
Parallel Processing
in the Saxon XSLT Processor

Michael Kay
Saxonica

<mike@saxonica.com>

Abstract

One of the supposed beneits of using declarative languages ǻlike XSLTǼ is the
potential for parallel execution, taking advantage of the multi-core processors
that are now available in commodity hardware.

This paper describes recent developments in one popular XSLT processor,
Saxon, which start to exploit this potential. It outlines the challenges in imple-
menting parallel execution, and reports on the beneits that have been observed.

ŗ. Introduction
In recent years, increased hardware speeds have been achieved largely by packing
more processors onto a chip. To take full advantage of the processor capacity,
therefore, it is necessary to take advantage of parallelism. Languages that can exploit
parallel processing, ideally ȃunder the hoodȄwithout involvement of the program-
mer, therefore have great appeal.

The potential for parallel execution has always been one of the justiications for
makingXSLT a purely declarative language. Declarative languages,withoutmutable
variables, give the compilermuchmore freedom to rearrange the order of execution,
including the ability to perform tasks in parallel. To take a simple example, XSLT’s
<xsl:for-each> ȃloopȄ is not actually a loop in the sense of traditional procedural
programming languagesǲ rather it is a mapping operatorǱ it applies a function ǻthe
body of the <xsl:for-each> instructionǼ to an input sequence ǻthe result of evaluating
the expression in the select attributeǼ. “s demonstrated by the popularity of themap-
reduce paradigm, a functionalmapping operation is an ideal candidate for parallel-
isation. While most XSLT processors today will process the selected items one by
one, in order, there has always been the freedom to process them in a diferent order,
or in parallel. The diiculty, of course, is to decide when this is an appropriate
strategy.

The connection between declarative languages and parallel processing is not
new. See for example [ŗŗ], or [ŗ], or [ŝ]. For example, Chakravarty writesǱ

ŗ



Declarative programming languages have long been seen as good candidates for
programming parallel computers. Their clean semantics makes them suitable for
optimizing program transformations, on the source level and during compilation.
However, researchers have found it diicult to present eicient parallel execution
models for declarative languages. Generally speaking, it appears to be impossible to
automatically identify the exact parallelism that leads to a reduction in execution
time, and the irregular access to dynamic data structures can result in considerable
overhead on distributed memory machines.

The idea of exploiting parallelism has been mooted since the earliest days of XSLTǱ
here for example is Eric Ray writing on the xsl-list forum on ŗ Oct ŘŖŖŖǱ

The subtree processing model of XSLT seems to make it a good application for parallel
processing ǻi.e. using multiple CPUs to process diferent subtrees simultaneouslyǼ.
Since many people have remarked on the inherent slowness of XSLT processors, I
wonder if anyone has succeeded in creating an XSLT processor that successfully di-
vides the work among diferent processors, resulting in a gain of processing speed.
Has anyone tried this? Some of the implementations are written in Java, such as
XT. Do they use multi-threading and can they take advantage of multiple CPUs?

Research attempts at parallel execution of XSLT transformations have been reported.
See for example [ŗŖ], or [Ş] et al. “ characteristic of these systems is that the entire
architecture of the processor is designed from the ground up to support parallelisa-
tion. While this can yield useful research results, there is a danger that from an en-
gineering perspective, other objectives get sacriiced.

In the commercial domain, there are high-end XSLT processors from I”M and
Intel, marketed as hardware-assisted XSLT accelerators, which may well make use
of parallel processing internally, but if so, no details are available in the public do-
main. “ltova’s marketing literature for RaptorXML intriguingly claims ȃthe engine
takes advantage of today’s ubiquitous multi-CPU computers to deliver lightning
fast processing of XML and X”RL dataȄǲ but it is hard to ind any technical details
on how it does so.

This paper describes the incremental approach to parallelism adopted in the
Saxon product ǻsee [ş]Ǽ. Saxon is awidely usedXSLT andXQuery processor available
in both open-source and commercial editions. Unlike some of the research vehicles
described in the literature, Saxon is not designed from the ground up for parallel
processing, and there has been no attempt tomake radical changes to its architecture
to take advantage of multi-core computers. ”ut where opportunities for parallel
processing have presented themselves, they have been grasped, and for some
workloads they deliver substantial beneits. This paper describes how parallel
processing is used in Saxon today, and explains some of the beneits that can be
achieved, and the challenges that need to be overcome.

