for this difference is that Queries 6, 7, 14 and 19
evaluate descendant-or-self() (//) path expressions for which projection
without optimization performs poorly. Query 14 is a special case since it selects a
large fragment of the original auction document. Obviously projection cannot per-
form as well for this kind of query.

Saxon is therefore achieving very similar results to their Optimized Projection
results, reducing the number of nodes to 4% or less for all queries except Q14.
The problem with Q14 is that the query accesses the string value of description
elements, which account for 70% of all the text content of the source document.

2.3. Implementation of Document Projection in Saxon
Saxon performs the analysis needed to implement document projection by exam-
ining the expression tree after all query parsing, type checking, and optimization
is complete.

The first stage of analysis builds a data structure called the path map, which is
essentially a graph representation of all the navigation paths performed by the
query expression. Some of these navigation paths are explicit in the form of an
axis step in the query; others are implicit in the use of constructs like a call to
fn:id (which effectively searches all elements in the document). The roots (entry
points) to this data structure represent the global (externally-supplied) context
item, and calls on functions that return new documents such as fn:doc and
fn:collection. Each node in the path map represents a set of XDM nodes that is
visited by the expression, and the arcs emanating from this node represent the
axis steps used to navigate away from these nodes to other nodes. The initial
analysis represents all axes explicitly (including, for example parent and preced-
ing-sibling axes).

Nodes in the path map are labelled at this stage with three boolean properties:
returnable which indicates whether the relevant nodes can be returned from the

Projection and Streaming: Compared, Contrasted, and Synthesized

78

query (rather than being merely visited en route); atomized which indicates that
the expression atomizes the nodes reached via this path; and hasUnknownDepen-
dencies which is discussed below.

When an expression is bound to a variable, the set of paths reachable by the
initializer of the variable is noted, and when a path expression is used that starts
with a reference to this variable, the relevant navigation steps are added to the
graph starting at these nodes, effectively concatenating the navigation path used
to evaluate the variable with the navigation paths starting at the variable's value.

Saxon does not attempt to analyze calls to user-defined functions (nor, in
XQuery 3.0, dynamic function calls): it is assumed that when a node is passed to a
function call (other than a known system-defined function) with no atomization,
then the function can perform arbitrary navigation starting from that node, and
this is indicated by setting the property hasUnknownDependencies on the path map
node. (In some cases, however, the optimizer will have inlined function calls, in
which case path analysis is still possible.5)

The second stage of analysis is to reduce the path map so that it contains
downwards navigation steps only. It's easiest to explain how this is done with
some examples:
• If the query contains the path /books//book/preceding::item, we replace

this with the two paths /books/descendant::book and /descendant::item.
The logic here is that these are the elements we need to retain in the projected
document: the presence of the path /descendant::item will ensure that all
elements named item are retained, wherever they appear. Because the relative
position of nodes is retained by the document projection process, we can be
confident that the axis step preceding::item will return the correct item ele-
ments.

• If the query contains the path / books/ book/ title[contains(., ../
author)], the original analysis will produce the two paths / books/ book/
title# and / books/ book/ title/ parent::node()/ author. Reduction to
downwards selection then changes the second path to /books/book/author,
because the analysis is able to determine that the pair of steps (child::title/
parent::node()) is a null navigation and can therefore be eliminated.

• If the query contains the path / books/ book/ title/ following-
sibling::author, the analysis will produce the two paths / books/ book/
title and /books/book/author. Again the analysis is able to determine that
navigating down to a title element and then across to a sibling author ele-
ment will always select an author that is a child of the book element.

The third and final step is the actual process of document projection. This is
implemented as a filter (an instance of the Saxon class ProxyReceiver) on the

5The only XMark query to use a user-defined function is Q18, and this function is trivially inlineable.

Projection and Streaming: Compared, Contrasted, and Synthesized

79

push-based event pipeline between the SAX XML parser and the tree builder. The
filter maintains a stack of currently opened-but-not-yet closed elements; on this
stack is a reference to the path in the path map by which the nearest retained
ancestor node was reached. An element is retained if (a) its parent is retained, and
(b) there is an arc on the path map that selects this element from its parent or
ancestor. Elements are also retained (c) if some ancestor node was marked with
the returnable or atomized properties indicating that the entire subtree of the
element is required. (Atomization actually only requires the descendant text
nodes: descendants of other kinds could be discarded. But when elements are
atomized, they almost invariably have a single text node child, so this additional
optimization would deliver very little benefit.)

3. Document Streaming

3.1. Overview of Streaming in XSLT 3.0
Many constructs in XPath and XSLT (and XQuery, for that matter) do not lend
themselves well to streamed evaluation: the semantics of the language are
defined in terms of a tree that can be freely navigated in all directions (including,
importantly, upwards). In principle one could identify a subset of stylesheets that
only use streamable constructs, and implement these using streaming algorithms
that avoid building the entire tree in memory. However, it is likely that very few
real-life stylesheets would fall into this category. One particular reason for this is
that XSLT, unlike XQuery, relies heavily on dynamic despatch of template rules,
which makes it effectively impossible to perform static analysis of the stylesheet
as a whole.

In addressing the requirement for streaming to process large documents, the
XSL Working Group therefore adopted a different approach:
• Users would be required to indicate an intent that particular parts of the style-

sheet (for example, template rules) should be streamable, and the XSLT pro-
cessor would be required to analyze those parts for streamability.

