
XPath 3.1 in the Browser
John Lumley

jwL Research, Saxonica
<john@jwlresearch.com>

Debbie Lockett
Saxonica

<debbie@saxonica.com>
Michael Kay

Saxonica
<mike@saxonica.com>

Abstract

This paper discusses the implementation of an XPath3.1 processor with high
levels of standards compliance that runs entirely within current modern
browsers. The runtime engine Saxon-JS, written in JavaScript and devel-
oped by Saxonica, used to run pre-compiled XSLT3.0 stylesheets, is exten-
ded with a dynamic XPath parser and converter to the Saxon-JS
compilation format. This is used to support both XSLT's xsl:evaluate
instruction and a JavaScript API XPath.evaluate() which supports
XPath outside an XSLT context.

1. Introduction
XSLT1.0 was originally developed primarily as a client-side processing technol-
ogy, to increase data-adaptability and presentational flexibility with a declarative
model supported in the browser. By 2006 all the major desktop browsers suppor-
ted it, but the rise in importance of mobile client platforms and their code foot-
print pressures then sounded the death-knell. However, remnants of support for
the XPath 1.0 component of XSLT can be found in most, but not all, of the current
desktop browsers.

In the meantime, spurred mostly by unexpected takeup of XSLT and XQuery
in server-side XML-based architectures, the technologies have progressed
through the “2.0” stage (temporary variables, type model and declarations,
grouping, canonical treatment of sequences, extensive function suites...) to the
current candidate recommendation standards for 3.0/3.1 in XSLT, XQuery and
XPath. At this stage support for maps, arrays and higher-order functions join let
constructs, increased standard function libraries and others to provide a core set
of common functionality based on XPath. XQuery uses this with its own (superset

1

of XPath) syntax to support query-based operation and reporting. XSLT adds a
template-based push model, within an XML syntax, which is designed to be able
to support streaming processing in suitable use cases.

These developments are sufficiently robust and powerful that, other circum-
stances permitting, exploiting XPath 3.1 to process over XML data is highly attrac-
tive. But at present this can only be performed in server-side situations – no
browser developers could contemplate either the development effort or the neces-
sary memory footprints needed for the “2.0” level compilers for what they con-
sider niche (i.e. non-mobile) applications, let alone that required for 3.0+.

What has been developed extensively in browsers are JavaScript processors,
both internal compilers, JIT runtimes and development libraries, such that very
significant programmes can be executed in-browser1. And in general the level of
conformance of and interoperability between implementations in different brows-
ers is reasonable.

Exploiting this JavaScript option for supporting XSLT/XPath /XQuery has
been explored in a number of cases:
• Saxon-CE[1] cross-compiled a stripped-down XSLT2.0 Saxon compiler from

Java into JavaScript using Google's GWT technology. This worked, but the loa-
ded code was large, very difficult to test and debug and very exposed to
GWT's cross-browser capabilities.

• There are a small number of developers working on open-source implementa-
tions in native JavaScript for XPath 2.0 (e.g.Ilinsky[2]) and XQuery (XQIB2),
though it is very unclear their level of standards conformance. Other Java-
Script-based implementations for XPath 1.0 include Wicked good XPath3, sup-
porting the DOM Level 3 subset and XPath-js4 which supports the full XPath
1.0 standard.

• During 2016 Saxonica developed Saxon-JS [3], a runtime environment for
XSLT 3.0, implemented in JavaScript. This engine interprets compiled execu-
tion plans, presented as instruction trees describing the execution elements of
an XSLT3.0 stylesheet. The execution plan is generated by an independent
compiler, which performs all necessary parsing, optimisation, checking and
code generation. Consequently the runtime footprint is modest (~ 200kB in
minimised form) and programme execution incurs no compilation overhead.