Ř

Parallel Processing in the Saxon XSLT Processor



Ř. Running Multiple Transformations in Parallel
The most trivial form of parallelism, which has probably been ofered by all XSLT
processors since day one, is the ability to apply the same stylesheet independently
to several source documents at the same time. “lthough this capability is quite easy
to achieve, and is probably taken for granted bymost users, it is worth saying a few
words about it, irstly because it delivers substantial beneits, and also because it
creates a few challenges.

Clearly some workloads will beneit immensely from this approach. XSLT is
often used server-side on high-throughput web publishing platforms to render
XMLdocuments on demand intoHTML for viewing on the browser. Typically such
platforms have a small number of XML document types, with a large number of
instances of those types, and the sameXSLT stylesheets are usedwith high frequency.
In such an environment, there is considerable beneit in compiling the stylesheet to
eicient code ǻactual machine code or something higher levelǼ, and in executing
that code in parallel threads to meet the throughput and response time targets of
the online user community.

Saxon has always been optimized for this kind ofworkload. Perhaps excessively
soǱ igures published by [ś] show that while Saxon’s run-time performance ranks
with the best, this is sometimes at the expense of relatively poor compile time per-
formance, which can be attributed to the amount of time spent optimizing. This is
a good strategy for this server-basedworkload, but a poor one for single-shot adhoc
processing where the cost of compiling a large family of stylesheets, such as those
used for the DIT“ or Doc”ook vocabularies, may dwarf the cost of a typical trans-
formation.

“lthough parallel execution of independent transformationsmay appear trivial,
it is not without its complications. Two problems in particular have been recurrent
over the yearsǱ contention, and reliability.

Ř.ŗ. Contention
“ very intensive operation in performing an XSLT transformation is the matching
of element and attribute names appearing in the source documentwith names used
in the stylesheet. Comparison of strings is slow, especiallywhen they include lengthy
namespace URIs. To eliminate this cost, Saxon has for many years implemented a
NamePool which maps strings to integer codes, so during execution, the string
comparisons are replaced by much faster integer comparisons. Of course, the same
mapping must be used when a stylesheet is compiled and when a source XML
document is parsed into a tree representation. ”ut because a single compiled
stylesheet can be used to transform multiple XML documents, this means that all
the XML documents must use the same integer codes, and this means that the

ř

Parallel Processing in the Saxon XSLT Processor



NamePool used to allocate these codes is a shared resource, and as such it can sufer
contention. This has been known, in some cases, to cause a signiicant bottleneck.

“ number of techniques have been used to reduce this problem. In earlier re-
leases, all QNames were represented by integer codes, including for example the
names of variables and functions, and names in the result document. Today these
codes are used only in source documents to which XPath processing is applied. In
addition, the module that builds source documents uses caching techniques to
minimise contentionǱ synchronized access to theNamePoolhas therefore been greatly
reduced in the common case where the vocabulary of names reaches steady state
quickly. Nevertheless, it remains a potential bottleneck. There is scope to reduce
contention further by partitioning, for example by creating one NamePool per
namespace, but this can only be a partial solution. “ more radical approach has
been considered, in which there is a mapping table ǻone per transformationǼ from
integer codes used in the stylesheet to ǻdiferentǼ integer codes used in the source
document. This indirection could noticeably reduce transformation speed, but if it
increases the scope for parallelism, it could be worthwhile. This lesson illustrates
the need to ind engineering compromises between diferent objectives and a variety
of workloadsǲ the danger with a research project that focuses on parallelisation to
the exclusion of all else is that it fails to achieve a balance.

Contention of course becomes even more of a problem once parallel processing
is usedwithin a single transformation. In fact, it becomes the limiting factor onwhat
can be achieved.

“nother point worthmentioning here is that the need to avoid contention tends
to impose a design where stylesheet compilation and optimisation is completed
before execution starts. This way, the data structures representing the compiled
stylesheet, whatever form they take, are read-only and therefore contention-free at
execution time. However, as we have seen, there are workloads where compiling
everything before execution starts is far from optimal. In the massive stylesheets
that come with Doc”ook or DIT“, most of the template rules deine processing for
elements that rarely or never occur in a typical source documentǲ efort spent com-
piling and optimising these template rules is wasted if they are never used. “ just-
in-time compilation approach in such cases has many attractionsǲ but it also runs
the risk of increasing contention when used in a shared workload.