• It should be possible within a single stylesheet to mix streamed and
unstreamed processing; for example, it should be possible during streamed
processing of a large document to build an in-memory representation of a
small subtree of this document, and then process this subtree using the full
power of the language unconstrained by streaming restrictions.

• New constructs should be added to the language to make it easier to write
streamable stylesheet code. Examples of such constructs are the xsl:merge
instruction (which allows multiple documents to be merged in a streamed
operation), the xsl:accumulator declaration (which allows multiple aggrega-
tion functions, such as totalling and averaging, maxima and minima, to be be

Projection and Streaming: Compared, Contrasted, and Synthesized

80

computed during a single streaming pass of the document), and the xsl:on-
empty and xsl:on-non-empty which make it possible to specify declaratively
what should happen when required input data is absent.

XQuery is designed in the tradition of database query languages, whose develop-
ers typically aspire to the principle that optimization is entirely the responsibility
of the language processor, not the user. XSLT comes more from the tradition of
programming languages, where performance and selection of algorithms are the
responsibility of the programmer. It is therefore to be expected that the two lan-
guages would take a different approach to streaming.

The static analysis determining whether particular XSLT constructs are
streamable is complex. The rules are prescribed in the language specification, so
that stylesheet authors can be confident that code designed to be streamable with
one implementation will also be streamable with other implementations.

The analysis assumes the existence of an expression tree representing the
results of parsing the stylesheet and the XPath expressions embedded within it.
Each node in this tree represents an instruction or expression (generically, a con-
struct). The analysis computes three properties for every construct:
• A static type (to which the result of evaluating the construct will always con-

form). The static type analysis is fairly simplistic and does not attempt to be
over-precise. It is used mainly to distinguish expressions that return childless
nodes (such as text nodes and attributes) from those that can return nodes
with children (documents and elements), because this can make a difference
to streamability.

• The sweep of the construct. Constructs are classified as motionless, consuming or
free-ranging. This concept relies on the notion that when processing a docu-
ment in streaming mode, there is a current position in the document repre-
senting the moving cursor that separates tags that have already been read,
from tags that have not yet been read. A motionless construct is one that can be
evaluated without moving this cursor: an example of such a construct might
be exists(@foo) (because the processing model assumes that when the cur-
sor is positioned on an element start tag, all the attributes of that element are
available). A consuming construct is one that can be evaluated by moving the
cursor from a start tag to the corresponding end tag, that is, by reading the
descendants of the current element. An example of such a construct is . =
"foo" (if the context item is an element, comparing its typed value to a given
string requires atomizing the element, which involves reading its descend-
ants). The third category, free-ranging, represents everything else: constructs
like following-sibling::x which require navigation outside the boundaries
of the current element. If the context item is a node in a streamed document
(an important caveat), then a free-ranging construct leads to the stylesheet
being deemed non-streamable.

Projection and Streaming: Compared, Contrasted, and Synthesized

81

• The posture of the construct. This concept is rather abstract and difficult to
explain in simple terms; it characterizes the relationship of nodes selected by
the evaluation of the expression to the position of the moving cursor. It also
constrains what further navigation is allowed starting from the result of this
expression.

Streamed processing produces three possible postures. A crawling posture
represents the result of a consuming expression that is processing all the
descendants of an element, in the course of moving the cursor from the start
tag to the end tag of that element. A striding posture is very similar, except
that the expression is only processing descendant elements at a fixed depth
(for example, children or grandchildren, but not a mixture of both). A climbing
expression is one that navigates to ancestors of the element at the cursor posi-
tion, or to attributes of these ancestors (the streaming model assumes that a
stack of ancestor nodes and their attributes is available at all times). The key
difference between these three postures is what kind of onwards navigation is
permitted. When a node was reached in climbing posture (that is, by follow-
ing the ancestor axis), no downward navigation is permitted, because in gen-
eral this would need to access parts of the document that have already been
read and discarded, or that have not yet been read. In striding posture, further
downward navigation is allowed. It crawling posture, downward navigation
is not allowed in the general case, because when two nodes A and B are
reached in crawling posture, and A comes before B in document order, it is
not necessarily the case that all descendants of A appear in document order
before all descendants of B: for an example, consider the element:

<root>
 <section id="A">
 <section id="B">
 <footer/>
 </section>
 <footer/>
 </section>
</root>

where the footer child of section A appears in document order after the
footer child of section B. If downward selection were permitted from the
results of a crawling expression such as descendant::section, it would not
be possible to achieve this by processing one section at a time without buffer-
ing.

The other two values for posture are grounded and roaming. Grounded pos-
ture applies to an expression whose result will never contain streamed nodes:
for example, expressions whose value is an atomic value or a map, or a node
in an unstreamed document. There are no streaming restrictions on the pro-
cessing that can be applied to the result of a grounded expression. Roaming

Projection and Streaming: Compared, Contrasted, and Synthesized

82

posture, by contrast, represents the case where streamability analysis has
essentially failed: it applies to an expression such as preceding::item, which
cannot be evaluated in streamed mode.

Although the XSLT 3.0 specification is very prescriptive about the analysis used
to determine whether constructs are deemed streamable or not, it has very little to
say about how streamed evaluation of those constructs deemed to be streamable
should actually work. That is left entirely to the implementation.