1.1. Saxon-JS Runtime – dynamic evaluation
The Saxon-JS runtime environment is written entirely in JavaScript and is inten-
ded to interpret and evaluate XSLT program execution plans and write results

1In the process pushing client-based Java towards oblivion too.
2 http://www.xqib.org/index.php
3 https://github.com/google/wicked-good-xpath
4 https://github.com/andrejpavlovic/xpathjs

XPath 3.1 in the Browser

2

http://www.xqib.org/index.php
https://github.com/google/wicked-good-xpath
https://github.com/andrejpavlovic/xpathjs
http://www.xqib.org/index.php
https://github.com/google/wicked-good-xpath
https://github.com/andrejpavlovic/xpathjs

into the containing web page. These execution plans are presented as instruction
trees describing the execution elements of an XSLT3.0 stylesheet in terms of sets
of templates and their associated match patterns, global variables and functions,
sequence constructors consisting of mixtures of XSLT instructions and XPath
expression resolution programs and other static elements such as output format
declarations.

XSLT programs for Saxon-JS are compiled specifically for this target environ-
ment, using Saxon-EE to generate an XML tree as a Stylesheet Export File (SEF)5.
This tree is loaded by a SaxonJS.transform() within a web page, which then
executes the given stylesheet, with a possible XML document as source and other
aspects of dynamic context, writing results to various sections of the web page via
xsl:result-document directives. The engine supports specialist XSLT modes
(e.g. ixsl:on-click) to trigger interactive responses, based on a model originally
developed for Saxon-CE.

Saxon-JS supports a very large proportion of XSLT3.0 and XPath3.1 function-
ality. As all the static processing (parsing, static type checking, adding runtime
checks.…) of the presented XSLT stylesheet is performed by Saxon-EE during its
compilation operation, programs running in Saxon-JS should benefit from the
very high levels of standards compliance that the standard Saxon product ach-
ieves. At runtime Saxon-JS only has to check for dynamic errors and often these
are programmed in the execution plan as specific check instructions. The conse-
quences are that
• The Saxon-JS code footprint is very much smaller, consisting only of a runtime

interpreter.
• Execution starts immediately after loading the instruction tree – there is no

compilation phase
• But Saxon-JS assumes the code is correct, as all static errors have been removed

and necessary dynamic checks have been added.
• As there is no runtime compiler, or XPath parser, there is no implicit support

for dynamic evaluation of XPath expressions (through the xsl:evaluate
instruction), nor indeed runtime definition and evaluation of functions.

Within some related work on streamability analysis, one of the authors had been
working on parsing XPath expressions using XSLT code to generate reduced
parse trees and manipulating and analysing their properties. One of the possibili-
ties was to recast this work to run entirely in Saxon-JS. But it also opened the pos-
sibility of extending Saxon-JS to both parse the XPath and generate equivalent
execution plans (i.e. Stylesheet Export File) and hence support dynamic evaluation.

5Apart from some additional Saxon-JS attributes, the tree is identical to that used for linking sepa-
rately-compiled packages for execution by a Java-based server-side Saxon engine – hence it shares the
same degree of compilation “correctness” as any other Saxon-processed stylesheet.

XPath 3.1 in the Browser

3

This paper describes the design, construction and testing of such an extension.

2. Overall design
The route from XPath expression to evaluated result involves threee major steps.
Firstly the expression string must be parsed against an XPath grammar to check
that i) it is correct and ii) what XPath instructions are present. This means that
matched grammar productions and variable tokens must be identified and grou-
ped. This is most smoothly reported as a tree. Secondly this representation of the
XPath expression must be converted into a set of suitable instructions for the the
Saxon-JS, which will be cast as an XML tree. Finally the instruction tree needs to
be interpreted by the Saxon-JS runtime, to produce the given result.

The main facility is written as an additional JavaScript object XPathJS added
to the SaxonJS runtime6. There are three significant phases as shown in the figure

Figure 1. Processing phases

• parse(xpath) produces a (reduced) parse tree of the XPath expression, or an
error if appropriate. This has similarities with Pemberton's Invisible XML,

6It has been arranged that the code for these features (which has a memory footprint as large as
Saxon-JS itself) is loaded dynamically when first needed. Thus no additional overhead is incurred if a
stylesheet does not use these features.

XPath 3.1 in the Browser

4

retaining only productions of interest, and decorating them with suitable
properties (such as the op of a MultiplicativeExpr). It also converts sections
defined gramatically as repeats such as X op X (op X)* (e.g. let ….) into
nested trees of constant arity such that later phases only deal with strictly can-
onical forms.

• compile(parseTree,staticContext) generates a suitable SEF tree7. The
parse tree is recursively converted to elements and attributes of the resulting
SEF and static type checking is performed. More details below.