Ř.Ř. Reliability
Even with the very limited form of multi-threading described in this section, there
has been a steady trickle of bugs over the years. These bugs are rare, but potentially
devastating. They often take years to discover ǻbecause the occurrence is probabil-
isticǼ, and when they do occur they are hard to diagnose. It is often impossible to
reproduce the problem ȃin the labȄ, that is, anywhere other than the site running
a production workload. One such bug a year is too many. We have been very fortu-

Ś

Parallel Processing in the Saxon XSLT Processor



nate that the users who discovered these bugs have had the technical competence
and commercial patience to take the lead in collecting the data needed to solve them.

Preventing such bugs arising is not easy ǻsee for example [ŗŘ]Ǽ QuoteǱ ȃCreating
software that can be run by multiple threads concurrently is a daunting
task—dwarfed only by the act of testing that codeȄ. Saxon is implemented in Java,
and switching to a diferent language is not a realistic option, given the existence
of around ŘśŖK lines of code. Even if it were an option, it’s not clear that a diferent
language would really help. Java ofers the basic primitives needed to coordinate
multiple threadsǲ the problem is that it ofers very little in the way of tooling to en-
sure that a complex program is thread-safe. The basic discipline to ensure that
multiple executions of the same stylesheet can run concurrently is very simply
statedǱ code that runs at execution time must not modify the expression tree. One
can envisage tools ǻassisted by annotations in the codeǼ that check such an assertion
statically, but we are not aware of any. Saxon includes about ŚŖŖ classes that interact
directly with the expression tree, and if we rely on programmer discipline alone,
mistakes will occasionally happen.

ǻHaving said this, we could do better with soak testing. We should probably
have a test where we run each of the ŗŖ,ŖŖŖ stylesheets in the WřC test framework
concurrently in a dozen threads for ŘŚ hours or so, and check that each thread pro-
duces correct output. “s it is, our concurrency testing is a woefully small part of
our total test programme.Ǽ

“gainǱ if reliability is imperfect with the relatively trivial parallelism described
in this section of the paper, thenwe need to be extremely cautious about introducing
more ambitious parallelism, because reduced reliability is not a pricewe are prepared
to pay for any performance beneits.

ř. Multi-threading and Streaming
While memory sizes appear astronomic compared with a few years ago, the size of
data iles that peoplewant to transformgrows at a similar rate, and therewill always
be a handful of users who need to transform iles that are too big to it in physical
memory. Streamed XSLT processing, which avoids the need to build a tree repres-
entation of the source document in memory, has therefore been an increasing area
of focus in recent years. It is the main focus of XSLT ř.Ŗ ǻ[ŗř]Ǽ, and is a major area
for implementation work in Saxon ǻ[Ś]Ǽ.

Multi-threading and streaming are not orthogonal. Indeed, many of the oppor-
tunities for multi-threading become more diicult when processing has to be
streamedǱ it is then no longer possible, in the terms used by Eric Ray cited above,
to process diferent subtrees in parallel, because this relies on bufering data in
memory. ǻ”ut for a counter-argument to this assertion, see the paper by JakubMalý
at this conferenceǱ [Ŝ]Ǽ. However, all is not lost.

ś

Parallel Processing in the Saxon XSLT Processor



The irst use of multi-threading in Saxon was in fact to implement a form of
streaming. This provided a mode of processing in which the source document was
split into a sequence of subtrees, and each subtree was transformed independently
ǻthis is still a simple and useful processingmodel that is often good enough to solve
the streaming requirementǼ. The reason for using multi-threading was primarily to
solve a push-pull conlict in the processing pipelineǱ see [ř] and [Ś]. We refer to a
software component as operating in pull modewhen it performs a sequence of read
operations to obtain its input, and as operating in push mode when it is invoked
repeatedly by a supplier of data to process data as it becomes available. “ conlict
arises when two components in a pipeline both want to be in controlǱ in this case,
an XML parser which wants to push data to the XSLT/XPath processor, and an
XPath processor which wants to pull data from the XML parser. One solution is to
run the irst component ǻthe XML parserǼ to completion, putting all the data in
memory, before starting execution of the second component ǻthe XSLT processorǼ.
This is the traditional architecture of today’s XSLT processors. “n alternative solu-
tion, adopted in Saxon, is to use two threads for the two processes, passing data
from one to the other via a synchronized queue.