3.2. Streaming in Saxon: XMark Performance

Although streaming is specified by W3C only for XSLT 3.0, Saxon also offers the
capability of streamed XQuery execution. If a query is run from the command
line using the -stream option, Saxon will analyze the query for streamability
using rules that are essentially equivalent to those of the xsl:stream instruction
in XSLT 3.0, and if it is streamable, will execute it in streamed mode. Since we
have been studying the set of XMark benchmark queries to examine the impact of
document projection, it is instructive to look at the same queries from a streama-
bility perspective.

It turns out that none of the XMark queries is streamable (in Saxon) as origi-
nally written, but many of them can easily be rewritten to make them streamable.
The main changes required are described below:

• Most of the queries are written as FLWOR expressions, which are typically not
streamable (a) because they use non-XPath syntax which is therefore outside
the scope of the streamability rules in the XSLT specification, and (b) because
they bind variables to streamed nodes. In most cases the rewrite is very sim-
ple. For example Q2 is originally written:

for $b in /site/open_auctions/open_auction return <increase> { $b/►
bidder[1]/increase } </increase>

which can be rewritten like this6 to make it streamable:

<xsl:for-each select="/site/open_auctions/open_auction">
 <increase>
 <xsl:sequence select="bidder[1]/increase"/>
 </increase>
</xsl:for-each>

• Some of the queries require more extensive rewriting to avoid multiple down-
ward selections. For example Q5 is originally:

6This rewrite preserves the bug in the original query whereby the output contains two levels of nested
<increase> elements.

Projection and Streaming: Compared, Contrasted, and Synthesized

83

count(for $i in /site/closed_auctions/closed_auction
 where $i/price >= 40
 return $i/price)

which (knowing that a closed_auction has only one price) can be made
streamable by rewriting as:

count(/site/closed_auctions/closed_auction/price/number()[. >= 40])
Similarly, Q7 reads

for $p in /site
return count($p//description) + count($p//annotation) + count($p//►
email)

which can be replaced by the streamable equivalent:
count(site//description | site//annotation | site//email)

• A few queries require limited buffering of the input. An example is Q4:
for $b in /site/open_auctions/open_auction
where $b/bidder/personref[@person="person18829"] <<
 $b/bidder/personref[@person="person10487"]
return <history>{ $b/reserve }</history>

where the processing can be done by building each open_auction in turn as a
tree in memory, which can then be discarded to process the next
open_auction (sometimes called "burst-mode streaming"). This can be ach-
ieved with the rewrite:

/site/open_auctions/open_auction/copy-of(.)
 [bidder/personref[@person="person18829"] << bidder/►
personref[@person="person10487"]]
 ! <history>{ reserve }</history>

The queries that remain stubbornly unstreamable are those that involve joins (Q8,
Q9, Q10, Q11, Q12) or sorting (Q19).

The performance of streamed versus unstreamed versions of the same query
(for those queries where streaming is possible) is very consistent:
• For unstreamed execution, there is a one-off cost of building the document

tree of around 1400ms, and the cost of evaluating the query is then between
2ms and 50ms.

• For streamed execution, the cost of query execution is in each case between
930ms and 1100ms.

• For comparison, we noted earlier that unstreamed execution against a projec-
ted document tree typically reduces the tree-building time from 1400ms to
1000ms, with a very small (and therefore negligible) improvement in query
execution time.

Projection and Streaming: Compared, Contrasted, and Synthesized

84

We can see that both streaming and document projection (where applicable) give
a modest improvement in execution time and a very substantial saving in mem-
ory usage, at the cost of having to parse the source document to run a single
query: and it is the parsing cost that dominates. It's also worth noting that the
query compilation cost, at 375ms, exceeds the document building cost for docu-
ments smaller than around 40Mb, even with these very simple queries.

3.3. Streaming in Saxon: Implementation
Saxon, in its latest incarnation (the current public release is 9.7 but this section
applies more strictly to the planned 9.8 release), follows the streamability analysis
rules in the specification very literally. It has to, because the Working Group has
insisted on a clause that says that a processor that wants to claim conformance to
the streaming feature must be prepared to report whether a stylesheet is streama-
ble according to the W3C rules or not — no extensions allowed.

A difficulty here is that the streamability properties computed during the
analysis are actually required in order to devise a streamed execution strategy,
and they must therefore be computed for the final expression tree produced after
all optimization rewrites have been completed. But some of the optimization
rewrites (for example, function inlining) may convert a non-streamable construct
into a streamable one, and would therefore cause Saxon's streamability verdict to
differ from the W3C verdict. At user request, there is therefore an option to run
the streamability analysis twice: the first run is done before all optimizations to
deliver a W3C-conformant streamability assessment, and the second run is done
after optimization to produce input to the execution plan.

The formalisms used in the W3C streamability analysis have inspired some
changes to the design of Saxon's expression tree. Most notably, every expression
now delivers information about its subexpressions (called operands) in a consis-
tent way. The relationship between a parent expression and its children is now
represented by an operand object which contains properties closely based on
properties used in the W3C streamability model: for example every operand has
a usage which explains how the parent expression makes use of the result of eval-
uating the child expression: this is one of inspection (the properties of the returned
value are examined, for example using an instance of operator), absorption (the
entire subtree of any nodes in the returned value is used, typically by means of
atomization), transmission (the parent expression includes the result of the child
expression directly in its own result value), or navigation (the parent expression
performs arbitrary navigation from the nodes in the child expression's result to
other nodes in the same tree).