• evaluate(SEF,contextItem,params) interprets the execution plan with an
optional context item, and given parameter value bindings. This uses the
Saxon-JS evaluation engine. The result is then converted or wrapped to an
appropriate final type, such as an iterator around XDM types for use in
xsl:evalute or plain or arrayed Javascript types for a Javascript invocation.

2.1. Parsing the expression
XPath expressions are parsed by a two-step process: firstly the expression is
checked for correctness and a full parse tree generated; secondly this parse tree is
reduced to the essential details and converted to a canonical form.

A parser built from the XPath 3.1 EBNF grammar by Gunther Rademacher's
REx parser-generator [5] is used. This is coded in JavaScript, using callback func-
tions for starting and ending non-terminal productions, detected whitespace and
terminal character phrases, which are indexed into the original input string.
These callbacks are currently used to generate a DOM tree, which can be very
large. For example the simple XPath 1 to 10 generates the following tree (which
is up to 27 levels deep), some of whose closing tags have been elided:

<XPath>
 <Expr>
 <ExprSingle>
 <OrExpr>
 <AndExpr>
 <ComparisonExpr>
 <StringConcatExpr>
 <RangeExpr>
 <AdditiveExpr>
 <MultiplicativeExpr>
 <UnionExpr>
 <IntersectExceptExpr>
 <InstanceofExpr>
 <TreatExpr>
 <CastableExpr>

7In this case the tree is retained in memory and not serialized and written as an external file.

XPath 3.1 in the Browser

5

 <CastExpr>
 <ArrowExpr>
 <UnaryExpr>
 <ValueExpr>
 <SimpleMapExpr>
 <PathExpr>
 <RelativePathExpr>
 <StepExpr>
 <PostfixExpr>
 <PrimaryExpr>
 <Literal>
 <NumericLiteral>
 <IntegerLiteral>1</IntegerLiteral>
 </NumericLiteral>
 …
 </AdditiveExpr>
 <TOKEN>to</TOKEN>
 <AdditiveExpr>
 <the same…>
 <NumericLiteral>
 <IntegerLiteral>10</IntegerLiteral>
 </NumericLiteral>
 …
 </AdditiveExpr>
 </RangeExpr>
 </StringConcatExpr>
 </ComparisonExpr>
 </AndExpr>
 </OrExpr>
 </ExprSingle>
 </Expr>
 <EOF/>
</XPath>

As Pemberton[4] has pointed out, such trees, while correct, aren't very efficient,
so the second phase reduces them to only the minimal essential elements. This is
written as a recursive function reduce() which generally switches on the node
name, with the following strategies:
• Literals have their value written as an attribute on the production.
• By default an element that has only one element child is reduced to the reduc-

tion of that child, e.g.

<AdditiveExpr>
 … <NumericLiteral>
 <IntegerLiteral>1</IntegerLiteral>…
→ <IntegerLiteral value="1"/>

XPath 3.1 in the Browser

6

• Tokens that convey variation meaning are added as suitable attributes to the
main element. Non-essential tokens (which are constant for the given produc-
tion) are deleted, e.g.

1 * 4 to ceiling(10.1)→
… <RangeExpr>
 …<MultiplicativeExpr>
 … <IntegerLiteral>1</IntegerLiteral> …
 <TOKEN>*</TOKEN>
 … <IntegerLiteral>4</IntegerLiteral> …
 </MultiplicativeExpr>...
 <TOKEN>to</TOKEN>
 … <FunctionCall>
 <FunctionEQName>
 <FunctionName>
 <QName>ceiling</QName>
 </FunctionName>
 </FunctionEQName>
 <ArgumentList>
 <TOKEN>(</TOKEN>
 <Argument>
 … <DecimalLiteral>10.1</DecimalLiteral> …
 </Argument>
 <TOKEN>)</TOKEN>
 </ArgumentList>
 </FunctionCall> …
 </RangeExpr>
…
→ <RangeExpr>
 <MultiplicativeExpr op="*">
 <IntegerLiteral value="1"/>
 <IntegerLiteral value="4"/>
 </MultiplicativeExpr>
 <FunctionCall name="ceiling">
 <DecimalLiteral value="10.1"/>
 </FunctionCall>
 </RangeExpr>

• Constructs that can have indefinite repetitions of subsections, such as let
$a:=1, $b:=2 return $a+$b are regularised into nested trees (that can be
either left or right associative) with constant arity, so that subsequent phases
are presented with a canonical form, e.g.