”ut although this approach breaks the document into subtrees that are processed
independently, in the current implementation they are processed sequentially rather
than in parallel. There are only two threads, one parsing and building the subtrees,
the other processing themone at a time as they become available. Itwould be diicult
to split the parsing thread into multiple threads, because it reads the input data se-
quentially. Splitting the processing thread would be easier, though it would still
need coordination to ensure that results are written to the inal result tree in the
right order.

This approach has fallen into disuse in more recent releases, though it is still
used in some cases, for example in the streamed implementation of the new XSLT
ř.Ŗ <xsl:merge> instruction. The reason is that it is no longer requiredǱ the push-
pull conlict has been eliminated by rewriting the XPath engine to operate in push
mode, accepting input in the form of events triggered by the XML parser. “ny
performance beneits obtained by running two threads rather than one were an in-
cidental part of the design ǻthemain objective being to reducememory requirementsǼ.
It would of course be possible to continue running the parser and XSLT processor
in separate threads even when there is no push-pull conlict forcing this, but we
would need to make careful measurements to ensure that this actually delivered
beneits.

Ś. Multi-threading in Saxon Today
In the current Saxon release ǻş.ŜǼ there are four main ways multi-threading is used,
and they will be described in this section. In all cases, multi-threading is a feature
ofered only in the Enterprise Edition of the product.

Ŝ

Parallel Processing in the Saxon XSLT Processor



Ś.ŗ. The collectionǻǼ function
The collectionǻǼ function reads a set of input iles. TheWřC speciication is deliberately
vague aboutwhat constitutes a collection, because it needs to accommodate a variety
of diferent database architectures. “lthough the facility was designed to allow
searching a collection of documents held in an XML database, it is also very useful
for transforming a collection of rawdocuments held in ilestore ǻfor example, I have
a stylesheet that transforms the thousands of documentsmakingup theWřCXQuery
test suite into a set of tests suitable for testing XSLTǼ.

”y default, Saxon-EE implements the collectionǻǼ function in multiple threads. “
pool of threads is allocated ǻwe choose a number based on the number of CPUs
available, forwant of any better indicatorǼ, and the parsing of the source documents
making up the collection is distributed among these threads. The XPath expression
that invoked the collectionǻǼ function receives the parsed documents in the order in
which parsing is completed.

This is a very straighforward use of multi-threading for a task that is easily dis-
tributed. There is very little scope for contention ǻthe only shared resources being
theNamePool, discussed above, and the queue on which each parsing thread places
the parsed document on completionǼ. ”ecause XMLparsing cost can often dominate
transformation cost, the beneit is high, and the risks in terms of contention and
reliability are low.

There are decisions to be made about the order of results. “lthough WřC does
not mandate that collection results are delivered in any particular order, users may
have an expectation about the order. “nother complication is that an expression
like collection()/doc is mandated to deliver results in document order, which is
somewhat arbitrary, but it cannot be assumed that this is simply the order in which
the results become available. ǻSmart userswill write collection()!doc to avoid any
risk of triggering a sortǲ but not all users are this smart, and some will deliberately
prefer a construct that works in XPath Ř.Ŗ as well as ř.Ŗ.Ǽ

In Saxon ş.Ŝ, the multi-threading of the collectionǻǼ function was implemented
in the defaultCollectionURIResolver class, which is taskedwith taking aURI as input
and delivering a sequence of documents as output. There are two drawbacks to this
design. Firstly, multi-threading doesn’t work if the user substitutes their own Col-
lectionURIResolver, which is a perfectly reasonable thing to do. Secondly, the approach
is incompatible with streaming. If we want each of the documents in the collection
to be processed using streaming, then having aCollectionURIResolver that pre-builds
each document in memory scuppers this. The design has therefore been changed
for Saxon ş.ŝ.ŗ XSLT ř.Ŗ introduced a new function uri-collectionǻǼ to handle this
case. In the newdesign, theCollectionURIResolver returns ǻsynchronouslyǼ a sequence
of URIs, and the stylesheet can then process the collection either by constructing

ŗ“nything this paper says about future releases is subject to change without notice.

