
Positional Grouping in XQuery
Michael Kay

Saxonica Limited
Reading, Berks

UK
+44 118 948 3589

mike@saxonica.com

ABSTRACT
This paper proposes an extension to the XQuery language to solve
the problem of positional grouping: that is, problems in which it
is necessary to convert a flat sequence into a hierarchy by
recognizing patterns in the sequence of items. Positional grouping
is contrasted with value-based grouping, where the allocation of
items to groups is based on common values rather than on the
positional relationships of the items in the sequence. The
approach is based on analyzing a set of use cases, derived from
real-world experience.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – data types and structures

General Terms
Algorithms, Standardization, Languages.

Keywords
XML, XQuery, grouping.

1. INTRODUCTION
A recognized weakness of XQuery version 1.0 is the absence of
facilities for grouping. In this paper, we use the term grouping to
mean an operation that takes a "flat" sequence as input, and
constructs a hierarchic arrangement of the items in the sequence,
based on implicit structure found in the sequence of items. The
input sequence is referred to as the population. The population
will often be a sequence of sibling elements within an XML
document, but in general (following the XQuery Data Model [1])
it may be any sequence of nodes or atomic values, regardless of
any relationship these may have to each other within an XML tree
structure.
In general it seems to be possible to classify grouping problems as
being either value-based or positional. In value-based grouping,
the primary criterion for placing two items in the same group is
that they share common values for some grouping key: for

example grouping books that have the same author, or employees
based in the same location. With positional grouping, on the other
hand, a significant factor in deciding how items are grouped is the
position of the item relative to other items within the population.
An example of a positional grouping problem is to take the input
sequence (H2, P, P, P, H2, P, P) (think of these as the names of
HTML elements) and group it into two <section> elements
where each section contains an H2 element together with the
following P elements up to the next H2. One possible solution to
this problem in XQuery 1.0 is shown below. The complexity of
this solution is evident.

declare function local:section($e as element(H2)) {
<section>{local:nextPara(
 $e/following-sibling::*[1][self::P])}
</section>};

declare function local:nextPara($p as element(P)?) {
 if ($p) then ($p,
 local:nextPara($p/following-sibling::*[1][self::P]))
 else ()};

<out>{for $h in doc('doc.xml')//BODY/H2
 return local:section($h)}</out>

There have been a number of proposals for adding value-based
grouping to XQuery, for example Borkar and Carey [2], and some
XQuery implementations have "jumped the gun" by including
such capabilities in advance of their standardization. Indeed, my
own product, Saxon, includes such an extension, implemented in
the form of a higher-order extension function in order to keep as
close as possible to the conformance rules for vendor extensions:
see [3].
By contrast, positional grouping in XQuery has received less
attention. This may perhaps be due to the relational database
tradition where all information is value-based and ordering plays
no part. In XML, however, order is an intrinsic part of the data
model, and many important relationships are expressed through
the ordering of elements within an XML document. Positional
grouping is particularly important when handling "narrative
XML", that is, XML representing human-readable documents;
however it also plays a role in applications that are more data-
oriented, such as analysis of sequential log files, or up-conversion
of legacy data formats.
The approach adopted in this paper is to start with a collection of
use cases that collectively define the problem being tackled. Some
of these use cases are taken from the XSLT 2.0 requirements
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

XIME-P 2006, 3rd International Workshop on XQuery Implementation,
Experiences and Perspectives, June 30, Chicago, Illinois

Copyright 2006 ACM 1-59593-465-0/06/0006 ...$5.00
 document [4]. These were gathered (mainly by Steve Muench of

Oracle) by analyzing hundreds of real-world XSLT coding
problems posted on the public xsl-list [5] between 1999 and 2001.
Over time, some further examples of grouping problems have
been observed, and representatives of these problems have been
added to the list.
The XSLT 2.0 Candidate Recommendation [6] includes facilities
designed to meet these requirements. These have proved very
popular; the availability of the <xsl:for-each-group>
instruction is often cited as the most important reason why people
have moved forward from XSLT 1.0 even before 2.0 was
finished. Any proposal for positional grouping in XQuery must
therefore take the XSLT 2.0 facilities into account. On the other
hand, they cannot be taken as the last word on the matter. There
are some use cases that they handle more elegantly than others,
and a few that they don't tackle at all. In addition, XQuery is a
different language syntactically, and needs a different syntactic
treatment.
I make no claim that the set of use cases is in any sense complete,
or that the functionality proposed covers some theoretically well-
defined problem space. Indeed, it does not: the problems
addressed are a small subset of the problems that could be
described with regular expressions. The aim here is not
completeness in any theoretical sense, but usability: a simple
facility for tackling a range of tasks that arise often in practice and
are difficult to solve using XQuery 1.0 as it stands.
XSLT 2.0 tackles value-based and position-based grouping using
a single construct, the <xsl:for-each-group> instruction.
With hindsight, however, the two kinds of grouping have many
differences and this may have overloaded the construct with non-
orthogonal options. One important conceptual difference is that
value-based grouping in XSLT assigns an item in the population
to zero, one, or more groups: for example when books are
grouped by author, a book will appear in a separate group for each
of its several authors. By contrast the positional grouping
facilities always perform a strict partitioning—each item in the
population is assigned to exactly one group. Another difference is
that (perhaps surprisingly) sorting of the results plays a bigger
role in value-based grouping problems. With positional grouping,
in nearly all cases the items in the output retain their ordering
from the input. With value-based grouping, however, there is
often a sorting requirement: the groups need to be sorted both
with respect to other groups, and within themselves. In some
cases this is based on input order (for example, listing the cast of
a play in order of first appearance) but it is more commonly based
on data values.
I have therefore chosen in this paper to consider positional
grouping in isolation; there may be later opportunities to integrate
the proposed solution with facilities for value-based grouping.

