
Improving Pattern Matching Performance in XSLT
John Lumley

jωL Research & Saxonica
<john@jwlresearch.com>

Michael Kay

Saxonica
<mike@saxonica.com>

Abstract

This paper discusses improving the performance of XSLT
programs that use very large numbers of similar patterns in
their push-mode templates. The experimentation focusses
around stylesheets used for processing DITA document
frameworks, where much of the document logical structure is
encoded in @class attributes. The processing stylesheets, often
defined in XSLT1.0, use string-containment tests on these
attributes to describe push-template applicability. For some
cases this can mean a few hundred string tests have to be
performed for every element node in the input document to
determine which template to evaluate, which in sometimes
means up to 30% of the entire processing time is taken up
with such pattern matching. This paper examines methods,
within XSLT implementations, to ameliorate this situation,
including using sets of pattern preconditions and pre-
tokenization of the class-describing attributes. How such
optimisation may be configured for an XSLT
implementation is discussed.

Keywords: XSLT, Pattern matching

1. Introduction

XSLT's push mode of processing [5], where templates are
invoked by matching XPath-based patterns that describe
conditions on nodes to which they are applicable, is one
of the really powerful features of that language. It allows
very precise declarative description of the cases for which
a template is considered relevant, and along with a well-
defined mechanism of priority, and precedence, permits
specialisation and overriding of 'libraries' to encourage
significant code reuse. Whilst other features of XSLT are
valuable, push-mode pattern matching is almost certainly
the most important.

Consequently much effort has been expended on
developing XSLT-based processing libraries, for many
types of XML processing, most notably in 'document

engineering', such as DocBook and DITA, which use
pattern-matching templates extensively. Typically a
processing step might involve the use of hundreds of
templates which have to be 'checked' for applicablity
against XML nodes that are being processed in a push
fashion. One of the challenges for the implementor of an
XSLT engine is to ensure that for most common cases,
this matching process is efficient.

Various aspects of overall XSLT performance have
been studied and reported [1] [3] including optimization
rewriting [2]. In this paper we will examine some cases
where, owing to the nature of the XML vocabularies
being processed and the design of the large XSLT
processing stylesheets employed, the default matching
process in one XSLT implementation (Saxon) can be
rather expensive, in some cases taking about a third of all
the transform execution time. We'll discuss possible
additions and modifications to the pattern-matching
techniques to improve performance and show their
effects. Some knowledge of XSLT/XPath is assumed.

The paper is organised as follows:
• We first describe “push-mode” processing in XSLT

and what the process for matching template patterns
is in detail.

• How this process is performed in the Saxon
implementation is presented, along with some general
remarks about the problems of many templates
matching predicated generic, as opposed to named,
elements.

• We discuss in detail measurements of the pattern
matching performance when processing a large
sample DITA document.

• Possible improvements using sets of common
preconditions to partition applicable templates are
outlined and performance measurements using a
variety of these tactics in processing the sample are
discussed.

• Some other approaches, involving more detailed
knowledge of stylesheet expectations are discussed
briefly.

doi:10.14337/XMLLondon15.Lumley01 Page 9 of 177

mailto:john@jwlresearch.com
mailto:mike@saxonica.com

1 In XSLT 3.0 this choice can be controlled via stylesheet declarations.
2 A template can be referenced from multiple lists when its match conditions contains a union of patterns.

• We speculate on methods to define and introduce
such tuning features into an XSLT implementation.

2. XSLT push mode

XSLT's push-mode of processing takes a set of items
(usually one or more nodes from the input document
such as elements, attributes or text) and for each finds a
stylesheet template declaration whose pattern matches
the item (the “context item”) in question. Assuming one
is found, the body of the template, which can contain
both result tree fragments and XSLT instructions, is
executed to generate a result which is then added to the
current result tree. This push mode is often exploited
highly recursively, descending large source input trees to
accumulate result transformations, usually as modified
trees. To understand the problems with large sets of such
templates, which is often the case in industrial-scale
document processing applications, we need to describe
more closely what this pattern matching process is.

When processing a candiate item (“context item”) in
XSLT via the xsl:apply-templates instruction the
following is the effective declarative procedure:

1. All the templates that have @match patterns and
operate in the “current” mode are considered
candidates.

2. For each template so chosen the pattern (which is
a modified form of an XPath expression) is tested
against the context item to determine a boolean
value. Only those yielding true are considered.

3. The templates with the highest import precedence
are retained. (Templates in an imported, as
opposed to included, stylesheet have precedence
lower than those in the stylesheet that declares the
importation, or any following “sibling” imported
stylesheets.)

4. From these only those with the highest explicit or
implicit priority are considered. (Patterns have an
implicit priority level calculated based on a
'specificity' formula, such that more specific cases
(e.g. piece[@class = 'my.class']) have higher
priority than less specific ones (e.g. piece), and
thus supporting a natural style for general and
specific case programming. Rules can override this
by declaring an explict priority.)

5. Members of the remaining set of templates are all
potential candidates:
• If the resulting set is empty, the result is an

empty sequence.

• If it has just a single template member, then the
result of the xsl:apply-templates is the (non-
error) result of executing the sequence
constructor of that template with the tested
item as the context item.

• If the resulting template set has more than one
member, then it is an implementation choice as
to whether a dynamic error is thrown1. If not,
then the last in “sequence” is chosen and its
body executed.

What this list doesn't prescribe is how the process is to be
implemented. Clearly there are a number of possibilities
of improving performance, by for example examining
candidate templates in a suitable order, or pre-classifying
subsets of the possible templates. In this paper we
examine some possibilities which look deeper into the
template patterns themselves.