<LetExpr>
 <SimpleLetBinding var="a">
 <IntegerLiteral value="1"/>
 </SimpleLetBinding>

XPath 3.1 in the Browser

7

 <LetExpr>
 <SimpleLetBinding var="b">
 <IntegerLiteral value="2"/>
 </SimpleLetBinding>
 <AdditiveExpr op="+">
 <VarRef name="a"/>
 <VarRef name="b"/>
 </AdditiveExpr>
 </LetExpr>
</LetExpr>

A few other sections of specialist code conversion are carried out at this stage,
including replacing path shortcuts (//, .. and @name) with equivalent full forms.
With this reduced tree, code generation can then start8.

2.2. Generating the execution plan

Many of the SEF instructions are in close correspondence with the XPath gram-
mar productions and their “arguments” correspond to the results of evaluating
their child subtrees, so the (unoptimised) code generation problem is basically to
map the parse tree into a generally similar SEF tree, checking for static errors and
adding runtime instructions to check for dynamic errors. This code generator is
written entirely in JavaScript9.

The bulk of the recursive compiling converter (prepare(node,context)) is a
switch based on the XPath expression production types, e.g. RangeExpr for the x
to y range generator. The context argument contains the static context, such as
namespace prefix mappings, decimal formats and so forth, as well as semi-static
information, such as the inferred type of the context item and the names, alloca-
ted storage slots and (declared or inferred?) types of the external parameters and
local variables that are in-scope for the expression node being processed. (As
usual name scoping follows the following-sibling::*/ descendant-or-
self::* compound axis.)

For many of the productions the conversion is generally to produce an equiva-
lent SEF instruction element (in this case to) with its two children (which could of
course be anything from an IntegerLiteral to a full-blown computation tree)
being processed recursively to produce their value-generating instruction trees.

For example the XPath 1 to 2 * 10 has a reduced parse tree of:

8It should be possible to perform some of this reduction during the original creation of the parse tree
using smarter and language-sensitive callback functions. The authors haven't yet had an opportunity
to explore this.
9It could have been written entirely XSLT and cross-compiled to produce an additional SEF tree that
was used as a programme to generate another SEF tree for the XPath expression. The first author feels
he learned more doing it “the hard way” and a rewrite in XSLT to support a more portable position is
attractive, but it certainly won't be as fast as the native JavaScript version.

XPath 3.1 in the Browser

8

<RangeExpr>
 <IntegerLiteral value="1"/>
 <MultiplicativeExpr op="*">
 <IntegerLiteral value="2"/>
 <IntegerLiteral value="10"/>
 </MultiplicativeExpr>
</RangeExpr>

which is converted to an instruction tree:

<to type="xs:integer*">
 <int val="1" type="xs:integer"/>
 <arith op="*" calc="i*i" type="xs:integer">
 <int val="2" type="xs:integer"/>
 <int val="10" type="xs:integer"/>
 </arith>
</to>

where the type of arithmetic to be performed on the two inner values (integer
times integer) is encoded in the @calc attribute – the runtime calculator is direc-
ted by this. (The @type annotations help show the determined type of the result
during the compilation process – see below. They are not interpreted by Saxon-
JS.)

In some cases, such as LetExpr and ForExpr, the context has to be altered to
add a suitable variable binding and slot allocation to hold its value. In path
expressions such as RelativePathExpr and AxisStep, the mapping is rather
more complex and also involves the generation of specific JavaScript code,
attached to the instruction element, to recognise candidate nodes in execution of
the step.

The FunctionCall production can be used for many cases, apart from calls to
core functions. Casting constructors for the xs:atomic types (e.g.
xs:double('NaN')) are detected and converted to suitable cast instructions.
Some function calls, such as true() are converted into direct instructions. For
calls to the more regular core functions, the function signature is retrieved from a
table and the arity of the call can be checked.

