
Distributing XSLT Processing between Client
and Server

O'Neil Delpratt

Saxonica
<oneil@saxonica.com>

Debbie Lockett

Saxonica
<debbie@saxonica.com>

Abstract

In this paper we present work on improving an existing in-
house License Tool application. The current tool is a server-
side web application, using XForms in the front end. The
tool generates licenses for the Saxon commercial products
using server-side XSLT processing. Our main focus is to
move parts of the tool's architecture client-side, by using
"interactive" XSLT 3.0 with Saxon-JS. A beneficial outcome
of this redesign is that we have produced a truly XML end-
to-end application.

Keywords: XSLT, Client, Server

1. Introduction

For a long time now browsers have only supported XSLT
1.0, whereas on the server-side there are a number of
implementations for XSLT 2.0 and 3.0 available. For
applications using XSLT processing, the client/server
distribution of this processsing is governed by the
implementations available in these environments. As a
result, many applications, including our in-house
"License Tool" web application, rely heavily on server-
side processing for XSLT 2.0/3.0 components.

The current License Tool web application is built
using the Servlex framework [1] [2], and principally
consists of a number of XSLT stylesheets. The HTML
front end uses XForms, and the form submission creates
HTTP requests which are handled by Servlex. We use
XSLTForms [3] to handle the form processing in the
browser, an implementation of XForms in XSLT 1.0 and
JavaScript.

The main motivation for this project is to improve
our License Tool webapp by moving parts of the server-

side XSLT processing into the client-side. This can only
be made possible by a client-side implementation of
XSLT 2.0/3.0. We would like to see which components
of the application's architecture can now be done using
client-side interactive XSLT.

Interactive XSLT is a set of extension elements,
functions and modes, to allow rich interactive client-side
applications to be written directly in XSLT, without the
need to write any JavaScript. (For information on the
beginnings of interactive XSLT, see [4], and for the
current list of ixsl extensions available see [5].)
Stylesheets can contain event handling rules to respond
to user input (such as clicking on buttons, filling in form
fields, or hovering the mouse), where the result may be to
read additional data and modify the content of the
HTML page. The suggested idea for building such
interactive XSLT applications is to use one skeleton
HTML page, and dynamically generate page content
using XSLT. Event handling template rules are those
which match on user interaction events for elements in
the HTML DOM. For instance, the template rule

<xsl:template match="button[id='submit']"

 mode="ixsl:onclick"/>

handles a click event on a specific HTML button
element. When the corresponding event occurs, this
causes a new transformation to take place, with this as
the initial template, and the match element (in the
HTML DOM) as the initial context item. The content
of the template defines the action. For example, a
fragment of HTML can be generated and inserted into a
specific target element in the HTML page using a call
such as

<xsl:result-document select="div[id='target']"

 mode="ixsl:replace-content"/>

doi:10.14337/XMLLondon17.Lockett01 Page 1 of 11

mailto:oneil@saxonica.com
mailto:debbie@saxonica.com

In order to use client-side interactive XSLT 3.0 within
our License Tool, we use Saxon-JS [6] - a run-time XSLT
3.0 processor written in pure JavaScript, which runs in
the browser and implements interactive XSLT. We still
maintain some server-side XSLT processing, as required.
But by using XSLT 3.0 [7], with the interactive
extensions, we are able to do much more of the tool's
processing client-side, which means that we can achieve
our objective. The redesign means that the tool is now
XML end-to-end, without any environment specific
glue, which minimises the need to translate between
objects.

One benefit of moving the processing client-side is
that more of it is brought directly under our control, so
we should then be in a better position to resolve and in
places avoid incompatibilities between the technologies
and environments. For instance, in the current tool, we
are aware of some data encoding issues for non-ASCII
characters [8]. In the current License Tool the data is sent
by XSLTForms encoded in a certain format, but this
encoding is not what Servlex expects. The problem is
made more complicated by the multiple layers of
technologies in use, and of course the internal
XSLTForms and Servlex processing is out of our control.