3. Template rules in Saxon

The algorithm used for matching template patterns in
the Saxon processor has been unchanged for many years
[1], and works well in common cases. In simplified form,
it is as follows:

For template rules whose match pattern identifies the
name of the element or attribute to be matched (for
example match="para", or match="para[1]", or
match="section/para"), the template rule is placed on a
list of rules that match that specific element or attribute
primary QName . Other rules are placed on one of a set
of generic lists, arranged by type (document-node(),
text(), element(*)...) . Both the named and generic
lists are ordered by "rank", a metric that combines the
notions of import precedence, template priority, and
ordering of rules within the stylesheet.

When apply-templates is called to process a specific
element, Saxon finds the highest-ranking matching rule
on the list for that specific element name, and also the
highest-ranking matching rule on the generic list2. It
then chooses whichever of these two has higher rank. The
search of the generic list is abandoned as soon as it can be
established there will not be any matching rule with
higher rank than a rule found on the specific list. But
note that, as we'll see later in our example, once a match
has been found in either the specific or the generic list,
that list must still be searched for other matching
candidates of similar rank.

In current versions of Saxon each pattern in the rule
chain is examined in turn, to determine a boolean
matches value. Of course the boolean match processing is

Page 10 of 177

Improving Pattern Matching Performance in XSLT

http://www.saxonica.com

1 By contrast the Docbook https://github.com/docbook/docbook toolsets, of similar size, use almost entirely named element pattern
matches.

processed lazily, and in strict sequence, with falsity
propagating as quickly as possible, so for example,
ancestor patterns are only examined if the self:: pattern
proves true.

For very many stylesheets, this works well, because
most rules specify an element name, and there are
typically not many rules for each element name, so
typically each element that is processed is matched
against at most half a dozen rules on the specific list for
its element name; usually the generic list does not need
to be considered, because rules on the generic list usually
have lower rank than rules on the element-specific list.

The algorithm becomes ineffective, however, when
the stylesheet defines very few rules that match specific
element names, and many rules that are generic.
Typically such stylesheets match elements according to
predicates applied to their attributes, rather than
matching them by name. A worst-case example of such
coding can be found in the DITA-OT family of
stylesheets1. Consequently these have therefore been used
as a test case for exploring improvements to Saxon's
pattern matching algorithm. This is even more
problematic when the stylesheets use a large range of
import precedences, as is also true in the example, where
as we'll see there are some 35 different well-populated
ranks. Moreover even the named lists gain little as time is
dominated totally by checking the unnamed sets.

3.1. Generic match patterns

As hinted above, the presence of a lot of patterns of the
form *[predicate] mean that measures such as
indexing patterns on primary element name become
ineffective. Are there other indexation schemes that can
be employed? Clearly if we have many match patterns of
the form:

*[@x = 'a']
*[@x = 'b']
*[@x = 'c']

and it is possible to determine statically that these
predicates are mutually exclusive, then should be possible
to construct a hash index whereby we can lookup the
value of attribute @x, and directly determine which of the
patterns applies.

Unfortunately real life is more complicated. A
framework where almost all stylesheet template patterns
match generic rather than named elements is DITA-OT,
where the patterns take the form

*[contains(@x, 'a')]
*[contains(@x, 'b')]
*[contains(@x, 'c')]

As it happens, in DITA these patterns are designed to be
mutually exclusive, so only one of them will ever match.
But there is no way an optimizer can know that and we
cannot thus meaningfully generate indices. So if we are
going to avoid a sequential search of all the patterns, we
need a different approach. The rest of this paper
examines what this might be, after discussing a specific
DITA document processing example in detail.

4. Processing a DITA document

The DITA-OT framework is a set of mainly XSLT
(1.0/2.0) tools for processing DITA documents, used
extensively in automatic generation of technical
documentation. DITA itself describes document
components in XML trees, using the @class attribute
extensively, with class membership described through a
whitespace-separated set of class names. (For a fuller
description, see Class attribute syntax in the DITA
documentation.)

One consequence of this is that many of the
processing templates within the DITA-OT framework
describe applicability through a match “is this element in
class xxx ”. Unfortunately, within an XSLT1.0 context,
where tokenization isn't present, this is typically
described as a predicated match pattern

*[contains(@class,' classname ')]

(Additional leading and trailing spaces are added to the
class attribute value to support this generic contains()
match.) A little thought would suggest that when a large
number of such patterns all compete to examine the
@class attributes of pretty much every element in a
document then the pattern-matching process might be
very expensive. And so it turns out.

Note

This predicated match pattern appears so frequently
throughout this paper, that an abbreviation
@C{ classname } will often be used in tables and figures
to replace this construct.

While examining a (different) DITA processing
performance issue for a client, Saxonica carried out some
measurements on the size of this pattern-matching
problem. The chosen situation was one of the stages of
expansion of a DITA document into a PDF result, via an
XSL-FO route. In particular we examined the conversion
of a fully formed DITA source into XEP-specific XSL-

Page 11 of 177

Improving Pattern Matching Performance in XSLT

https://github.com/docbook/docbook
http://www.dita-ot.org/
http://docs.oasis-open.org/dita/v1.0/archspec/classattdef.html

FO source (target transform.topic2fo.main in the
DITA-OT build script architecture). Through most of
the rest of this paper, we'll study in detail the processing
of a particular source document through this XSLT
transformation.

4.1. Source document and transform

The processed document had the following
characteristics:
• An 80 page specification for a electronic component,

involving lots of tabular descriptions of bit-
significances etc.