Saxon has started to use these formalisms in other aspects of its static analysis
unrelated to streaming (for example, in the analysis done to construct the path
map for document projection) but there is much potential for increased reuse in
this area.

Projection and Streaming: Compared, Contrasted, and Synthesized

85

The most complex aspect of streaming in Saxon, however, has nothing to do
with the static analysis of streamability according to W3C rules, but rather with
creating a streamable representation of the execution plan for the stylesheet, and
with the actual execution of that plan.

As discussed in [3] and [5], streaming in Saxon operates in push mode. Push
here means that the control flow is in the same direction as the data flow. This is
the reverse of the usual interpreter design pattern. Instead of a parent expression
requesting (pulling) data obtained from the evaluation of its subexpressions, the
arrival of data from the XML parser triggers the evaluation of subexpressions
dependent on that data, which in turn triggers the evaluation of parent expres-
sions dependent on the results of those subexpressions. That is to say, the control
flow is inverted: and in fact, the process of generating a push-mode representa-
tion of the stylesheet code corresponds to the process of program inversion as
described many years ago in Jackson Structured Programming [2].7

The streaming code in Saxon essentially works in three parts:

1. The first part is the static streamability analysis. As already mentioned, this
follows the rules in the XSLT 3.0 specification very closely. Every kind of
expression node in the expression tree (representing different kinds of XSLT
and XPath construct in the source code) has logic to compute properties such
as the posture and sweep of the expression. Once computed, these are
retained as cached properties on the expression tree. The logic for many
expressions is delegated to the general streamability rules, which are driven
by information about the operands of the expression and their usage; all
expressions deliver their operands (including properties such as the operand
usage, whether the focus changes, and suchlike) using a common interface.

2. The second part is the logic for expression inversion. Where a template or
other construct is declared to be streamable, and where analysis reveals that it
is actually streamable, the process of inversion constructs a representation of
the construct suitable for streamed push-mode evaluation. In general (with
some exceptions such as xsl:choose, xsl:fork, and xsl:map) a consuming
expression will have exactly one consuming operand. It is therefore possible
to identify a route through the expression tree that contains these consuming
expressions. For the lowest-level such expression, we allocate a Watch which is
triggered when the parser encounters a node that matches a particular
(motionless) pattern. For each consuming ancestor expression, we allocate a
Feed which evaluates a particular construct in push (event-driven) mode.

3. The third part comprises the push-mode implementations of every kind of
instruction, expression, or system function. For example, the Feed for a call on

7This is no coincidence, because JSP was greatly concerned with the problems of managing hierarchic
data in a streamed representation too large to fit in available memory, in this case using magnetic tape.

Projection and Streaming: Compared, Contrasted, and Synthesized

86

the fn:sum might look like this (ignoring subtleties in the actual specification
of this function):

 private double sum = 0;

 public processItem(Item item) {
 sum += item.toDouble();
 }

 public void close() {
 getParentFeed().processItem(new DoubleValue(sum));
 }

In this particular example, the implementation does not pass anything on to
the Feed for its parent expression until the input sequence is exhausted. In
other cases, for example the Feed for the fn:distinct-values function, val-
ues can be passed on as soon as they are known. Here is a simplified version
of the Feed for fn:distinct-values:

 private Set<AtomicValue> values = new HashSet<AtomicValue>();

 public processItem(Item item) {
 if (values.add((AtomicValue)item)) {
 getParentFeed().processItem(item);
 }
 }

When the processing of an input sequence is initialized, this code creates a
new data structure holding the set of distinct values (which is initially empty).
Each time a new value is received, it is added to this set (which is a no-op if it
was already present in the set); and if it was not already present in the set, it is
passed on to the feed for the parent expression.

These push-mode implementations need to be provided for every kind of
construct that can take a sequence as input. For expressions that operate on
singletons (for example, arithmetic expressions) a generic Feed that accepts a
single item and invokes the ordinary non-streaming implementation suffices.
For a few constructs it is necessary to provide more than one push-mode
implementation, because the logic depends on which operand is the stream-
ing operand: a notable example is the LetExpression (used not only to imple-
ment XPath let expressions, but also local variables declared in XSLT: the
code for let $x := distinct-values(// foo) return count($x) is quite
different from the code for let $x := data(@id) return index-of(.//foo,
$x), because in the first case the streamed operand is the expression used to
initialize the variable, and in the second case the streamed operand is the
expression that makes use of the variable.

Projection and Streaming: Compared, Contrasted, and Synthesized

87

It's worth remarking in passing that because the control flow is inverted,
we can't do dynamic error handling using the normal Java machinery of
throwing and catching exceptions. When evaluation of an expression fails, this
must cause execution of the parent expression to fail, so the failure is pushed
up the pipeline in the same way as success results.

4. Projection and Streaming: a Comparison
The major similarities between the two technologies are:
• They share the objective of using static analysis of a query or stylesheet to

establish an execution strategy that reduces the amount of memory needed for
the tree representation of large documents.

• There are many similarities in the details of the analysis that is carried out,
although it is presented in rather different terms.

• In both cases, the technique is only effective if the source document is being
parsed only for the purpose of executing a single query or stylesheet against
it. Document projection has a bit more flexibility in that it allows the same
query to be executed repeatedly with different parameters (for this use case,
streaming requires the document to be re-parsed each time, document projec-
tion does not). If the workflow requires multiple queries or stylesheets to be
executed against the same source document, neither streaming nor document
projection is well suited to the task.