The reluctance of browser vendors to upgrade XSLT
support has meant that tools such as XSLTForms are
stuck with using XSLT 1.0. Many mobile browsers do
not even support XSLT 1.0. By using Saxon-JS in the
browser, we are freed from this restriction, and so can
replace our use of XSLTForms in the License Tool. We
have worked towards a new implementation of XForms
using XSLT 3.0 and interactive XSLT, and produced a
prototype partial implementation.

Along with making improvements to the tool, we
were also interested to see how the experience gained
from this real world example may initiate further
developments for Saxon-JS itself. In particular, one major
challenge is how to handle the communications between

client and server using HTTP, within our interactive
XSLT framework.

In the following sections we will introduce what the
application actually does, how it originally worked, and
the changes we have made. We will focus on how we
have used XSLT 3.0 and interactive XSLT in the
redesign, the benefits of this change, and how it has
improved the application.

2. License Tool application: what it
does, and how it currently works

The License Tool processes license orders (i.e. purchase or
registration infomation) for the Saxon commercial
products, and then generates and issues license files
(which contain an encrypted key used to authorize the
commercial features of the product) to the customer. The
License Tool also maintains a history of orders and
licenses (as a set of XML log files) and provides simple
reporting functions based on this history.

The application is built using the Servlex framework.
Servlex is a container for EXPath Web Applications [9],
using the EXPath Packaging System [10], whose
functionality comes from XML technologies. Servlex
handles all the networking and server-side XML
processing, and connects the XML components to the
HTTP layer.

For our current tool, this means using Servlex on the
server-side to parse the license order and convert to a
custom XML format, process the XML instance data
received from the XForms form, and send feedback to
the user in the browser. This is all driven by XSLT
stylesheets on the server. On the client-side, we use
XSLTForms to handle the XForms processing. An
overview of the architecture of the License Tool is shown
in [Figure 1]. This architecture diagram shows the main
components, and technologies used, client and server
side.

Page 2 of 11

Distributing XSLT Processing between Client and Server

Figure 1. Old License Tool architecture diagram

In more detail, the tool works as follows:

1. When purchasing or registering for a license, a
customer completes a web form to provide certain
order information: contact details, the name of the
purchased product, etc.

2. This license order information is sent to us by email,
as structured text (it would be nice if it were XML or
JSON, but this is the real world). See [Figure 2] and
[Figure 3] for examples.

3. We input the license order text from the email into
the License Tool via an XForms form in the "Main
Form" HTML page of the webapp, and use the form
submit to send this data to the server.

4. All communication with the server-side of the License
Tool is done using HTTP requests, which are picked
up within the Servlex webapp by an XSLT controller
stylesheet which then processes the license order. The
first steps are to parse the text and convert it into a
custom XML format, which is then validated. See
[Figure 4] for an example of the order XML.

5. The application then returns the license order to the
user as the XML instance data of another XForms
form, the "Edit Form". At this point the order may be
manually edited. (This page can also be used to edit
existing licenses before reissuing, for instance for
upgrades and renewals.)

6. Next, when the "Edit Form" is submitted, the
customer's license file is created. This processing is
done using reflexive extension functions written in
Java within the XSLT on the server.

7. The application then reports to its user the outcome
of generating the license, for final confirmation. If
there has been a problem with the license generation,
there is again the option to manually modify the
license order. Otherwise, when the user confims the
order, the license is issued (again using a server-side
Java extension function).

8. The data model of the application is XML driven,
with the exception of the email text for a license order
used as the initial input.

Figure 2. Example license order text for an evaluation
license.

First Name: Tom

Last Name: Bloggs

Company: Bloggs XML

Country: United Kingdom

Email Address: tom@bloggs.com

Phone:

Agree to Terms: checked

Page 3 of 11

Distributing XSLT Processing between Client and Server

Figure 3. Example license order text for a purchased
license.