• Source file: 2.66 MB (246kB of redundant
whitespace)

• Source XML tree: 13,066 elements, 46,831 attributes,
6,093 non-whitespace text nodes – total 65,990
significant nodes; tree depth: maximum: 13, average:
~10; sibling width: maximum: 57, average: ~2.

• Result XML tree: 19,441 elements, 91,048 attributes,
6,140 non-whitespace text nodes

• Final PDF document: ~80 pages.
• The document is very table-heavy – 262 tables with

1,309 rows and 4,863 cells, i.e. almost 50% of all the
document elements describe table components.

• All bar two elements of the source document contain
a @class attribute, and there are 43 different values

for its text value, the most frequent of which is used
3,683 times.

The processing XSLT transformation had the following
characteristics:
• 58 source files.
• 70 pattern-matching modes.
• 418 pattern-matching templates, 155 named

templates. (258 of the matching templates are in the
#default mode.)

• 5 user-defined functions.
• Of the 58 source files, only 33 contain templates.

Those that don't either act as importation expanders
or contain global parameters or attribute sets.

• All stylesheet connection is via xsl:import; there is no
use of inclusion and no multiple importation. The
importation tree is relatively shallow, at most with a
depth of 4 and looks like Figure 1. DITA-OT
stylesheet importation tree for DITA→FO.

where solid nodes indicate stylesheets that contain
templates and circles denote stylesheets that import
other stylesheets. (The two leaf nodes circled are
stylesheets containing the most frequently used
templates. The consequences of this are discussed in
Section 6.1, “ “Un-disambiguating” rules”.)

Figure 1. DITA-OT stylesheet importation tree for DITA→FO

16

16 1 1

4 4 3

4

8 61 10 140 23 9 32 20 1 7 30 11 8 35 6 6 8 43 2 6 1 10

1 3

Page 12 of 177

Improving Pattern Matching Performance in XSLT

1 A union pattern (pattern1 | pattern2) is considered to be a set of separate matches for this analysis - one for each pattern.
2 There is no use of the xsl:apply-imports instruction within the framework, implying a simple overriding model. xsl:next-match is

not used either, though that wasn't present in XSLT1.0

4.2. Processing characteristics

Using Saxon 9.6EE on a quad-core i7 1.6 GHz laptop
running 64-bit Windows7 with 4GB of RAM, the
processing took around 15 seconds. But of more interest
are some of the internal statistics. In processing this
document to completion, 75,950 template rules
'executed', i.e. their patterns matched and their sequence
constructor bodies were processed further1. (This is
comensurate with a model where most nodes are only

'touched' once during processing.) Determining which
rule to execute at each stage took approximately 4.5
seconds, i.e. ~ 30% of all processing involved template
pattern matching.

Of the 70 pattern matching modes in the source
XSLT, only 35 were active on this document and only
three have significant performance impact, accounting
for 96% of all the calls and 99.7% of all the time taken
matching template patterns.

Table 1. Significant Modes

Mode Purpose # invocations % invocations time / ms %time

#default General 13,095 17.2 4,330 97.8

toc Table of Contents 22,088 29.1 51 1.1

bookmark Bookmarks 37,752 49.7 33 0.8

Whilst the proportion of the number of invocations
depends upon characteristics of the document and the
DITA-OT framework, the performance costs per node
depend upon the complexity of the patterns involved.

Thus if we examine the patterns for the #default mode,
it immediately becomes apparent why there is such
disparity.

Table 2. Mode Patterns

Mode Purpose
template patterns in mode

#templates matched
element(*) element(named) attribute(named)

#default General 240 19 8 39

toc Table of Contents 2 4 0 3

bookmark Bookmarks 2 5 0 3

Clearly the number of the template rules that need to be
checked for unnamed elements (*) in the #default mode
dominates. How do these 240 templates differ? Firstly as
the DITA -OT framework uses a large number of files via
xsl:import inclusions, they have strongly differing
precedences 2. Template match patterns also have
differing implicit or explicit priorities. Together these
two properties constitute a rank, precedence before
priority - matching higher rank patterns are chosen over
lower. When multiple patterns match at the same rank

optionally either the last in sequence is chosen or a
dynamic error is thrown.

In this case, the 240 templates are spread across 25
different ranks, with the sequence order distribution
shown in Figure 2, “Template rule order and precedence
ranking”.

Page 13 of 177

Improving Pattern Matching Performance in XSLT

Figure 2. Template rule order and precedence ranking

2015-05-03T13:10:30.615+01:00

0

5

10

15

20

25

30

R
an

k

0 50 100 150 200 250

Rule order

Template rank distribution
mode:#default

Missing ranks involve templates matching named
elements and attributes. The overall total of 35 ranks is in
line with the approximately 33 imported stylesheets of
the framework. Within a rank rules are ordered in reverse
document order as when ambiguous rules are permitted
later rules are chosen; hence they are placed earlier within
order within a rank. Details for the most heavily used
ranks are given in the following table:

Table 3. Heavily populated pattern ranks in mode
#default

Rank 27 26 25 23 21 20 17 9 5 4 1

start 9 15 53 62 69 95 105 121 199 226 236

end 14 52 60 67 94 101 115 198 225 233 242

size 6 38 8 6 26 7 11 78 27 8 7

Rank 5 contains mostly templates associated with tables,
from the stylesheet tables.xsl and these table-matching

templates appear to be unique, i.e. no templates in other
stylesheets would be anticipated to match. Rank 26
(from pr-domain.xsl) contains templates for the
programming domain.

As already remarked, all templates of a given rank are
candidates to match in preference to those of a lower
rank. Thus for example, when processing a node whose
correctly matching template is that with order number
150 and rank 9, all the 122 templates of higher rank
must be eliminated, and all the 78 templates of equal rank
tested for possible conflict, i.e. a total of just under 200
template match conditions must be examined.