Some significant differences between the two approaches are:
• Document projection is defined for use with XQuery, streaming for use with

XSLT. This difference is not entirely superficial, because the nature of the rule-
based template processing characteristic of XSLT means that the potential for
static analysis is very different from the XQuery case.

• Document projection can be applied to any query. It may be more effective for
some queries than others (for some queries the memory requirement might be
reduced by 5%, for others by 95%), but the mechanism is designed to work
with any query. By contrast the streamability analysis in XSLT makes a binary
classification of stylesheets as being either streamable or not streamable, and a
stylesheet in the latter category achieves no benefit.

• Document projection typically achieves a linear reduction in the amount of
memory needed (for example, to 20% of the original memory requirement),
whereas streaming is designed to run in constant memory completely inde-
pendently of document size. This means that streaming can even be applied to
infinite documents, such as a continuous stream of telemetry data.

• Document projection is designed to happen entirely behind-the-scenes, with-
out the knowledge or involvement of the query author, whereas XSLT stream-

Projection and Streaming: Compared, Contrasted, and Synthesized

88

ing provides explicit constructs for the invocation of streaming, and
alternative ways of writing code when streaming is required, including brand-
new mechanisms such as accumulators. This in turn reflects a philosophical
difference between XQuery and XSLT, or between query languages and pro-
gramming languages in general, where the intellectual focus in query lan-
guage theory has always been automated optimization, while the focus for
programming languages has been enabling the programmer to achieve the
desired performance metrics as well as correct execution.

5. Seeking Synergy
In this section we'll start looking for ways in which the benefits and of streaming
and document projection can be combined, and in which the weaknesses of both
can be reduced. We'll start with an example to illustrate the challenges.

5.1. A Simple Example
Consider the following query, which computes the average value of the transac-
tions in a transaction file:

[R1] avg(//transaction/(price * quantity))
As we've seen, many XQuery users, especially those trained in SQL, will write
this by preference as:

[R2] avg(for $t in //transaction return $t/price * $t/quantity)
Document projection will analyze either of these queries and establish that the
only nodes that need to be retained when building the source document tree are
the document node, the transaction element nodes, and the price and
quantity elements together with their text node descendants (or their typed
value, if the processing is schema-aware). This may be a very substantial reduc-
tion on the size of the source tree that would otherwise be built, but it is still pro-
portional to the number of transaction elements in the file, so it will run out of
memory eventually.

Streamability analysis in XSLT 3.0 will reject both these queries as non-stream-
able. The second query (R2) is rejected because it binds variables to streamed
nodes, and the streamability analysis in the XSLT specification gives up at this
point. The first query (R1) is rejected because there is an expression (price *
quantity) that makes two downward selections in the tree. In the language of
the specification, it has two operands whose sweep is consuming. In implementa-
tion terms, the difficulty is that in the general case, an expression with multiple
downward selections cannot be evaluated without buffering data in memory, and
the amount of buffering cannot be predicted, and therefore the query cannot exe-
cute in constant memory so it cannot be said to be full streamable. Of course, you

Projection and Streaming: Compared, Contrasted, and Synthesized

89

and I can see that in this case the amount of buffering needed is trivial – but that
is only because we know instinctively what kind of values we expect to find in
elements named price and quantity.

There's another more subtle difficulty with streaming of this expression:
because the transaction elements are selected using the shorthand notation //
transaction, the processor has to be prepared to handle nested transactions: the
query has a well-defined outcome for a pathological input such as:

<transaction>
 <price>8.25</price>
 <transaction>
 <price>13.50</price>
 <quantity>4</quantity>
 </transaction>
 </quantity>13</quantity>
</transaction>

The XSLT 3.0 solution to this is to ask the programmer to rewrite the query in a
way that makes the buffering explicit, reflecting the fact that the programmer
understands the data much better than any optimizer. Typically it will be rewrit-
ten as:

[R3] avg(/*/transaction/copy-of(.)/(price * quantity))

The injected copy-of(.) step explicitly makes an in-memory copy of the transac-
tion element and its subtree (unless, of course, the optimizer finds a smarter way
of doing things), and the navigation to the price and quantity elements is then
conventional (unstreamed) navigation within an in-memory tree.

We can see that neither the projection approach nor the streaming approach is
perfect here. Document projection uses more memory than it needs, because it
fails to recognize that the avg() function only needs access to one transaction at a
time (the only memory it needs is, at most, a running total and a running count).
Streaming requires programmer intervention to copy the transaction nodes; and
these subtrees are bigger than they need to be because we copy the whole subtree
rather than merely the price and quantity elements. (In some transaction files the
transaction element might be very large, for example it might contain an entire
history of contract negotiations leading up to an eventual purchase.)

It seems evident that there's room for improvement in how we execute this
query. We should be able to get the streaming benefits of only holding one trans-
action in memory at a time. We should be able (in some mode of operation) to
automate the copy-of() operation, and we should be able to use a projection-like
technique to ensure that this copy contains only the required elements (price and
quantity) rather than the full transaction element.

The following sections examine these opportunities in more detail.

Projection and Streaming: Compared, Contrasted, and Synthesized

90

5.2. Tolerating Local Variables

The static analysis performed for document projection can handle the existence of
local variable bindings within the expression, whereas the streamability analysis
in XSLT 3.0 fails as soon as a streamed node is bound to a local variable (with one
exception, the case where the variable is a reference to the first argument of a
streamable stylesheet function). As we've seen, local variables are used liberally
in practical queries, and it would be nice to handle them if we can.