Order #9999 has just been placed

Email: tom@bloggs.com

Comments: ZZZ-9999

==== Items ====

item_name: Saxon-EE (Enterprise Edition),

 initial license (ref: EE001)

item_ID: EE001

item_options:

item_quantity: 1

item_price: £360.00

item_name: Saxon-EE (Enterprise Edition),

 additional licenses (ref: EE002)

item_ID: EE002

item_options:

item_quantity: 2

item_price: £180.00

==== Order Totals ====

Items: £720.00

Shipping: £0.00

Tax: £0.00

TOTAL: £720.00

-- Billing address --

company: Bloggs XML

billing_name: Tom Bloggs

billing_street: 123 Fake St

billing_city: Somewhere

billing_state: Nowhere

billing_postalCode: A1 1XY

billing_countryName: United Kingdom

billing_phone:

Figure 4. Example of an order in XML format (the
result of converting the example license order text in
[Figure 3])

<Order>

 <OrderRef>#9999</OrderRef>

 <DatePlaced>2017-05-05</DatePlaced>

 <DateOfExpiry>never</DateOfExpiry>

 <First>Tom</First>

 <Last>Bloggs</Last>

 <Company>Bloggs XML</Company>

 <Address1>123 Fake St</Address1>

 <Address2/>

 <Town>Somewhere</Town>

 <County>Nowhere</County>

 <Postcode>A1 1XY</Postcode>

 <Country>United Kingdom</Country>

 <Email>tom@bloggs.com</Email>

 <Phone/>

 <UpgradeDays>366</UpgradeDays>

 <MaintenanceDays>366</MaintenanceDays>

 <Online>true</Online>

 <OrderPart>

 <ProductCode>EE001</ProductCode>

 <Edition>EE</Edition>

 <Platform>J</Platform>

 <Features>TQV</Features>

 <Quantity>1</Quantity>

 <Value>360</Value>

 <Domain/>

 </OrderPart>

 <OrderPart>

 <ProductCode>EE002</ProductCode>

 <Edition>EE</Edition>

 <Platform>J</Platform>

 <Features>TQV</Features>

 <Quantity>2</Quantity>

 <Value>360</Value>

 <Domain/>

 </OrderPart>

</Order>

3. Application redesign

The main aim of this project is to move more
components of the License Tool's processing architecture
client-side, by using interactive XSLT 3.0. We have
achieved this by building a new interactive front end for
our tool, written in interactive XSLT 3.0. This stylesheet
is compiled using Saxon-EE to produce a stylesheet
export file (SEF) which the Saxon-JS run-time executes
in the browser.

Page 4 of 11

Distributing XSLT Processing between Client and Server

Figure 5. New License Tool architecture diagram

This redesign to the application means that the
client-side processing can now handle the initial parsing
of the license order text, and convert to the order XML
format; before the need for any server-side processing.
We have also produced a new partial prototype
implementation for XForms using interactive XSLT 3.0,
as an improvement to using XSLTForms, which is
included in the front end process. An overview of how
the main processing components and technologies are
now distributed, client and server side, is shown in the
architecture diagram for the new License Tool in
[Figure 5].
The redesign has also introduced some changes to the
tool's processing pipeline. The flow diagram in [Figure 6]
illustrates the design for the new tool. It shows the steps
of the process - user interactions with the application, the
processing actions client and server side - and the flow
between all of these steps. As can be seen, we have indeed
moved much of the processing client-side: parsing license
order text; converting to XML; validating; generating
and rendering the XForms "Edit Form"; and handling
the submit button click event. We currently still rely on
server-side processing for some final stage components of
the pipeline - namely generating the license (which
includes the encrypted key), issuing it via email, and
storing the license order.
In the following sections, we will describe in more detail
the three main areas of development in the License Tool's
redesign:

1. Client-side XSLT processing, to replace the use of Java
extension functions.

2. A prototype for a new XForms implementation using
XSLT 3.0 and interactive XSLT, to run client-side.

3. Handling HTTP communication between client and
server.

4. Client-side XSLT processing

There is great potential to simplify the tool's architecture
by using XML end-to-end. Throughout the pipeline, the
main object we are dealing with is an "order" - which
contains information about the customer, the products
ordered, the date of the order, etc. Ideally we would be
handling this order in our custom XML format
throughout the processing pipeline. So the order
information is captured directly into XML format, which
can be modified, passed between client and server, and
stored server-side, without the need to be converted to
any other different formats along the way.