We've examined the rank ordering of all the
templates used in the #default mode, but which are
actually matched within the processing of this sample
document? Figure 3, “Rule order and precedence of
matched templates” shows the distribution of the 39
templates that were invoked.

Page 14 of 177

Improving Pattern Matching Performance in XSLT

Figure 3. Rule order and precedence of matched templates

2015-05-03T13:10:30.615+01:00

0

5

10

15

20

25

30

R
an

k

0 50 100 150 200 250

Rule order

Templates used with mode: #default

The blue dots indicate order/rank of matched templates,
the green circles surround the four most frequently
matched of these, the implications of which are discussed
below. What are the most frequently matched templates?

Figure 4, “Most frequently matched templates” shows the
percentage of all matches taken by the ten most
significant, labelled with rule order, rank and
(abbreviated) match pattern.

Figure 4. Most frequently matched templates

2015-05-03T13:10:30.615+01:00

0 5 10 15 20 25

% of calls

Most frequent templates
mode:#default

52:26: @C{ pr-d/codeph }

204:5: @C{ topic/tbody }/@C{ topic/row }/@C{ topic/entry }

151:9: @C{ topic/p }

199:5: @C{ topic/strow }/@C{ topic/stentry }

206:5: @C{ topic/tbody }/@C{ topic/row }

205:5: @C{ topic/thead }/@C{ topic/row }/@C{ topic/entry }

210:5: @C{ topic/colspec }

201:5: @C{ topic/strow }

207:5: @C{ topic/thead }/@C{ topic/row }

209:5: @C{ topic/thead }

Page 15 of 177

Improving Pattern Matching Performance in XSLT

1 We are somewhat puzzled by the redundancy in representation present – table entries are represented both by an element entry and a
token within @class. Are there circumstances where a table cell is not represented by an element entry? If this is not the case, then why
use the *[....] pattern rather than one keyed on the element QName? We understand that support for extensibility of element-
vocabulary was one reason. Far be it for the authors to criticise the design choices of DITA in its representation of class membership, or
the DITA-OT framework for the processing architecture, but this is no way to run a railway.

For this document the most commonly matched
template in the #default mode, accounting for 28% of
unnamed element matches, has order number 52 (it
matches pr-d-codeph) but the next most called (25%,
matching topic table entries) has order number 204 and
rank 5. (Their positions are circled in green in Figure 3,
“Rule order and precedence of matched templates”.) The
next 6 most commonly matched templates account for
35% of calls collectively and are in ranks 9 and 5.

So we have the situation that whilst for 28% of the
successful element matches 50 patterns must be checked
each time (i.e. the end of rank 26), for more than 60% of
the matches, either 200 or 225 patterns must be checked.

Thus far we haven't looked at what these patterns are,
merely their required order of checking. Let's examine
the top seven unnamed element patterns in the #default
mode:

Table 4. Most frequent patterns in mode #default

Order Rank % calls in mode Pattern

52 26 28.5 @C{ pr-d/codeph }

204 5 25.0 @C{ topic/tbody }/@C{ topic/row }/@C{ topic/entry }

151 9 8.5 @C{ topic/p }

199 5 7.5 @C{ topic/strow }/@C{ topic/stentry }

206 5 5.3 @C{ topic/tbody }/@C{ topic/row }

205 5 5.1 @C{ topic/thead }/@C{ topic/row }/@C{ topic/entry }

210 5 5.1 @C{ topic/colspec }

(@C{ xxx } is an abbreviation for *[contains(@class,'
xxx ')]) Here we can see the problem - each pattern
must perform 'free-position' string matching on an
attribute of at least the element node under test and
sometimes within one or even two ancestors. And it
turns out that of these 240 template rules, all bar one of
them have a similar form1. So for templates whose order
is 200+, more than 200 other string matches of very
similar form have been performed, on every element
processed through xsl:apply-templates

When we look at the amount of time consumed the
picture is similar.

Page 16 of 177

Improving Pattern Matching Performance in XSLT

Figure 5. Pattern matching time for the most frequently matched templates

2015-05-03T13:10:30.615+01:00

0 500

Total / ms

Longest processed templates
mode:#default

Normal

204:5 → @C{ topic/tbody }/@C{ topic/row }/@C{ topic/entry }

52:26 → @C{ pr-d/codeph }

151:9 → @C{ topic/p }

199:5 → @C{ topic/strow }/@C{ topic/stentry }

206:5 → @C{ topic/tbody }/@C{ topic/row }

210:5 → @C{ topic/colspec }

205:5 → @C{ topic/thead }/@C{ topic/row }/@C{ topic/entry }

201:5 → @C{ topic/strow }

213:5 → @C{ topic/table }

207:5 → @C{ topic/thead }/@C{ topic/row }

Given the architecture where class membership is
described in the @class attribute, an obvious question is
whether in practice elements can be members of multiple
classes. The input clearly shows this to be so – 3,864 of
the 13,066 elements have multiple class “tokens”, the
vast majority being - topic/ph pr-d/codeph, which
according to the DITA reference, declares that the given
element is a structural element equivalent to both a
phrase in a generic topic and a code-phrase in a
programming domain.

Clearly for this type of stylesheet the issue is that very
many of the templates, being processed independently,
have to carry out the same sort of operation multiple
times on the same node. What methods might be
available to reduce the processing, preferably to a
minimum? In the rest of this paper we discuss some
possible improvements of the following general types:
• Rule preconditions: determining common boolean

preconditions that must be satisfied for a (large)
number of rules to possibly match – the results for a
specific node can be cached and rules that are bound
to fail can be excluded rapidly. These approaches have
the property that they are heuristic in performance
improvement but retain correct stylesheet behaviour.