An earlier draft [7] of the XSLT 3.0 specification did in fact attempt this (and
indeed, it worked in terms of a path map that was explicitly inspired by Marian
and Siméon).

The most obvious way in Saxon to make queries such as

for $b in /site/people/person[@id="person0"] return $b/name
streamable is to rewrite the query during the optimization phase to eliminate the
local variable, relying instead on binding the context item. Saxon already does
this for let expressions, in cases where the variable is only used once. Saxon also
turns where clauses into predicates when possible, so for example

for $e in /*/employee where $e/salary > 10000 return $e/name
is rewritten as

for $e in /*/employee[salary > 10000] return $e/name
Rewriting it as

/*/employee[salary > 10000] ! name
is no more difficult. (I've used the "!" operator here as the direct equivalent of the
original semantics, because there is no de-duplication or sorting into document
order. However, the expressions X!Y and X/Y are equivalent in the case where
both X and Y have striding posture, as is the case here.)

The basic condition for doing such a replacement is that the focus for evaluat-
ing the variable reference is the same as the focus for evaluating its declaration.

5.3. Tolerating Multiple Consuming Operands

We have seen that an expression such as

avg(/*/transaction/(price * quantity))
fails the streamability rules because it makes two downward selections (or in the
language of the spec, it contains two consuming operands). But it can be made
streamable by rewriting it as:

avg(/*/transaction/copy-of(.)/(price * quantity))

Projection and Streaming: Compared, Contrasted, and Synthesized

91

Two questions arise: (a) can this rewrite be automated, and (b) can we do better,
by only copying the price and quantity elements, and not the whole
transaction?

The danger in automating this rewrite is that in the worst case, it could gener-
ate a copy of the entire streamed document, thus effectively masking the fact that
the query is not really streamable.

Rather than generating an implicit copy, another approach to making this
streamable is to generate an implicit xsl:fork instruction. The xsl:fork instruc-
tion allows multiple consuming sub-expressions to be computed during a single
pass of the input document, buffering the results of each sub-expression and
combining them when the relevant subtree of the input document has been com-
pletely consumed.

Map constructors also allow multiple consuming operands, so as an alterna-
tive to copy-of() or xsl:fork, it is possible to make this streamable by writing:

avg(/*/transaction/map{"price":data(price), "qty":data(quantity)}!(?
price * ?qty)

(Note the need to explicitly atomize the streamed elements by calling data(),
because streamed nodes cannot be stored in a map.)

Generating a projection of the input subtree can be seen as a further possibil-
ity.

So there is a range of possible ways foward that could make it easier to write
streamable applications that require multiple downward selections. The main
challenge, in fact, is to distinguish those cases that can be done with minimal buf-
fering, like this one, from those where buffering data would essentially mean that
the data was not being streamed at all. So it comes down to static analysis. We
can see that this case works because the operator with multiple consuming oper-
ands (that is, the multiplication operator) requires those operands to be singleton
atomic values. Perhaps this is the case to tackle first. This would mean relaxing
the general streamability rules in the XSLT 3.0 specification so that the rule start-
ing "If more than one operand is potentially consuming..." has an additional
clause:

If each of the potentially consuming operands has operand usage absorption and
has a required type with item type atomic and cardinality zero or one, then [the
expression is] grounded and consuming.

Implementing streaming for this case would not be difficult; the logic would
essentially be the same as for map constructors.

5.4. Document Projection in XSLT
One reason that document projection has been relatively little used is that it only
works in XQuery. Apart from the context of XML databases (where streaming

Projection and Streaming: Compared, Contrasted, and Synthesized

92

and document projection are not relevant), XSLT is far more widely used than
XQuery. So we need to ask the question whether document projection could be
implemented in an XSLT context.

The traditional difficulty here has been that XSLT does not permit the kind of
static analysis necessary, because of the dynamic nature of template rules. How-
ever, this was also a problem for streamability analysis, and in that case the prob-
lem has been successfully overcome. The way it was overcome was to allow a
mode to be declared as streamable, and to require all template rules in a streama-
ble mode to conform to a number of statically-checkable constraints: chiefly, the
match pattern must be motionless, the body of the template rule must be either
motionless or consuming, and the body must be grounded (that is, the template
must not return streamed nodes).

There's another potential objection to doing document projection in XSLT,
which is that many transformations use almost all the data in the source tree
when constructing the result tree. (Or to put it another way, XSLT is used for
transformation rather than for query.) However, the fact that the technique isn't
appropriate to all uses cases doesn't mean that it isn't appropriate to any, and it's
easy enough to find examples of stylesheets that extract a small part of the input
document.

The obvious place to start document projection in XSLT 3.0 is with the new
xsl:source-document instruction. This could be given an attribute
projection="yes" to be used when the stylesheet author thinks that use of docu-
ment projection would be beneficial.