ŝ

Parallel Processing in the Saxon XSLT Processor



in-memory documents ǻusing the collectionǻǼ functionǼ or, for example, by streamingǱ
the code might be writtenǱ

<xsl:for-each select="uri-collection('my-dir')"> <xsl:stream href=".">
<xsl:apply-templates mode="streaming"/> </xsl:stream> </xsl:for-each>

This change puts the responsibility for multi-threading onto the collectionǻǼ
function or the <xsl:for-each> instruction respectively.

The performance beneits ofmulti-threading the collectionǻǼ function can be illus-
trated by a simple experiment. The query

count(collection('shakespeare')//LINE)
took ŗŜŖms to count all the LINE elements across the corpus of Shakespeare’s

plays without multi-threading, reducing to ŞŖms with multi-threading enabled. In
this test, Ş threads were used.

Ś.Ř. Multiple result documents
When Saxon-EE encounters an <xsl:result-document> instruction, it starts a new
thread to process it. The original thread continues processing with the next instruc-
tion after the <xsl:result-document>. When a transformation produces multiple
result documents, they are therefore produced in parallel.

This use ofmulti-threading is considerablymore complex, becausewe nowhave
diferent instructions in the stylesheet executing simultaneously. It is simpliied,
however, by the fact that the output of each thread is written ǻtypically serialized
to diskǼ independently of the other threads, so there is no need to combine the out-
puts of diferent threads on completion. Nevertheless, there can be interactions
between threads. These mainly arise because of the use of lazy evaluation. The dif-
ferent threads can access the same local and global variables, which would be ine
if variables really were immutable, but internally, Saxon evaluates variables lazily
ǻand progressivelyǼ, so access to variables needs to be synchronized. This applies
only to variables declared outside the scope of the <xsl:result-document> instruc-
tionǲ for variables inside its scope, each thread has its own copy. “ny apparent cost
that might arise from repeated evaluation of the same variable is eliminated by
Saxon’s compile-time optimization rewrites, which use loop-lifting to extract expres-
sions from loops if their value is not dependent on the looping variables.

“nother complicationwhichmight not be immediately obvious is the use of the
XSLT ř.Ŗ try/catchmechanism to recover from dynamic errors that occur during the
execution of the <xsl:result-document> instruction. This is the only way that the
spawned thread can afect anything that happens in the original thread. ”efore an
<xsl:try> instruction completes, it must check that all threads spawned within its
scope have completed successfully, and if necessary, it must wait for them to com-
plete. In fact dynamic errors also need to be considered even in the absence of
try/catch instructions, because the top-level invocation of the transformation via an
“PI call such as transformǻǼ needs to throw an exception if any dynamic error has

Ş

Parallel Processing in the Saxon XSLT Processor



occurred in the transformation. “lthough we could make the concurrency visible
at the application level, we choose not toǱ the transformǻǼ method does not return
until all threads have completed, and if any thread raises a dynamic error, the call
to transformǻǼ throws an exception.

Executing multiple instructions simultaneously has various other implications
which are perhapsmundane, but worthmentioning because getting the detail right
can be a lot of efort. One such detail, for example, is the need to ensure thatmessages
produced by diferent threads ǻusing <xsl:message>Ǽ are not intermingled in a log
ile, at least to the extent that the output from each invocation of <xsl:message> re-
tains its integrity.

“nother detail is the evaluation of the lastǻǼ functionǱ if one result document is
produced for each element in some input sequence, then it is quite possible that the
lastǻǼ functionwill be calledwithin the scope of the <xsl:result-document> instruc-
tion. When lastǻǼ is evaluated against a particular sequence, Saxon has a number of
strategiesǲ if the sequence is the result of a path expression, then the path expression
will be evaluated twice, once to compute the value of lastǻǼ ǻwhich is then retained
for future useǼ, and once to retrieve the actual elements. So the various threads
handling diferent items in the input sequence need to co-ordinate with each other
to ensure that the cached value of lastǻǼ is shared between them.