• Other methods that require oracle guarantees about
the stylesheet behaviour, effectively allowing short-
cuts which are not generally applicable to all
stylesheets. The cases include:

• Suspending rule ambiguity checking, and potential
template/stylesheet reordering.

• Pre-tokenizing suitable properties: exploiting
higher-level knowledge in replacing patterns with
access to deeper structure.

• Using key() structures.

5. Preconditions

With long sequences of patterns, many of which have
some similarities, one possibility is to detemine a smaller
set of precondition patterns that can be tested as required
for a node before the “main” pattern is checked. The
value of such a precondition for a given node can be
computed only when required (i.e. the first time when a
pattern that uses that precondition has to be checked)
and stored to avoid subsequent recomputation. The hope
of course is to eliminate quickly higher-rank patterns that
cannot match as one or more of their preconditions has
already been determined to fail. For example if there
were a large set of templates with matches of the form
chapter/ node-condition , such as:

chapter/title[condition1],
chapter/title[condition2],
chapter/para, chapter/section ...

then they all share the requirement that
exists(parent::chapter) must be true for the pattern to
match. Thus computing whether this precondition is

Page 17 of 177

Improving Pattern Matching Performance in XSLT

satisfied for a given node once may aid performance in
several possible ways:
• If a node does not have a chapter parent, then this

need be determined only once for the node and each
of these templates can be ruled out immediately.

• The pattern might be partially-evaluated within the
context that the precondition is true, e.g.
precondition(exists(parent::chapter)) reduces the
patterns to

precondition:exists(parent::chapter) :
 title[condition1], title[condition2],
 para, section ...

In our DITA example, using exists(@class) will gain us
little – almost every element in a DITA document has a
@class attribute and 90% of all element matches
predicate upon it. We could choose to use the
contains(@class,...) as a more discriminating
condition. Of the 239 template rules that share that test
for the context item (the node under test within
xsl:apply-templates) there are 204 distinct values for
the check (the largest common set has just 7 members,
most have of course 1).

In some cases these preconditions might be common,
especially when tested on ancestor nodes. For example
rules #204 and #205 both test for topic/entry on the

element and topic/row on the parent, differing only
whether the grandparent is a table body or head. In this
case, and especially with our sample document which is
very table heavy, the precondition “pair”
contains(@class,' topic/entry ') and contains(../

@class, ' table/row ') might be beneficial (tested on
#204, but result available for #205), but it is admittedly a
very special case. What other more general preconditions
might be useful?

A necessary precondition for
contains(@class,string) is contains(@class,any-

substring-of(string)) so some expression of this form
might be useful. Choosing to use just the first character
of the comparator string, which might normally be
expected to be of some use in many cases, fails miserably
here, as due to the class representation model being used
within DITA-OT, a leading space is appended to the
class token comparand (effectively implementing an
equivalent of tokenize(@class,'\s+') = 'entity-

class') – no gain there then.
If we choose to use the first two characters, we get 12

different preconditions, three of which apply to a
parent::* context. The distribution of the use of these
preconditions across the rule order is shown in Figure 6,
“Distribution of 2 character initial substring
preconditions”:

Figure 6. Distribution of 2 character initial substring preconditions

2015-04-18T14:18:40.518+01:00

0

5

10

Pr
ec

on
di

ti
on

 #

0 50 100 150 200 250
Rule order

Precondition distribution
mode:#default
2-character initial substring

@C{ s}

@C{ b}

@C{ r}

@C{ p}

@C{ u}

@C{ t}

parent::@C{ t}

@C{ h}

@C{ x}

parent::@C{ m}

parent::@C{ p}

@C{ m}

Note that these preconditions are not mutually exclusive
– some of the compound cases involve two conditions,
one on the context element and the other on its parent.

This is the case for 43% of the element template matches
on the sample document. By changing the fixed-length

Page 18 of 177

Improving Pattern Matching Performance in XSLT

1 It denotes DITA element equivalence to a given base element within a given topic.

initial substrings used we get a variety of balances
between precondition group sizes:

Table 5. Precondition group sizes as a function of
initial substring discriminant

Substring length # preconditions Largest reference set

2 12 146

3 - 5 14 121

6 16 121

7 46 121

8 75 17

We can modify our applicable rule search such that each
rule has a set of required preconditions (described by a
list of indices into a cache of expressions and boolean
values) which are tested before the main match is then
processed. The rest of the rule list processing machinery
is unaltered. The effect on the performance is shown in
Figure 7, “Effect of differing substring preconditions”:

Figure 7. Effect of differing substring preconditions

2015-04-20T15:38:06.241+01:00

0 500
Total / ms

Longest processed templates
mode:#default

Normal
2-character initial substring
3-character initial substring
8-character initial substring
3-character terminal substring

204:5 → @C{ topic/tbody }/@C{ topic/row }/@C{ topic/entry }

52:26 → @C{ pr-d/codeph }

151:9 → @C{ topic/p }

199:5 → @C{ topic/strow }/@C{ topic/stentry }

206:5 → @C{ topic/tbody }/@C{ topic/row }

210:5 → @C{ topic/colspec }

205:5 → @C{ topic/thead }/@C{ topic/row }/@C{ topic/entry }

201:5 → @C{ topic/strow }

213:5 → @C{ topic/table }

207:5 → @C{ topic/thead }/@C{ topic/row }

Note that when we are using these substring
preconditions, there is little we can do to “pre-evaluate”
the patterns themselves. Just because contains(.,'abc')
is a precondition for contains(.,'abcdef'), does not of
course imply contains(.,'def') is now sufficent, unlike
in other cases where a “true” condition reduces the
expression.