The original legacy version of the License Tool was a
Java application. The current tool makes much use of
Java extension functions in the webapp's XSLT
stylesheets in order to reuse the original code. For
instance, the process of parsing the license order text and
converting it into XML format is done by a Java
extension function. So there is a Java class with methods
to parse the input license order text, and produce a Java
Order object. This Order object is then converted into
XML using Java methods. In fact, many such Java
components of the webapp could be rewritten in XSLT,

Page 5 of 11

Distributing XSLT Processing between Client and Server

Figure 6. New License Tool flow diagram

and this is clearly more straightforward, since we then
avoid converting between XML and Java objects and
back. Making the change to do such processing directly
in XSLT could have been done already within the current
server-side webapp, but there was perhaps little incentive
- "if it ain't broke, don't fix it". However, now we are
looking to bring the processing client-side, it does make
sense to write XSLT solutions to replace the Java code. As
well as being able to move such components to the
client-side, the tool's architecture is generally simplified
by replacing the Java code.

So, in the new tool, the first step of parsing the
license order text, and converting to the custom order
XML format, is done directly in XSLT. In fact, rather
than parsing the structured text and creating the order
XML directly, as an intermediate stage it is convenient to
use a representation of the order as an XPath 3.0 map
item. Having split the input license order text by line, if a
line looks like an order category/value pair, then it is
added to the order map as a key/value pair. This order

map is then used to add text content to an order XML
skeleton. For example,

<First>

 <xsl:value-of select="$orderMap?first"/>

</First>

There may be other stages where it is more convenient to
use the XPath map representation for a license order,
rather than the XML format. It actually makes a lot of
sense to handle the order as an XPath map item, which is
easier to modify, and use XSLT functions to convert
these to the custom XML format and back. However
currently we generally stick to the order XML format.

There may still be times when we need to serialize to
a string, and reparse to XML. Infact also, in the new
tool, at certain stages we convert to JSON and back, as
well as to XPath map and back. But at least these can all
now be handled directly within XSLT 3.0, and there is
no need to use other objects outside of the XDM model.

Page 6 of 11

Distributing XSLT Processing between Client and Server

5. XForms implementation in
interactive XSLT 3.0

XSLTForms is based on XSLT 1.0 to compile XForms to
(X)HTML and JavaScript in the browser. As previously
discussed, support for XSLT in browsers is limited to
XSLT 1.0, and vendors are not inclined to move this
forward. Saxon-JS now provides us with XSLT 3.0
processing in the browser, and so we can write a new
XForms implementation using XSLT 3.0 and interactive
XSLT, to replace the use of XSLTForms. We now
describe our proof-of-concept XForms implementation
exploring the possibilities in (interactive) XSLT 3.0.

The XForms model, instance data and form controls
which provide the user interactions are written as XML
in accordance with the XForms specification. The
XForms processor is entirely written using interactive
XSLT 3.0 using the XSLTForms implementation as a
starting point. In the main entry template rule we use
xsl:params to supply the XForms form (as an XML
document), and optionally corresponding XML instance
data, to the stylesheet. The main process of the
implementation stylesheet is to convert the XForms form
controls elements into equivalent (X)HTML form
controls elements (inputs, drop-down lists, textareas,
etc.). At the same time the forms controls are populated
with any bound data from the XML instance data.

For the XForms controls we specify the binding
references to the XML instance data as an XPath
expression. For example

<xforms:input incremental="true"

 ref="Shipment/Order/DatePlaced" />

In the template rule which matches the xforms:input
control we get the string value from the ref attribute,
and use this XPath in two ways. Firstly, we call the XSLT
3.0 instruction <xsl:evaluate> to dynamically evaluate
the XPath expression, which obtains the relevant data
value from the XML instance data [10b]. This will be
used to populate the HTML form input element which
we convert to. Secondly, the XPath from the ref attribute
is copied into the id attribute of the input element, to
preserve the binding to the XML instance data (so that
upon form submission, we will be able to copy the
changes made within the HTML form back into the
instance data, as described later). The result in this
example is the following:

<input type="text" id="Shipment/Order/First/text()"

 value="Tom">

The conversion, and binding preservation, of other
XForms controls elements are achieved in a similar way.
The full code example is shown in [Figure 7].