2.3. Static analysis and typechecking

Much of the power of XPath/XSLT comes from the ability to analyse the static
context of sections of the expression and either determine errors (e.g. 1 + 'foo'),
find optimisations (e.g. @foo/ bar will always yield the empty sequence ()) or
determine whether dynamic checks will be required (e.g. string(foo) will
require the child::foo step to be checked for returning a result with a cardinal-
ity of zero or one.)

XPath 3.1 in the Browser

9

To do this requires a complete system to perform principally static type check-
ing, and with the associated issues of type inference in operations such as arith-
metic and determining when atomisation is needed, constitutes the hardest part
of the development.

A static context is passed down through the recursive compilation, and all
results have a type/cardinality computed for them. (The computed types are
added as a JavaScript property to the elements – additionally writing their string
values as @type attributes during development helps debugging as they appear in
serializations of the instruction tree, but these are ignored by Saxon-JS.) Some
instructions will need to refer to the type of the current context item; others may
alter what the current context item is (e.g. forEach) and consequently alter its
type for some of the children. Functions have definitive signatures which apply
type constraints on their arguments and provide types for their result.

All these point to a requirement for a generic static type check mechanism
which, given an instruction node and the required type from its parent context,
either returns the construct if considered “type-safe”10 or returns it surrounded
with a suitable cast instruction if such is needed and permitted or detects and
reports irreconcilable errors or wraps potentially errant instruction subtrees with
suitable runtime check directives. This was achieved by transcribing the Java-
based typechecker used in Saxon-HE11 to a JavaScript equivalent, which uses
many of the constants and tags in exactly the same form – this reduced transcrip-
tion errors considerably.

Saxon-JS itself requires a type hierarchy model for runtime to satisfy instance
of queries. This principally involves the built-in atomic types (xs:NCName,
xs:dayTimeDuration…) and is defined alongside Javascript objects
Atomic.typeName which acts as wrappers around suitable XDM implementa-
tions.

For static analysis however, more detail is required, particularly adding car-
dinality, so a compound Type object is used (wrapping a pointer to the singleton
base type and a cardinality object). This is then used to generate an ensemble of
type objects dynamically, such that many of the assertions and checks can be
made using identity tests. For example t = makeType("xs:string?") produces a
Type object such that t.baseType == BuiltinAtomicType.STRING and t.card
== StaticProperty.ALLOWS_ZERO_OR_ONE. With this mechanism we can com-
pute type assertions and checks quite smoothly.

2.4. Evaluation
With the execution plan now constructed as an SEF tree, then the expression can
be evaluated, just like any other XPath subtree found within an XSLT stylesheet.

10Some operations effectively operate polymorphically.
11Perhaps one of the most critical sections of that product in terms of standards comformance.

XPath 3.1 in the Browser

10

The dynamic context must first be initialised. This involves setting the initial con-
text item (if any) and setting up the values of the supplied parameters into their
appropriate value storage slots. (When run under xsl:evaluate generating
instructions for these are present as named subtree children.) Then the internal
SaxonJS.Expr.evaluate(SEF,context) process is called. This will return an iter-
ator over the results (or throw an error!), which will be treated as the result of
xsl:evaluate and futher processed in the normal way.

3. Pure JavaScript XPath evaluation
The bulk of the work above was geared to supporting dynamic evaluation of
XPath expressions within XSLT stylesheets run under Saxon-JS, through the
xsl:evaluate instruction. But in the process we have constructed all the machi-
nery to support evaluation from JavaScript itself, effectively through the com-
pound:

evaluate(compile(parse(xpath),staticContext),contextItem,params)
This has been implemented as a function

XPath.evaluate(xpath,contextItem?,options?)
which will carry out the evaluation of the given XPath expression, with an

optional binding to the initial context item, and a set of options which describe
aspects both of the static (e.g. xpathDefaultNamespace) and the dynamic (e.g.
params: {conference : "XMLPrague", year: 2017}) context, as well as con-
trolling the result format12.

This then means that with the Saxon-JS runtime loaded, but no XSLT style-
sheet, it will be possible to evaluate XPath3.1 expressions. As an example here is a
webpage on Figure 2 which sets the time on a number of contained clocks, both
digital and analogue.