Now of course in this example there is some implicit
structure in the class token using the solidus (/)1.
Unfortunately this insight gains us little - using the
substring before we get 14 groups, using the substring
after we get 197! Obviously a better approach is to use a
more infomation-theoretic partitioning. For example 121

template rules match a class substring ' topic/... but
adding one more character to the discriminant for this
case replaces this group with 19 subgroups, the largest
being 12-15 in size.

There is nothing that says we are restricted to initial
substrings. Choosing the last 3 characters (which of
course end with a space) gives us 53 different
preconditions, with the largest group being 19 in size.
The effect is similar, as is shown in Figure 7, “Effect of
differing substring preconditions”.

A recursive approach (extending the length of the
substring for a particular group until subsequent
subgroups are smaller than a proportion of the size of the

Page 19 of 177

Improving Pattern Matching Performance in XSLT

1 XSLT's package delivery mechanism might be a useful aid to this.

original set or some minimum size) can give us a suitable
partitioning. Doing this for this for 5% or a minimum of
30 gives us 41 preconditions, with a largest reference
group of 26. A general rule of thumb suggests that when
the number of groups is similar to the size of each group,
the testing workload should be minimised.

On a more information-theoretic basis, we could
generate some optimal partioning tree. However we have
an issue that currently this would be done at compile-
time, when, whilst we know the frequency of pattern
components spread across the template spaces, we don't
know the relative frequencies of execution on documents
at run time. A possibility might be to collect statistics
from representative training runs, which are then used to
tune a subsequent compilation1.

The performance figures above use Saxon's default
rule list representation with precondition references
added to the rules. Another possibility is to split the rule
list into a number of separate lists where within each
sublist rules which would fail a common precondition
have been eliminated, then choose between the different
lists at search start, based on checking a small number of
those preconditions. For example, consider the two most
frequent preconditions in Figure 6, “Distribution of 2
character initial substring preconditions” – @C{ t}, which
qualifies 146 of the 240 rules and @C{ p} which qualifies
30. Satisfying the first condition does not restrict
matches to just those rules which have that precondition;
given the nature of the contains() function (and DITA's
possibility of multiple class tag values) it would be
entirely possible for one of the rules having the second
precondition to match also. Rather the failure of @C{ t}
rules out all those 146 rules, leaving a list of just 94 to be
checked.

So now we have to look at the inverse of the problem.
Table 4, “Most frequent patterns in mode #default”
shows that just six patterns, all predicated on @C{ t},

account for at least 56% of all the template matches.
Hence failure of this condition (which as we've seen
limits the rules to be checked to 94) would only be
invoked for a maximum of 45% of all calls. Failing
@C{ p} will be frequent of course (for 70% of the
elements), but it only eliminates 30 rules, albeit at high
rank order.

6. Other possibilities

Using preconditions, as described above, does not change
the correctness of the stylesheet behaviour under any
circumstances. However, if the stylesheet designer can
make certain guarantees about the overall stylesheet
operation, then there are a number of other possibilities
we might consider

6.1. “Un-disambiguating” rules

We have noticed that in the execution of this stylesheet
on the example source document, there actually is no
ambiguity in applicable rules – all template patterns for a
given precedence/priority rank have mutually exclusive
patterns on the nodes present in the example DITA
document. Hence we can assume that once a pattern for a
template matches, all others of similar rank can be
discarded. In effect we are suspending the checking of
rule ambiguity, and provided that the mutual exclusivity
is true for all practical purposes, which cannot be
determined statically, the stylesheet will still continue to
function correctly.

In our example, where there are many templates
sharing the same rank (e.g. the 78 of rank 9, or 25 of
rank 5) we can eliminate further search to “rank end”.
The effect may be slight but can be worth exploring. For
our example we get the following:

Page 20 of 177

Improving Pattern Matching Performance in XSLT

1 We would be interested in situations within DITA-OT where there might be some expectation of non-exclusive rules at the same import
precedence being written.

Figure 8. Effect of removing rule ambiguity

2015-04-20T15:28:36.076+01:00

0 500
Total / ms

Longest processed templates
mode:#default

Normal
Silent

204:5 → @C{ topic/tbody }/@C{ topic/row }/@C{ topic/entry }

52:26 → @C{ pr-d/codeph }

151:9 → @C{ topic/p }

199:5 → @C{ topic/strow }/@C{ topic/stentry }

206:5 → @C{ topic/tbody }/@C{ topic/row }

210:5 → @C{ topic/colspec }

205:5 → @C{ topic/thead }/@C{ topic/row }/@C{ topic/entry }

201:5 → @C{ topic/strow }

213:5 → @C{ topic/table }

207:5 → @C{ topic/thead }/@C{ topic/row }

The effects are most marked on rules #151, where the
number of rank 9 rules to be tested drops from 78 to 31
(total rules checked 198 → 151) and #204, where only 5
of the rank 5 rules need checking, as against 25 (total
rules checked 225 → 204). Interestingly, as we might
expect, rule #52 (which is the most frequently called)
gains no benefit, as it is the last member of rank 26 as
shown in Figure 3, “Rule order and precedence of
matched templates”.

We might also speculate on the effect if the 38 rules
of rank 26 are re-ordered so that rule #52 is tested first
and hence the number of rules checked for such nodes
drops 52 → 16, suggesting time taken might drop to a
third of its previous level. This would of course be
predicated on user-provided guarantees of mutually
exclusive applicability of rules1. In the case of rule #52
simple movement of the template from the beginning to
the end of its source file might have similar effect!