Figure 7. Example template from the new XForms
implementation, for converting an xforms:input

element

<xsl:template match="xforms:input">

 <xsl:param name="instance1" as="node()?"

 select="()"/>

 <xsl:param name="bindings"

 as="map(xs:string, xs:QName)"

 select="map{}"/>

 <xsl:variable name="in-node" as="node()?">

 <xsl:evaluate xpath="@ref"

 context-item="$instance1/*:document"/>

 </xsl:variable>

 <input>

 <xsl:choose>

 <xsl:when test="

 map:get($bindings, generate-id($in-node)) =

 xs:QName('xs:date')">

 <xsl:attribute name="type"

 select="'date'"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:attribute name="type"

 select="'text'"/>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:attribute name="id" select="@ref"/>

 <xsl:attribute name="value">

 <xsl:if test="exists($instance1) and

 exists(@ref)">

 <xsl:evaluate xpath="@ref"

 context-item="$instance1/*:document"/>

 </xsl:if>

 </xsl:attribute>

 </input>

</xsl:template>

As well as the conversion from XForms form elements to
HTML form elements, the second main purpose of the
XForms implementation stylesheet is to handle form
interaction. We now describe the process of capturing
HTML form data, updating the data in the XForms
instance data, and making a form submit.

In order to ensure that the complete XML instance
data structure is sent when a user submits a form, we

Page 7 of 11

Distributing XSLT Processing between Client and Server

hold the XML instance data as a JSON object on the
page. We use JSON rather than XML for two reasons:

1. Browser inconsistencies and complications in
embedding XML islands within HTML, see section
2.4 of [11].

2. The XSLT representation of maps and arrays allows
for efficient modifications of immutable data
structures (typically map:put() does not require the
whole tree to be physically copied; the Saxon
implementation uses an immutable trie structure to
achieve this). It is much harder to achieve efficient
small local changes to an XML tree, because an XML
tree has node identity and parent pointers which a
JSON data structure typically doesn't. Making a small
change to an XML document typically involves
copying the whole tree. (See [12].)

The purpose of holding the instance data is to ensure that
its structure is maintained, so that when a user submits a
form, the complete XML representation of the instance
data is sent. When the form is submitted (e.g by HTTP
post request), the JSON instance data is converted back
to its XML format, and then updated with any changes
that have been made in the HTML form, before being
sent. (Note that it is not necessarily possible to rebuild
the XML instance data from the HTML form from
scratch - for example, using the XPath paths in the id
attributes - since the HTML form may of course not be a
direct mapping to the instance data. So we need to hold
the instance data structure somewhere in the page.) This
is achieved by a number of steps.

Firstly, the JSON object is created using the XPath
3.1 function xml-to-json() and added to the page in a
script element. The code below shows how this is done,
to add to the script element with id="{$xforms-

instance-id}" on the HTML page. Since there is no
direct mapping of the XML instance data format to
JSON we first have to convert the instance data to an
intermediate form - i.e. the XML representation of
JSON which is accepted by the xml-to-json() function
[13] - using our stylesheet function convert-xml-to-
intermediate().

<xsl:result-document href="{$xforms-instance-id}"

 method="ixsl:replace-content">

 <xsl:value-of select="xml-to-json(

 local:convert-xml-to-intermediate(

 $instance-doc

))"/>

</xsl:result-document>

Secondly, the submission process is implemented using
an interactive XSLT event handling template. The submit

control element has been converted to an HTML button
which includes generated data-* attributes which match
the XForms submission specific attributes, such as
action. The click event is handled by an event handling
template for a button with a data-action attribute. At
the current stage of development of the license tool, we
actually override this event handling template with one
which is specific to our tool (as will be described in
Section 6).