“ttempting to measure the efect of this optimization, it appears that the efect
depends on how much computation is actually done within the
<xsl:result-document> instruction. In transformations that aremerely splitting the
input into multiple outputs ǻwhere the body of <xsl:result-document> is nothing
more than an <xsl:copy-of> instructionǼ it appears to make very little diference
to the total elapsed time. This appears to be because the transformation time is
limited by the I/O activity of reading the input, and creating and writing the serial-
ized output iles. In other cases, where more intensive transformation work is in-
volved, we will often see a doubling of overall execution speed.

Ś.ř. Multi-threaded <xsl:merge>
The new <xsl:merge> instruction in XSLT ř.Ŗ allows pre-sorted input iles to be
merged, using streaming to avoid building a tree representation of the iles in
memory. “n example application would be merging the transaction logs from
multiple sales outlets into a single transaction log, ordered by time-stamp.

Saxon’s implementation of <xsl:merge> uses one thread for each input ile. This
allows Saxon to use S“X ǻpush-basedǼ parsing, as well as spreading the load over
multiple processors. There’s no intrinsic reason why several St“X ǻpull-basedǼ
parsers couldn’t be instantiated in a single thread, one per input ile, in which case
Saxon could pull data from each one as requiredwithout the use ofmultiple threadsǲ
but using multiple push parsers is convenient both because of the performance be-
neits of spreading the workload, and also because of the engineering beneits of

ş

Parallel Processing in the Saxon XSLT Processor



using the same approach to parsing source documents that is used in other parts
of the product.

The design of <xsl:merge> is such that each input source delivers a sequence of
snapshots— subtrees of the source document. Each snapshot is built by the parser
ǻas a small in-memory treeǼ and is then placed on a shared queue. The <xsl:merge>
process examines these queues ǻone per source documentǼ and selects the next one
for processing based on the values of the merge keys.

“t this stagewe have notmade any performancemeasurements for <xsl:merge>,
either with or without streaming or parallel processing. It’s probably a feature of
minority interestǱ the capability is important if you need it, but not everyone does.
So it hasn’t been at the top of our list for optimization.

Ś.Ś. Multi-threaded <xsl:for-each> and <xsl:apply-templates>
The main XSLT instructions used to process a sequence of nodes from the input
tree are <xsl:for-each> and <xsl:apply-templates>. In both cases Saxon allows
the user to request multi-threading by means of a vendor extension attribute, sax-
on:threads="N". Unlike the other facilities described in this section, there is nomulti-
threading ȃout of the boxȄ in this caseǲ it is available only on request.

This facility essentially allows map-reduce applications to be written in XSLT,
with parallelism under the control of the user rather than the compiler. This is not
necessarily a disadvantageǲ usersmay be able to achieve better results than a system
optimizer.

This design is a cautious one. We know that a feature like this will be ignored
by şś% of users. To some extent this is our aim, because we know the feature is
dangerous. There’s a danger of bugs, but more particularly, there’s a danger of
misuse. We have no idea how many threads to allocate to such an instruction, so
we leave it to the user to decideǲ but we know that most users have no idea either.
Themore adventurouswill hopefully ind a good design by trial and error, knowing
how to measure the efect on their particular workload. There will probably be a
fewwho see the feature, guess a number, and never test their assumptions, but such
users deserve what they get. Hopefully wewill slowly get experience and feedback
of what works well and what doesn’t, and perhaps rules of thumb will emerge that
are suiciently sound for us to automate the process. Perhaps use of a ixed value
is the wrong approach anywayǲ perhaps <xsl:for-each> should allocate N-M
threads where N is the some maximum for the transformation as a whole, and M
is the number of threads currently active. Only experiment, with a variety of realistic
benchmarks, will provide the answer.

Unlike the use of multiple threads for the collectionǻǼ function ǻmultiple input
ilesǼ and the <xsl:result-document> instruction ǻmultiple output ilesǼ, its use on
<xsl:for-each> and <xsl:apply-templates> instructions creates a serious risk that
performance is degraded by the cost of interaction between the threads. These in-

ŗŖ

Parallel Processing in the Saxon XSLT Processor



structions are deined by the language semantics to deliver their results in a partic-
ular order, and this means that the results of each thread must be saved in memory
and reassembled in the correct order before the instruction completes. This cost can
be signiicant, bearing in mind that XSLT instructions will normally stream their
results directly to the serializer, without building temporary trees in memory.
Nevertheless, one of our users has reported a reduction in the elapsed time of a
heavy transformation by a factor of three by using Ş threads in an <xsl:for-each>
instruction.