In a similar manner for rule #204, it is imported
through the tables.xsl stylesheet, whose position is
circled in blue in Figure 1, “DITA-OT stylesheet
importation tree for DITA→FO”. If these importations
are mutually exclusive, and they may well be, moving the
importation of that file to the end of the importation list
in its parent stylesheet increases the precedence of its
templates and hence rank. The orange circled stylesheet
contains rule #52. Such rearrangement of source

declaration orders may be possible by collecting statistics
from representative training runs to detect such
conditions.

Within XSLT2.0 it is an implementation choice as to
whether conflict raises an error or the last applicable rule
in declaration order is chosen. In Saxon, when warnings
are silent, the last is always chosen regardless, other rules
not being checked. In XSLT3.0 (which this DITA
framework predates) this behaviour can be controlled by
a @on-multiple-match="use-last|fail" property on a
suitable xsl:mode declaration and issuing of warnings
(which imply other rules must be checked) similarly.

6.2. Pretokenizing

The DITA architecture is effectively embedding structure
(multiple class membership) within the @class attribute.
If we can be guaranteed that this is the case, then an
option might be to generate preconditions that operate
on those implicit tokens whilst tokenising the
appropriate accessor once for each node. So for example
*[contains(@class,' topic/entry ')] would be
considered equivalent to the pattern

Page 21 of 177

Improving Pattern Matching Performance in XSLT

http://www.w3.org/TR/xslt-30/#element-mode

1 It is only guaranteed equivalent if the @class value string starts and finishes with at least a single space.

*[tokenize(@class,'\s+') = 'topic/entry')] 1 which
can then be further converted into a pair:

$tokens.class := tokenize(@class,'\s+')
 → ('foo','topic/entry')
test:
 $tokens.class = 'topic/entry'

where the node would be tokenized exactly once for each
containment-tested attribute (when the condition is first
required) and then need only be tested for value
membership against the token set in further rules
examining the same attribute properties. In most cases
the @class attribute contains three tags (of which the first
is either '+' or '-' which is never tested by templates, at
least in the current test, so the string literal sequences to
be tested are very short.

Now we define these tests as specialist tokenisation
preconditions (they may of course be shared between
rules) and index into the collection from the rules. And
unlike with the substrings, we can project the effect of a
true precondition into the pattern viz:

R1: *[contains(@class,' topic/entry ')]
R2: *[contains(@class,' topic/row ')]
R3: *[contains(@class,' topic/row ')]/
 *[contains(@class,' topic/entry ')]
→
R1: *[tokenize(@class,'\s+') = 'topic/entry')]
R2: *[tokenize(@class,'\s+') = 'topic/row')]
R3: *[tokenize(@class,'\s+') = 'topic/row')]/
 *[tokenize(@class,'\s+') = 'topic/entry')]
→
$tokens.class :=
 tokenize(@class,'\s+')
$tokens.parent.class :=
 tokenize(parent::*/@class,'\s+')
$preconditionM := $tokens.class = 'topic/entry'
$preconditionN := $tokens.class = 'topic/row'
$preconditionP := $tokens.parent.class = 'topic/row'

R1: $preconditionM && *
R2: $preconditionN && *
R3: $preconditionP && $preconditionM && *

where the token variables and precondition references are
held within the rule-processing structure. Within Saxon
these element match rules (*) would be indexed on the
“unnamed element” list, so the last part of each of the
final rule patterns would always yield true. In this case
these rules have been reduced to just a conjunction of
their preconditions.

The preconditions only call for the appropriate
tokenisation when it is first needed (they are effectively
single-assignment local variables with a scope for the
pattern match for a single node, and evaluated lazily) –
so that other preconditions involving differing values
only need to check within their own sequence
comparison. Obviously for a predicate which already uses
explicit tokenisation mechanisms (such as processing
semicolon-separated @style descriptions on SVG and the
like) then this technique can be used similarly. For our
example document, we get the following performance
improvements:

Page 22 of 177

Improving Pattern Matching Performance in XSLT

1 A node can be a member of several subsets, as the key determination can produce several values (e.g. xsl:key match="car"
use="@year,@colour").

Figure 9. Effect of pre-tokenizing pattern test inputs

2015-04-18T14:06:32.352+01:00

0 500
Total / ms

Longest processed templates
mode:#default

Normal
Tokenized patterns

204:5 → @C{ topic/tbody }/@C{ topic/row }/@C{ topic/entry }

52:26 → @C{ pr-d/codeph }

199:5 → @C{ topic/strow }/@C{ topic/stentry }

151:9 → @C{ topic/p }

206:5 → @C{ topic/tbody }/@C{ topic/row }

210:5 → @C{ topic/colspec }

205:5 → @C{ topic/thead }/@C{ topic/row }/@C{ topic/entry }

201:5 → @C{ topic/strow }

213:5 → @C{ topic/table }

211:5 → @C{ topic/tgroup }

The number of preconditions is now large (~200,
corresponding to each possible tag value mentioned in
the stylesheet) but most are referenced only once.
However they all share a single tokenisation of the @class
attribute (or that of the parent's in some cases)

Note

A generalisation of this technique into evaluating and
then crossreferring to common subexpressions is a
possibility. In the case here the binding between
preconditions and the evaluated variable is very tight
(the variable value for a given node is merely a (small)
finite list of strings). Extension to a more generic
sequenced-value approach would probably be
considerably more complex.