Within the event handling template rule we convert
the instance data held as JSON back to the XML format
(going via the intermediate XML format using the XPath
3.1 function json-to-xml()), and from this build new
updated XML instance data. As we build the new XML
instance data we update with any new data from the
form, by using the id attributes with the XPath paths.
This is achieved by using an XSLT apply-templates (with
mode="form-check") on the XML instance data. The
matching template rules keep track of the path to the
matched node within the XML instance data. The
template which matches text nodes then uses its path to
look within the HTML form for an element whose id
attribute value is this path. If such an element is found,
and a change has been made to the form data, then the
new XML instance data is updated correspondingly. See
below for the full template:

<xsl:template match="text()" mode="form-check">

 <xsl:param name="curPath" select="''"/>

 <xsl:variable name="updatedPath"

 select="concat($curPath,

 local-name(parent::node()),

 '/text()')"/>

 <xsl:variable name="control">

 <xsl:apply-templates

 select="ixsl:page()//*[@id=$updatedPath]"

 mode="get-control"/>

 </xsl:variable>

 <xsl:choose>

 <xsl:when test="$control=.">

 <xsl:copy-of select="."/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:copy-of select="$control"/>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

Some basic validation is included in our partial XForms
implementation (for instance, at the loading of the page,

Page 8 of 11

Distributing XSLT Processing between Client and Server

and the submission of the form). There is much more
that needs to be implemented for full validation.

As an exploration exercise, we have certainly shown
the capabilities of an XForms implementation in
interactive XSLT 3.0.

6. HTTP client-server
communication

Within the License Tool application, communications
between client and server are made using HTTP
methods. As well as when the application is initially
opened in a browser, the other main point of
communication (in both the old and new versions of the
tool), is when a user clicks the "submit order" button in
the "Edit Form" page. Clicking the button sends the
form data via HTTP to the server-side Servlex webapp,
and a response is then returned in the browser. However,
the details of how this works in the old and new versions
of the tool is quite different.

1. In the old version of the License Tool, the form is an
XForms form in an (X)HTML page. This (X)HTML
page is itself the response from a previous HTTP
request. The (X)HTML page calls the XSLTForms
implementation for XForms (which uses XSLT 1.0
and JavaScript in the browser) to render the form, and
handle form interaction - e.g. making changes to the
form entries, and the submit click. As defined in the
XForms form controls (using an xforms:submission
element), clicking the submit button sends the form
data (held in the xforms:instance, in the custom
XML order format) to the URI specified (in the
action attribute) using an HTTP post request. We
use the attribute method="xml-urlencoding-post", an
XSLTForms-specific method attribute option, which
means that the HTTP post request contains the form
data XML serialized as a string in a parameter called
"postdata".

The server-side webapp receives this request, and
the relevant XSLT component picks up the value of
the postdata parameter, parses it back into XML, and
processes it. If the processing is successful (i.e. the
order is allowed and a license is issued), then the
HTTP response sent back is a newly generated
HTML page (in fact, a new "Main Form" page)
which contains some "success" paragraph saying that
the license has been sent.

2. In the redesigned tool, the form is again an XForms
form in an (X)HTML page. This time, the content of
this (X)HTML page has been generated using an

interactive XSLT stylesheet processed by Saxon-JS in
JavaScript in the browser. The stylesheet includes
interactive XSLT to dynamically insert generated
fragments of HTML into the page. The XForms form
is one of these generated (X)HTML fragments. The
form was generated in XSLT using the prototype
implementation of XForms discussed in the previous
section (this implementation is an XSLT 3.0
stylesheet using interactive XSLT, which is imported
into the main client-side XSLT stylesheet).

Again, clicking the submit button sends the form
data using an HTTP post request. However, this time
the click event is handled by Saxon-JS. The interactive
XSLT stylesheet contains an event handling template
rule, which is called on click events for the submit
button. The template's action is to call a user-defined
JavaScript function, using the instruction

<xsl:sequence select="js:makeHTTPrequest(

 serialize($orderXML))"/>

This JavaScript function creates an asynchronous
HTTP request (using an XMLHttpRequest object), with
the desired URI destination, and with the data
(serialized order XML) sent as content of the request,
in plain text type (rather than as a parameter which
would force URL encoding). (It may seem preferable
to send the order XML in the request directly using
the content type "application/xml". However, more
work is required to find the best way to do this in
JavaScript.)