This is the JavaScript within that web page:
var thisDoc = window.document;

var timezones = {
 "London": "PT0H",
 "New York": "-PT5H",
 "San Francisco" : "-PT8H",
 "Delhi" : "PT5H30M",
 "Tokyo" : "PT9H"
};

function setClocks() {

12How a sequence of result items is presented - consistently as an array, “smart” (null, singleton or
array) or as a (potentially lazy) iterator.

XPath 3.1 in the Browser

11

 var clocks = SaxonJS.XPath.evaluate(
 ".//*[tokenize(@class)='clock']",thisDoc,{resultForm:"array"});
 for(var i =0; i < clocks.length; i++) {
 setClock(clocks[i]);
 }
}

function setClock(clock) {
 var findTime = "let $loc := normalize-space(.//*[@name='city']), "+
 "$t := if($loc = ('Local Time','')) then current-time() " +
 "else adjust-time-to-timezone(current-
time(),xs:dayTimeDuration(map:get($timezones,$loc)))" +
 "return map{'hour':hours-from-time($t), 'minute' : minutes-from-
time($t)," +
 " 'second' : floor(seconds-from-time($t))}";
 var time = SaxonJS.XPath.evaluate(findTime, clock,
 {params: {"timezones": timezones}});

 var findIndicators = "map:merge(for $class
 in ('hour','minute','second') " +
 "return map:entry($class, array {.//*[@class=$class]}))";

Figure 2. Clocks set by XPath

XPath 3.1 in the Browser

12

 var timeIndicators = SaxonJS.XPath.evaluate(findIndicators,clock);

 var computeAngles = "let $m := .?minute " +
 "return map{'hour':(.?hour mod 12) * 30 + $m div 2,
 'minute' : $m * 6,
 'second' : .?second * 6}";
 var angles = SaxonJS.XPath.evaluate(computeAngles, time);

 for(var part in timeIndicators) {
 var nodes = timeIndicators[part];
 for(var i = 0; i < nodes.length; i++) {
 var node = nodes[i];
 if(clock.namespaceURI == "http://www.w3.org/2000/svg" &&
 !(node.localName == "tspan" || node.localName == "text")) {
 node.setAttribute("transform","rotate("+ angles[part] + ")");
 } else {
 var t = time[part];
 node.textContent = t < 10 ? "0"+t : t;
 }
 }
 }
}

Each of the clocks (both HTML and SVG forms) are identified as being in class
clock and each may contain an element with an attribute name="city". For each
clock the possible timezone offset is found from the name of that city (assumed
the text content of the naming element) and the appropriate adjusted current time
computed as separate hour, minute and second components. Then the indicators
within that clock are found through an XPath returning a map of discovered
nodes (which might be multiple and have @class either hour, minute or second)
with suitable component label keys. Finally the time for each indicator is set: SVG
non-text items are rotated by the appropriate angle using a transform attribute;
all others have their text content set to the given number.

4. Testing
Very early work merely took an XPath expression and generated the candidate
SEF, which was serialized and compared against what Saxon-EE would produce
for the same expression. This was a very effective development method used
throughout the work on the reasonable assumption that Saxon produces very
highly compliant execution and that the Saxon-JS runtime had been tested by
running with a server-side JavaScript interpreter such as Nashorn.

But there are many many aspects to XPath3.1, for which the dynamic compiler
would have to be checked, so some (semi-)automated approach was attractive, or
more likely essential. Obviously the QT3 testsuite has a large number of tests for

XPath 3.1 in the Browser

13

XPath and XQuery (more than 18,000 for XPath alone). Could we build a suitable
test harness that ran some of these entirely within the browser? Yes we could and it
proved to be highly effective, both in testing the parse/compile process and also
in exercising and debugging the Saxon-JS runtime within the browser over more
of the obscure facets of the QT3 test suite.

4.1. QT3 testing in the browser
This was the stimulus for getting some implementation of xsl:evaluate going
very early in the project. It enabled an XSLT stylesheet to be written that pro-
cessed the QT3 testsuite, passing each required test to xsl:evaluate and check-
ing the result assertions and reporting the results entirely within a webpage.
Development then became a question of running appropriate test sets by loading
the web page, which loaded up the repertoire of QT3 test sets, clicking on those
(groups) to be run and examining the results (assuming the JavaScript hadn't
crashed!) In the case of failure of a specific test we can also display a serialisation
of the compiled code to aid debugging.