6.3. Using key() mechanisms

From early on XSLT has defined a key() mechanism to
speed searching for applicable nodes within an XML tree.
Using the xsl:key declaration a set of nodes can be
classified into a number of subsets dependent upon an
expression evaluated for each node1. Usually support for
this within an XSLT implementation is efficient, the key
being computed only once. Thus it is tempting to see

whether a suitable set of keys can be generated and used
within modified patterns. The approach is basically:

*[contains(@attr,'string')]
 → *[key('attr','string',.)[1] is .]

where effectively the key has been defined by:

<xsl:key name="attr"
 select="*"
 use="let $e := . return
 (string1, ... stringN)[contains($e/@attr,.)]"/>

The key has indexed all the nodes whose @attr contains
any of the substrings mentioned within the templates,
based on that substring. The pattern uses this key,
subsetting the nodes to just those which are descendant-
or-self::* of the element being tested – if the first node
is the target node then there is a match.

We implemented this scheme, but unsurprisingly
rather than improve, matters deteriorate significantly. In
computing the key (which Saxon does on the first request
via the key() call) every document element is processed,
for every possible contained substring mentioned in the
template sets. Equally well, the predicated key lookup
starting at a given node ([key('attr','string',.)[1]
is .]) involves searching through all the document-
ordered nodes already computed for the key (which in
our case of course means pretty much all the elements in
the entire document) to find the current focus. A

Page 23 of 177

Improving Pattern Matching Performance in XSLT

1 docbook/xsl/html/docbook_custom.xsl in the Oxygen 16.1 implementation

moment's thought suggests that will have O(n2)
performance. (If the templates were of the form
*[@attr='string'] a key approach might work –
certainly <xsl:key name="attr" select="*"

use="@attr"/> will be very much cheaper.)

7. Generalisation?

In the introduction we mentioned both DITA and
Docbook being significant large document-engineering
frameworks. Our experimentation has focussed on DITA
given the expensive nature of processing its class
representation. We were curious to see if similar issues
might appear in processing Docbook documents – we
believe this not to be the case. A survey of one of the
steps (conversion of Docbook into HTML1) which is of
similar “size” to those within DITA-OT, shows that of
the 1500 pattern matching templates within 59 files,
only 113 are against unnamed elements or attributes, and
none of the 190 modes has more than two. The vast
majority of patterns are described for named elements
and thus would be fully indexed within Saxon. Hence we
anticipate the methods discussed in this paper would not
be necessary for that framework.

We have shown that extracting a set of preconditions,
where evaluating one precondition for a particular node
can eliminate many match patterns, is an effective
strategy for the DITA stylesheets we have been studying.
This then raises the next question: can the technique be
generalized so that it is suitable for inclusion in a general-
purpose XSLT processor, producing performance benefits
for a sufficiently large set of stylesheets to justify its
existence?

This divides into two sub-questions: firstly, is the
general strategy of extracting preconditions general-
purpose enough? We think it is. Secondly, what about
the specific rules that we have found to work well on the
DITA stylesheets? Here, we are not convinced – they are
intimately tied up with the way DITA-OT decomposes
the class representation tags.

We believe that for the same general approach to
work with different kinds of stylesheets, we may need to

make the rules for extracting preconditions in some way
configurable. So we might consider shipping the product
with a set of rules that work well for DITA, and other
sets of rules that work well for other XML vocabularies.
We could consider defining a vocabulary allowing the
rules to be written declaratively (see John Snelson's paper
on declarative XQuery rewrite rules [4]) for some
possibilities. The designers of an XML vocabulary could
then perhaps ship a Saxon optimizer plug-in that applies
rules appropriate to the specific vocabulary. Saxon could
perhaps select an appropriate plug-in from the repertoire
available based on the namespaces in use in the particular
stylesheet.

8. Conclusions

In this paper we have examined performance issues in
processing a relatively large document with an XSLT
transform containing a large number of generic templates
whose match computation can be expensive, and where
large numbers of pattern matches occur very late in “rank
order”. We've shown that by choosing suitable shared
preconditions for rules, which need only be computed
once for a node under test, we can ameliorate the effect
of such long rank sequences in pattern sets. Alternatively,
by choosing to add some “higher-level” knowledge,
declaring that a given set of patterns is in effect
implementing a tokenisation, we can also improve
pattern matching.

As implementors of a major XSLT processor, our next
step is to examine ways that such heuristics can be added
and configured in the product. Some of these may be
very specific declarations within a configuration. Others
might be associated with running training sets, collecting
statistics and proposing specific tunings. Watch this
space...
Saxonica would like to thank its (anonymous) client who
was very willing to let us study the processing of one of
his real DITA documents in detail. Hopefully we'll be
able to repay him soon with some welcome “tune-up”.

References

[1] Michael Kay. Saxon: Anatomy of an XSLT processor. 2005.
http://www.ibm.com/developerworks/library/x-xslt2/

[2] Michael Kay. Writing an XSLT Optimizer in XSLT. Extreme Markup Languages. 2007.
http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html

Page 24 of 177

Improving Pattern Matching Performance in XSLT

http://www.ibm.com/developerworks/library/x-xslt2/
http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html

[3] Michael Kay and Debbie Lockett. Benchmarking XSLT Performance. XML London 2014. June 2014.
doi:10.14337/XMLLondon14.Kay01

[4] John Snelson. Declarative XQuery Rewrites for Profit or Pleasure. XML Prague 2011. March 2011. 211-225.
http://archive.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf

[5] XSL Transformations (XSLT) Version 3.0. 2014. World Wide Web Consortium (W3C).
http://www.w3.org/TR/xslt-30/

Page 25 of 177

Improving Pattern Matching Performance in XSLT

http://dx.doi.org/10.14337/XMLLondon14.Kay01
http://archive.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf#page=225
http://www.w3.org/TR/xslt-30/