ś. Futures
I have described the ways in which Saxon uses multi-threading today. What of the
future?

We need to consider developments in two categoriesǱ internal use of multi-
threading to support operations such as the collectionǻǼ function or the <xsl:merge>
instruction, and language features that allow users to take advantage of multi-
threading, along the lines of the existing multi-threaded <xsl:for-each>.

In the irst category, a natural candidate is amulti-threaded sortǱ both for explicit
<xsl:sort> elements, and for the implicit sorting that occurs when a sequence of
nodes needs to be delivered in document order. Saxon uses an implementation of
QuickSort, and this lends itself well to parallel implementation. “nother candidate
might me a multi-threaded implementation of <xsl:for-each-group>.

In the second category, we will be guided by user experience with the facilities
we already provide. It may well be that the need now is not for more multi-
threading features, but for instrumentation to help users establish whether their
multi-threading strategies are proving efective. Until we getmore feedback on how
the features work in practice, I don't see us introducing more automatic multi-
threadingǲ I can't see Saxon deciding to use multi-threading for <xsl:for-each> or
<xsl:apply-templates> without an explicit user request.

“nother interesting instruction with multi-threading possibilities is the new
<xsl:fork> instruction in XSLT ř.Ŗ. This was developed for use with streaming,
and allows several actions to operate on a single pass of a streamed input document.
The current Saxon implementation is not multi-threaded ǻinput events are passed
to each of the actions in turn, and the actions are performed sequentially. ”ut a
multi-threaded implementation would be very natural.

Ŝ. Conclusions
In this paper I have described the facilities in the current Saxon release ǻspeciically,
Saxon-EE ş.ŜǼ to allowmulti-threaded stylesheet execution. “ fewusers are already
getting substantial beneits from the use of these features, but they are not widely
known about or understood. Hopefully this paper will help to increase awareness.

ŗŗ

Parallel Processing in the Saxon XSLT Processor



What is needed now is for users to report their experiences, to experiment and report
their results, and for the product to improve in response to this feedback.

References
[ŗ] Manuel M. T. Chakravarty. On the Massively Parallel Execution of Declarative

Programs Ph. D. Dissertation, Technische Universität ”erlin, ŗşşŝ. httpǱ//
www.cse.unsw.edu.au/~chak/papers/diss.ps.gz

[Ř] Kay, Michael. “natomy of an XSLT Processor. Published online by I”M
DeveloperWorks httpsǱ//www.ibm.com/developerworks/library/x-xsltŘ/

[ř] Kay, Michael. You Pull, I’ll PushǱ On the Polarity of Pipelines. Presented at
”alisageǱ TheMarkup Conference ŘŖŖş,Montréal, Canada, “ugust ŗŗ - ŗŚ, ŘŖŖş.
In Proceedings of ”alisageǱ The Markup Conference ŘŖŖş. ”alisage Series on
Markup Technologies, vol. ř ǻŘŖŖşǼ. doiǱŗŖ.ŚŘŚŘ/”alisageVolř.KayŖŗ. httpǱ//
www.balisage.net/Proceedings/volř/html/KayŖŗ/”alisageVolř-KayŖŗ.html

[Ś] Kay, Michael. Streamability in Saxon. XML Prague ŘŖŗŚ. httpǱ//
archive.xmlprague.cz/ŘŖŗŚ/iles/xmlprague-ŘŖŗŚ-proceedings.pdf

[ś] Kay, Michael and Lockett, Debbie. ”enchmarking XSLT Performance. XML
London ŘŖŗŚ. httpǱ//www.saxonica.com/papers/xmllondon-ŘŖŗŚmhk.pdf

[Ŝ] Malý, Jakub. Parallel XSLT Processing of Large Documents. XML Prague ŘŖŗś.
httpǱ//archive.xmlprague.cz/ŘŖŗś/iles/xmlprague-ŘŖŗś-proceedings.pdf