Figure 3. Testing the math: functions

This approach was used for almost all the development of the dynamic evalua-
tion. As of writing some 18,000+ of the tests are passed with only between 110
and 190 failures, depending upon the browser used13. (These cover even tests for
recent features such as arrays, maps, lookup operators, arrow application opera-
tors and so forth.) Here is an example of processing the math: function tests.

13There are some 4,000+ additional tests that are excluded because their dependencies include either
XQuery or other features (such as higher-order functions or UCA collation) not supported by Saxon-JS

XPath 3.1 in the Browser

14

4.2. Comparing browser coverage
One of the advantages of running the QT3 tests entirely within a browser-borne
setting is that performance can be checked for a variety of browsers, merely by
loading the web page into the browser to be tested, clicking a few buttons and
waiting for the result reports to be displayed. If we then arrange to save the final
web page (Save As...)14 then we have a machine-readable record of the results.
By writing an XSLT stylesheet that reads in these pages15 a comparison in cover-
age between the browsers can be generated. Here is the top-level comparison in
terms of total errors16:

Figure 4. Comparing browser results

at present. A smaller number of tests (perhaps <100) are excluded specifically because they impose
unrealistic demands (e.g. a map with 500,000 entries, which crashes Safari, but interestingly not the
other main browsers) or are subject to some dispute (particularly so in case of statically inferred errors
that dynamically will not occur)
14For the Edge and Internet Explorer browsers, the menu save is only the original source XHTML: to
save for these browsers involves an “Inspect Element ” action and a copy-and-paste of the whole
active webpage DOM.
15Safari excluded, these are well-formed XML, so doc() suffices. Safari uses a binary .webarchive for-
mat, which can be read and decoded using EXPath File and Binary extension functions and parse-
xml() on the resulting string.
16Green denotes successful tests, red failures, orange expected failures but with the wrong error code.
Strike through are the number of tests not run, either by specific exception or excluded by unsuppor-
ted features. Red italics indicate a failure where the XPath expression used the xs:float type – this is
coerced to a JavaScript Double in Saxon-JS so results are computed to higher precision than anticipa-
ted or permitted and exact equality comparisons in the test assertions can fail.

XPath 3.1 in the Browser

15

Detailed comparison on failing tests by browser is also reported, as shown here,
where different successes for tests of unparsed-text-lines() are revealed. (The
last column lists tests that were not run deliberately and the reason why: in this
case the test assertion of error is a pessimistic static assumption.)

Figure 5. Detailed error comparison

4.3. Testing the JavaScript API
Testing the JavaScript API required a slightly different approach. If we assume
the QT3 tests run through xsl:evaluate mechanism has proved both the
XPath→SEF and SEF(args)→result paths are correct, we just need to test the call-
ing options for SaxonJS.XPath.evaluate(). This is most conveniently carried
out by constructing a web page with tabular entries containing argument compo-
nents of XPath expression, context item and options, with a simple JavaScript that
iterates across table rows, accumulating these components from textual values of
cells, then calling the dynamic evaluator and writing the results (possibly serial-
ized) into another result-holding cell.

5. Performance
There are two aspects of performance to consider. The first is accuracy of execu-
tion and the degree of conformance to standards. As has been indicated in the
previous section, we've managed to achieve a very high degree of such as meas-
ured by the QT3 test suite, failing ~0.5% of the tests. Some errors are inevitable
(e.g. the use of Double for xs:float), others are in very obscure cases (uncaught
errors that actually can never be triggered), a few are just wrong and will eventu-
ally get corrected. In practice we consider the product has high enough conform-
ance for production use.

The second of course is execution speed. This we have not measured directly
yet, but the best indicator we have so far is the execution of sections of the QT3
test suite. As an example, on a high-end (2016) Windows laptop, the 3446 tests for
the operators (op-except, op-numeric-add etc) are processed completely in 27

XPath 3.1 in the Browser

16

seconds under Firefox and 15 seconds under Opera, from original “click” to fin-
ished results, including execution of all the surrounding XSLT test harness17. As
for each of the tests i) it needs to be compiled and executed and ii) its result asser-
tions tested (some of which contain XPath expressions that must be evaluated,
thus needing additional compilation), there are >3446 XPath evaluations required.
This suggests that each evaluation takes somewhere in the 2-5 ms region. As we
anticipate most use of these dynamic features will involve small numbers of
XPath expressions, with “a human in the loop”, we do not forsee significant prob-
lems with compilation/execution performance.