The redesigned server-side webapp receives this
request, picks up the body of the request, parses it
back into XML, and processes it. If the processing is
successful (i.e. the order is allowed and a license is
issued), then the HTTP response sent back is a piece
of XML which contains some "success" data. Having
used an asynchronous HTTP request, it is not
possible to return the response XML directly from the
makeHTTPrequest JavaScript function to the XSLT
stylesheet; but we may produce some output in the
HTML page in another way. As defined in the
makeHTTPrequest JavaScript function, when the
response XML is received by the client, it is supplied
to a new call on SaxonJS.transform as the source
XML, using a different initial template. This named
template generates a fragment of HTML, containing
a "success" paragraph, which is inserted into the
original HTML page.

On the surface, it may not be apparent that our new
version is actually an improvement. It certainly didn't
seem any less complicated to explain; previously we were
just using XForms, but now we're using XSLT and

Page 9 of 11

Distributing XSLT Processing between Client and Server

JavaScript as well as XForms. One main benefit is that we
now have much more freedom to define the HTTP
request ourselves. Previously, because we were using
XSLTForms, we were very constrained by having to send
the data with a post request using the "postdata"
parameter. Using this method, the content is restricted to
being URL encoded, and we have not controlled the
encoding used. This is one place where potentially our
encoding issue arises. Parameter values are URL encoded
in the browser before being sent, and we may not be
dealing with this correctly on the server-side. We have
now eliminated the issue at this point by controlling the
HTTP request, and specifically the content (and its
type), ourselves.

Actually, our new solution is only a step towards what
we would really like to do, so this is one reason why it is
still quite complicated. As discussed in the next
paragraph, we would like to produce a solution without
the need to use a locally defined JavaScript function, by
providing this functionality in interactive XSLT
implemented in Saxon-JS. Such a solution which only
uses XForms and interactive XSLT would clearly be
simpler.

Rather than using a locally defined JavaScript
function to create the HTTP request (as we have done
currently), it would be nice to implement this
functionality directly in Saxon-JS. For instance, we could
implement the HTTP Client Module [14], which
provides a specification for the http:send-request()

function. This function allows the details of the request
to be specified using a custom XML format: the
<http:request> element defined in the specification.
However, the function is defined to return the content of
the HTTP response. In order to return the HTTP
response, we would need to use a synchronous request;
but it is considered better practice and preferable to use
asynchronous requests. So we would rather be able to
define an extension which takes as input the request
information, as well as information specifying what to do
when the response is returned. Compare this proposal to
the existing ixsl:schedule-action instruction, which
makes an asynchronous call to a named template, either
after waiting a specified time, or after fetching a specified
document. We could add a new version which makes the
call to the named template once a response from a
specified HTTP request has returned. We could use the
HTTP Client Module XML format for defining an
HTTP request using a http:request element, though it
may be more natural (and convenient) to use an XPath
3.0 map. The details of how best to do this are still being
developed; but working on this License Tool project has

been very useful as an exercise to get started, learn about
the relevant technologies, and begin getting ideas to work
towards a solution.

7. Conclusion

In this paper we have presented a redesign of our License
Tool Web application which utilises interactive XSLT 3.0
to allow more of the processing to be done client-side,
with minimum server-side processing. The interactive
XSLT extensions broaden the benefits of using XSLT in
the browser. To use these technologies we use the XSLT
run-time engine Saxon-JS. This processor also provides
the capability to call global JavaScript functions, which
makes it possible to define HTTP requests and handle
the responses in the browser.

The main interface of the License Tool is XForms
driven. We have implemented a new XForms prototype
implementation using interactive XSLT 3.0 for use in the
browser. This proof-of-concept shows that it would be
possible to implement the full XForms specification
using interactive XSLT 3.0. We are no longer reliant on
the XSLTForms implementation, which was limiting
because it is an XSLT 1.0 implementation. Unfortunately
even XSLT 1.0 is not well supported by all browsers - in
particular many mobile browsers simply not do
implement XSLT. We get around this by using the
Saxon-JS XSLT processor that runs within a browser's
JavaScript engine.

Can we eradicate the use of XSLT or other processing
on the server-side? Possibly not as we still use Servlex to
do some XSLT processing on the server. And would it be
desirable? No, because for such an application it is
paramount to maintain the security of sensitive data and
keep data centralised. But we have certainly achieved our
aim of improving our tool, so that it now processes and
moves around XML data from end-to-end, and does this
processing mostly on the client-side, having moved most
of the processsing from the server-side environment.
Removing the need for translations between so many
different third-party tools and languages outside of the
XDM model minimises possible failures and
incompatibilies, such as encoding issues, which can only
be good in the long run.