The main challenge in implementing this is the need to define the analysis
rules determining how all XSLT instructions affect the path map. Some of these
instructions like xsl:number are quite complex. The rules also need revisiting to
consider new constructs that have appeared in XPath 3.0, notably dynamic func-
tion calls. However, this challenge also presents an opportunity: many of the con-
cepts introduced for the sake of streamability analysis are probably reusable to
create general rules for projection analysis. For example:
• The concept of operand usage distinguishes four kinds of processing that may

be applied to the nodes returned by an expression: inspection reads properties
of the node and performs no further navigation; absorption reads the subtree
rooted at a node; transmission includes the nodes returned by a sub-expression
in the result of the parent expression; and navigation permits arbitrary naviga-
tion from a node to anywhere else in the tree. These concepts are just as appli-
cable to projection analysis as to streaming analysis, and the fact that all
constructs already classify their operands according to these categories means
that it should be possible to eliminate many ad-hoc rules that currently appear
in the projection analysis.

Projection and Streaming: Compared, Contrasted, and Synthesized

93

• The concept of a focus-setting container with controlling and controlled operands
is used by the streamability analysis to trace paths where there is a depend-
ency on the context item. Again, Saxon already performs this analysis for
streamability purposes, and this could be used to eliminate many ad-hoc rules
in the projection analysis.

• In the opposite direction, some of the concepts used for path analysis could be
exploited to improve streamability analysis. For example, code that uses the
following-sibling axis is currently non-streamable; but one can envisage
cases where path analysis could be used to identify cases where streaming of
this axis is possible.

Performing data-flow analysis across calls of functions and templates remains
challenging. The current document projection code in Saxon does not attempt it
even for static function calls, let alone dynamic function calls or xsl:apply-
templates. The new packaging facilities in XSLT 3.0, which allow a function to be
overridden in another separately-compiled package, complicate this even further.
The approach used for streamability analysis, which relies on modes and func-
tions being manually annotated to describe the scope of their navigation, might
be one way forward: realistically, however, only a very small minority of users
will understand such features well enough to gain benefit from them. In addition,
document projection works best for simple queries, so it might be best to concen-
trate on doing the best possible job in simple cases.

5.5. Automatic Streaming and Projection
The fact that document projection has been so little used should remind us of an
awkward truth: any feature that delivers performance benefits, but needs to be
actively enabled by users, will be ignored by the vast majority of the user popula-
tion. Users are too busy to research all the tools available. If a job is run every day,
they will tolerate the fact that it takes two minutes to run rather than investigat-
ing ways of reducing the run time to ten seconds.

By contrast, a feature that delivers improved performance "out of the box" will
give more users an improved experience and will enhance the reputation of the
product in the marketplace.

So we should ask the question whether there are situations where document
projection (and indeed streaming) can be enabled automatically, by default.

In some cases we know that a query or stylesheet is only being executed once,
and that a source document is being built in memory to be processed once. The
main example of this is when the query or transformation is run from the com-
mand line. Unfortunately other cases, such as running within Ant, are harder to
detect, because products like Ant use a general-purpose compile-build-transform
API where the stages are invoked independently of each other. However, provid-
ing a "single-shot" API could achieve the twin benefits of (a) providing a much

Projection and Streaming: Compared, Contrasted, and Synthesized

94

simpler-to-use interface for applications, and (b) enabling the query or transfor-
mation processor to know that there are no hidden complexities.

That then raises the question of whether it is feasible and cost-effective to
examine a query or stylesheet to decide whether document projection should be
used. Or indeed, whether it would do any harm to use it unconditionally. The
worst that can happen is that a slight extra cost is incurred during query analysis,
and a slight extra cost during document building, in those cases where there is no
benefit.

We could start with the following experiment: when running XQuery from
the command line, if the query contains no user-defined functions that take nodes
as arguments, then enable document projection by default.

If nothing else, this would at least ensure that any bugs in the projection code
are quickly discovered.

References
[1] Amélie Marian Jérôme Siméon Projecting XML Documents Proc VLDB 29,

Berlin, Germany, 2009 https://www.cs.rutgers.edu/~amelie/papers/2003/
xmlprojection.pdf

[2] M. A. Jackson: Principles of program design. academic press, London, 1975.
[3] Michael Kay You Pull, I’ll Push: on the Polarity of Pipelines Presented at

Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14,
2009. In Proceedings of Balisage: The Markup Conference 2009. Balisage Series
on Markup Technologies, vol. 3 (2009). DOI: 10.4242/BalisageVol3.Kay01.
Available at https://www.balisage.net/Proceedings/vol3/html/Kay01/
BalisageVol3-Kay01.html

[4] XMark http://www.xml-benchmark.org
[5] Michael Kay Streaming in the Saxon XSLT Processor Presented at XML Prague

2014. Available at http://archive.xmlprague.cz/2014/files/xmlprague-2014-
proceedings.pdf

[6] Saxon http://www.saxonica.com/
[7] XSL Transformations (XSLT) Version 2.1. W3C Working Draft (superseded), 11

May 2010. Ed. Michael Kay. http://www.w3.org/TR/2010/WD-
xslt-21-20100511/

[8] XSL Transformations (XSLT) Version 3.0. W3C Candidate Recommendation,
expected to be published 7 February 2017. Ed. Michael Kay. http://
www.w3.org/TR/xslt-30

Projection and Streaming: Compared, Contrasted, and Synthesized

95

https://www.cs.rutgers.edu/~amelie/papers/2003/xmlprojection.pdf
https://www.cs.rutgers.edu/~amelie/papers/2003/xmlprojection.pdf
https://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html
https://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html
http://www.xml-benchmark.org
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://www.saxonica.com/
http://www.w3.org/TR/2010/WD-xslt-21-20100511/
http://www.w3.org/TR/2010/WD-xslt-21-20100511/
http://www.w3.org/TR/xslt-30
http://www.w3.org/TR/xslt-30

A. Appendix: XMark Queries
This appendix lists the XMark queries in the form they were run for the docu-
ment projection tests.