6. Future Developments & Conclusions
Like the Stylesheet Export File, we use XML trees (in this case in-browser DOM
trees) to represent the intermediate parse results and generated code. But the
manipulation of these trees involved is not complex, mostly concerned with test-
ing node name, child and/or attribute existence and iterating over children. It has
been suggested (in [3]) that the export format might also have a JSON-based alter-
nate. If this was the case then much of the compiliation code described here could
be recast relatively easily to use a JSON representation as the main data type e.g.

1 to 2 * 10 →
{ name : "RangeExpr",
 children : [
 { name: "IntegerLiteral", value: 1 },
 { name: "MultiplicativeExpr", op: "*",
 children: [
 { name: "IntegerLiteral", value: 2 },
 { name: "IntegerLiteral", value: 10 }
] }
]
}

We've suggested earlier that the reduction phase of the initial parse might be
improved by a smarter use of callbacks within the parse-tree former. Obviously
during the compilation process there will be many more opportunities to opti-
mise the resulting code. The easiest would be the complete evaluation of literal
subexpressions, i.e. those for which there is no dependency on execution context
within the subtree. In such cases the compiled subtree can be evaluated and its
sequence result projected as a sequence of suitable instructions, based on the lit-
eral forms. Whether it is worth doing this however is a moot point, as, unless the
same (dynamic) XPath is going to be executed repeatedly, little extra would be

17Most browsers show similar performance within perhaps a factor of 2, with the noteable exception
of Internet Explorer which seems to be consistently about 5x slower than the rest.

XPath 3.1 in the Browser

17

gained and indeed additional time would be taken up in determining whether an
evaluation could be performed.

This leads on to the issue of whether an intermediate compiled output is
desirable. Earlier versions of Saxon (within a Java environment) used a pair of
functions saxon:expression() and saxon:eval(), with the former producing a
stored expression that the latter would use to evaluate against a given dynamic
context. A similar partitioning within JavaScript could be provided easily.

6.1. Conclusion

This paper has shown that when an XPath “instruction execution engine” is avail-
able within a browser context, it is possible to add a dynamic XPath evaluation
facility provided that i) an accurate and efficient XPath parser is also available
and ii) very accurate code for static type checking, coercion and casting is devel-
oped. Development of such a feature is aided considerably by the existence both
of an external “oracle” to demonstrate what a correct “execution plan” should be
for a given XPath expression (in this case using Saxon-EE and examining gener-
ated SEF) and the early construction of a test harness to exercise the QT3 test suite
(in this case as an XSLT stylesheet invoking via the xsl:evaluate instruction.)

In the case of Saxon-JS and the XPath.js additional module we have devel-
oped an implementation with very high levels of conformance to the XPath 3.1
specification, demonstrated by rapid running of the the QT3 test suite entirely
within the browser. We have also been able to demonstrate and record the (small)
differences in conformance between the half-dozen major browsers.

References
[1] O'Neil Delpratt and Michael Kay. Multi-user interaction using client-side XSLT..

2013. http://archive.xmlprague.cz/2013/files/xmlprague-2013-
proceedings.pdf

[2] Sergey Ilinsky. XPath 2.0 implementation in JavaScript . 2016. https://
www.openhub.net/p/xpath-js

[3] Debbie Lockett and Michael Kay. Saxon-JS: XSLT 3.0 in the Browser.. 2016.
http://www.balisage.net/Proceedings/vol17/html/Lockett01/
BalisageVol17-Lockett01.html

[4] Steven Pemberton. Invisible XML.. 2013. http://www.balisage.net/
Proceedings/vol10/html/Pemberton01/BalisageVol10-Pemberton01.html

[5] Gunther Rademacher. REx Parser Generator. 2016. http://
www.bottlecaps.de/rex/

[6] XQuery in the Browser. 2016. http://www.xqib.org/index.php

XPath 3.1 in the Browser

18