With the increase of XML data on the web, and
continual demands for speed improvements, the option
of using client-server distributed XSLT processing is
surely attractive, though of course there may be trade-
offs. While it may not become a phenomena, certainly
we have showcased the innovative possibilities.

Page 10 of 11

Distributing XSLT Processing between Client and Server

Bibliography

[1] Servlex. Florent Georges.
http://servlex.net

[2] CXAN: a case-study for Servlex, an XML web framework. Florent Georges. XML Prague. March, 2011. Prague,
Czech Republic. .
http://archive.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf#page=49

[3] XSLTForms. Alain Couthures.
http://www.agencexml.com/xsltform

[4] Interactive XSLT in the browser. O'Neil Delpratt and Michael Kay. Balisage. 2013.
doi:10.4242/BalisageVol10.Delpratt01

[5] Interactive XSLT extensions specification. Saxonica.
http://www.saxonica.com/saxon-js/documentation/index.html#!ixsl-extension

[6] Saxon-JS: XSLT 3.0 in the Browser. Debbie Lockett and Michael Kay. Balisage. 2016.
doi:10.4242/BalisageVol17.Lockett01

[7] XSL Transformations (XSLT) Version 3.0. Michael Kay. W3C. 7 February 2017.
https://www.w3.org/TR/xslt-30

[8] Experiences with XSLTForms and Servlex. O'Neil Delpratt. 8 March 2013.
http://dev.saxonica.com/blog/oneil/2013/03/experiences-with-client-side-xsltforms-and-server-side-
servlex.html

[9] Web Applications. EXPath Candidate Module. Florent Georges. W3C. 1 April 2013.
http://expath.org/spec/webapp

[10] Packaging System. EXPath Candidate Module. Florent Georges. W3C. 9 May 2012.
http://expath.org/spec/pkg

[10b] XPath 3.1 in the Browser. John Lumley, Debbie Lockett and Michael Kay. XML Prague. February, 2017.
Prague, Czech Republic.
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#page=13

[11] HTML/XML Task Force Report. W3C Working Group Note. Norman Walsh. W3C. 9 February 2012.
https://www.w3.org/TR/html-xml-tf-report/

[12] Transforming JSON using XSLT 3.0. Michael Kay. XML Prague. February, 2016. Prague, Czech Republic.
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#page=179

[13] XML Representation of JSON. XSL Transformations (XSLT) Version 3.0, W3C Recommendation. Michael
Kay. W3C. 7 February 2017.
https://www.w3.org/TR/xslt-30/#json-to-xml-mapping

[14] HTTP Client Module. EXPath Candidate Module. Florent Georges. EXPath. 9 January 2010.
http://expath.org/spec/http-client

Page 11 of 11

Distributing XSLT Processing between Client and Server

http://servlex.net
http://archive.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf#page=49
http://www.agencexml.com/xsltform
http://dx.doi.org/10.4242/BalisageVol10.Delpratt01
http://www.saxonica.com/saxon-js/documentation/index.html#!ixsl-extension
http://dx.doi.org/10.4242/BalisageVol17.Lockett01
https://www.w3.org/TR/xslt-30
http://dev.saxonica.com/blog/oneil/2013/03/experiences-with-client-side-xsltforms-and-server-side-servlex.html
http://dev.saxonica.com/blog/oneil/2013/03/experiences-with-client-side-xsltforms-and-server-side-servlex.html
http://expath.org/spec/webapp
http://expath.org/spec/pkg
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#page=13
https://www.w3.org/TR/html-xml-tf-report/
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#page=179
https://www.w3.org/TR/xslt-30/#json-to-xml-mapping
http://expath.org/spec/http-client

	Distributing XSLT Processing between Client and Server
	1. Introduction
	2. License Tool application: what it does, and how it currently works
	3. Application redesign
	4. Client-side XSLT processing
	5. XForms implementation in interactive XSLT 3.0
	6. HTTP client-server communication
	7. Conclusion
	Bibliography