[ŝ] Rishiyur S. Nikhil ǻ”luespecǼ and “rvind ǻMITǼ. Making the transition from
sequential to implicit parallel programmingǱ Part ś Online newsletter, U”M
Electronics, Sept ŘŖŖŝ. httpǱ//www.embedded.com/design/
mcus-processors-and-socs/ŚŖŖŝŗŝř/
Making-the-transition-from-sequential-to-implicit-parallel-programming-Part-ś

[Ş] “ Scalable XSLT Processing Framework based on MapReduce Journal of
Computers, Vol Ş, No ş ǻŘŖŗřǼ, Řŗŝś-ŘŗŞŗ, Sep ŘŖŗř ŗŖ.ŚřŖŚ/jcp.Ş.ş.Řŗŝś-ŘŗŞŗ
httpǱ//www.ojs.academypublisher.com/index.php/jcp/article/view/
jcpŖŞŖşŘŗŝśŘŗŞŗ

[ş] SaxonicaǱ XSLT and XQuery Processing httpǱ//www.saxonica.com/
[ŗŖ] Tianyou Li ǲ Qi Zhang ǲ Jia Yang ǲ Yuanhao Sun Parallel XML Transformations

on Multi-Core Processors IEEE International Conference on e-”usiness
Engineering, ŘŖŖŝ. ICE”E ŘŖŖŝ.

[ŗŗ] Philip W. Trinder, Kevin Hammond, James S. Mattson Jr., “ndrew Partridge,
and Simon L. Peyton Jones. GUMǱ a Portable Parallel Implementation ofHaskell
Proceedings of Programming Languages Design and Implementation,

ŗŘ

Parallel Processing in the Saxon XSLT Processor

http://www.cse.unsw.edu.au/~chak/papers/diss.ps.gz
http://www.cse.unsw.edu.au/~chak/papers/diss.ps.gz
https://www.ibm.com/developerworks/library/x-xslt2/
http://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html
http://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://www.saxonica.com/papers/xmllondon-2014mhk.pdf
http://archive.xmlprague.cz/2015/files/xmlprague-2015-proceedings.pdf
http://www.embedded.com/design/mcus-processors-and-socs/4007173/Making-the-transition-from-sequential-to-implicit-parallel-programming-Part-5
http://www.embedded.com/design/mcus-processors-and-socs/4007173/Making-the-transition-from-sequential-to-implicit-parallel-programming-Part-5
http://www.embedded.com/design/mcus-processors-and-socs/4007173/Making-the-transition-from-sequential-to-implicit-parallel-programming-Part-5
http://www.ojs.academypublisher.com/index.php/jcp/article/view/jcp080921752181
http://www.ojs.academypublisher.com/index.php/jcp/article/view/jcp080921752181
http://www.saxonica.com/


Philadelphia, US“, ŗşşŜ. httpsǱ//www.macs.hw.ac.uk/~dsg/gph/papers/ps/
gum-ilşś.ps

[ŗŘ] Watts, Nick Getting StartedǱ Testing Concurrent Java Code Online ”log, July
ŘŖŗŗ. httpǱ//thewonggei.com/ŘŖŗŗ/Ŗŝ/ŗŞ/
getting-started-testing-concurrent-java-code/

[ŗř] XSL Transformations ǻXSLTǼ Version ř.Ŗ. WřCWorking Draft, Ř October ŘŖŗŚ.
Ed. Michael Kay. httpǱ//www.wř.org/TR/xslt-řŖ

ŗř

Parallel Processing in the Saxon XSLT Processor

https://www.macs.hw.ac.uk/~dsg/gph/papers/ps/gum-ifl95.ps
https://www.macs.hw.ac.uk/~dsg/gph/papers/ps/gum-ifl95.ps
http://thewonggei.com/2011/07/18/getting-started-testing-concurrent-java-code/
http://thewonggei.com/2011/07/18/getting-started-testing-concurrent-java-code/
http://www.w3.org/TR/xslt-30

	Parallel Processing in the Saxon XSLT Processor
	1. Introduction
	2. Running Multiple Transformations in Parallel
	2.1. Contention
	2.2. Reliability

	3. Multi-threading and Streaming
	4. Multi-threading in Saxon Today
	4.1. The collection() function
	4.2. Multiple result documents
	4.3. Multi-threaded <xsl:merge>
	4.4. Multi-threaded <xsl:for-each> and <xsl:apply-templates>

	5. Futures
	6. Conclusions
	References