They differ from the queries published at http://www.xml-benchmark.org in
taking input from the context document rather than using the doc() function: this
was done for convenience, allowing the same query to be used with different-
sized input files.

Table A.1. XMark Queries

Name Query
Q1 for $b in /site/people/person[@id="person0"]

return $b/name
Q2 for $b in /site/open_auctions/open_auction

return <increase> {$b/bidder[1]/increase } </increase>
Q3 for $b in /site/open_auctions/open_auction

where $b/bidder[1]/increase *2 <= $b/bidder[last()]/increase
return <increase first="{$b/bidder[1]/increase}"
 last="{$b/bidder[last()]/increase}"/>

Q4 for $b in /site/open_auctions/open_auction
where $b/bidder/personref[@person="person18829"] <<
 $b/bidder/personref[@person="person10487"]
return <history>{ $b/reserve }</history>

Q5 count(for $i in /site/closed_auctions/closed_auction
 where $i/price >= 40
 return $i/price)

Q6 for $b in /site/regions/*
return count ($b//item)

Q7 for $p in /site
return count($p//description) + count($p//annotation) + count($p//email)

Q8 let $a := for $t in /site/closed_auctions/closed_auction
 where $t/buyer/@person = $p/@id
 return $t
return <item person="{$p/name}"> {count ($a)} </item>

Projection and Streaming: Compared, Contrasted, and Synthesized

96

Name Query
Q9 let $auction := (/) return

let $ca := $auction/site/closed_auctions/closed_auction return
let
 $ei := $auction/site/regions/europe/item
for $p in $auction/site/people/person
let $a :=
 for $t in $ca
 where $p/@id = $t/buyer/@person
 return
 let $n := for $t2 in $ei where $t/itemref/@item = $t2/@id return $t2
 return <item>{$n/name/text()}</item>
return <person name="{$p/name/text()}">{$a}</person>

Q10 declare boundary-space strip;
for $i in distinct-values(
 /site/people/person/profile/interest/@category)
let $p := for $t in /site/people/person
 where $t/profile/interest/@category = $i
 return <personne>
 <statistiques>
 <sexe>{ $t/profile/gender }</sexe>
 <age>{ $t/profile/age }</age>
 <education>{ $t/profile/education}</education>
 <revenu>{ $t/profile/@income } </revenu>
 </statistiques>
 <coordonnees>
 <nom>{ $t/name }</nom>,
 <rue>{ $t/address/street }</rue>
 <ville>{ $t/address/city }</ville>
 <pays>{ $t/address/country }</pays>
 <reseau>
 <courrier>{ $t/emailaddress }</courrier>
 <pagePerso>{ $t/homepage }</pagePerso>
 </reseau>
 </coordonnees>
 <cartePaiement>{ $t/creditcard }</cartePaiement>
 </personne>
return <categorie>
 <id>{ $i }</id>
 { $p }
 </categorie>

Q11 for $p in /site/people/person
let $l := for $i in /site/open_auctions/open_auction/initial
 where $p/profile/@income > (5000 * $i)
 return $i
return <items name="{$p/name}">{ count ($l) }</items>

Projection and Streaming: Compared, Contrasted, and Synthesized

97

Name Query
Q12 for $p in /site/people/person

let $l := for $i in /site/open_auctions/open_auction/initial
 where $p/profile/@income > (5000 * $i)
 return $i
where $p/profile/@income > 50000
return <items person="{$p/name}">{ count ($l) }</items>

Q13 for $i in /site/regions/australia/item
return <item name="{$i/name}">{ $i/description }</item>

Q14 for $i in /site//item
where contains ($i/description,"gold")
return ($i/name, $i/description)

Q15 for $a in /site/closed_auctions/closed_auction/annotation/
 description/parlist/listitem/parlist/listitem/text/emph/keyword
return <text>{ $a }</text>

Q16 for $a in /site/closed_auctions/closed_auction
where exists ($a/annotation/description/parlist/listitem/parlist/
 listitem/text/emph/keyword/text())
return <person id="{$a/seller/@person}" />

Q17 for $p in /site/people/person
where empty($p/homepage/text())
return <person>{$p/name}</person>

Q18 declare namespace f="http://f/";
declare function f:convert ($v)
{
 2.20371 * $v (: convert Dfl to Euro :)
};

for $i in /site/open_auctions/open_auction
return f:convert($i/reserve)

Q19 for $b in /site/regions//item
let $k := $b/name
order by $k
return <item name="{$k}">{ $b/location } </item>

Projection and Streaming: Compared, Contrasted, and Synthesized

98

Name Query
Q20 <result>

 <preferred>
 {count (/site/people/person/profile[@income >= 100000])}
 </preferred>
 <standard>
 {count (/site/people/person/profile[@income < 100000
 and @income >= 30000])}
 </standard>
 <challenge>
 {count (/site/people/person/profile[@income < 30000])}
 </challenge>
 <na>
 {count (for $p in /site/people/person
 where empty($p/profile/@income)
 return $p)}
 </na>
</result>

Projection and Streaming: Compared, Contrasted, and Synthesized

99