2. USE CASES
The use cases that follow define the scope of the positional
grouping problem. Each use case is given a short name that is
intended to be memorable, and will be referred to by this name in
the rest of the paper. Each use case is defined by giving the input
and the desired output; hopefully the relationship between the two
is simple enough that the transformation from one to the other can
be inferred. To illustrate the need for new language capabilities, I
have also given an XQuery 1.0 solution to several problems,
deliberately choosing a variety of coding styles.

2.1 Headings and Paragraphs
The problem here is to convert a structure with implicit sections,
denoted by the presence of a header element (as used in XHTML)
to a structure with explicit sections.

Input

<body>
 <h2>heading1</h2>
 <p>para1</p>
 <p>para2</p>
 <h2>heading2</h2>
 <p>para3</p>
 <p>para4</p>
 <p>para5</p>
</body>

Output

<chapter>
 <section title="heading1">
 <para>para1</para>
 <para>para2</para>
 </section>
 <section title="heading2">
 <para>para3</para>
 <para>para4</para>
 <para>para5</para>
 </section>
</chapter>
The XQuery 1.0 solution to this problem has already been given.

2.2 Adjacent Bullets
The problem here is to identify a sequence of adjacent <bullet>
elements (among a sequence containing any other kind of
element) and wrap them in a containing <list> element.

Input

<p/>
<q/>
<bullet>one</bullet>
<bullet>two</bullet>
<x/>
<y/>

Output

<p/>
<q/>
<list>
 <bullet>one</bullet>
 <bullet>two</bullet>
</list>
<x/>
<y/>

An XQuery 1.0 Solution

declare function local:item($e as element()?) {
if ($e) then
 if ($e[self::bullet])
 then (<list>{$e, local:followingBullets($e)}</list>,
 local:item($e/following-sibling::*[not(self::bullet)][1]))
 else ($e, local:item($e/following-sibling::*[1]))
else () };
declare function local:followingBullets($b as element()) {
 let $n := $b/following-sibling::*[1]
 where $n[self::bullet]
 return ($n, local:followingBullets($n))
};
<out>{local:item($input[1])}</out>

2.3 Term Definition Lists
Within a glossary in HTML, a defined term (<dt>) can be
followed by a definition <dd>. The task is to group these
together within a <term> element. To make things more
complicated, a group can consist of one or more <dt> elements
followed by one or more <dd> elements.

Input

<dt>XML</dt>
<dd>Extensible Markup Language</dd>
<dt>XSLT</dt>
<dt>XSL Transformations</dt>
<dd>A language for transforming XML</dd>
<dd>A specification produced by W3C</dd>

Output

<term>
 <dt>XML</dt>
 <dd>Extensible Markup Language</dd>
</term>
<term>
 <dt>XSLT</dt>
 <dt>XSL Transformations</dt>
 <dd>A language for transforming XML</dd>
 <dd>A specification produced by W3C</dd>
</term>

An XQuery 1.0 Solution

let $s := (for $e at $p in $input
 where $e[self::dt
 and not(preceding-sibling::*[1][self::dt])]
 return $p, count($input)+1)
for $i in 1 to count($s) - 1
return <term>{
 for $j in $s[$i] to $s[$i + 1] - 1
 return $input[$j]
}</term>

2.4 Continuation Markers
Concatenate a sequence of fragments marked with the attribute
cont="yes" to indicate that the next fragment is a continuation.

Input

<in cont="yes">One way to</in
<in cont="yes"> understand positional grouping is
<in> as an exercise in parsing.</in>
<in cont="yes">To get from a sequence of items</in>
<in cont="yes"> to a tree, we could use</in>
<in> some kind of grammar.</in>

Output

<para>One way to understand positional grouping is as an
exercise in parsing.</para>
<para>To get from a sequence of items to a tree, we could
use some kind of grammar.</para>

2.5 Page Ranges
Given a sequence of page references such as might occur in the
index of a book, identify sub-sequences that denote continuous
ranges of page numbers.

Input

4, 6, 9, 11, 12, 13, 18, 20, 21

Output

4, 6, 9, 11-13, 18, 20-21

2.6 Arrange in Rows
Arrange a sequence of items in fixed size rows of a table, say in
three columns. (The same problem occurs when grouping records
say ten to a page).

Input

"Green", "Pink", "Lilac", "Turquoise", "Peach", "Opal",
"Champagne"

Output

<table>
<tr>
 <td>Green</td><td>Pink</td><td>Lilac</td>
</tr>
<tr>
 <td>Turquoise</td><td>Peach</td><td>Opal</td>
</tr>
<tr>
 <td>Champagne</td><td> </td><td> </td>
</tr>
</table>

2.7 Level Numbers
In this problem, the hierarchic structure of the input is indicated
by COBOL-like level numbers. I present a worked XSLT 2.0
solution to this problem in [7], in the context of up-conversion of
genealogical data held in the non-XML GEDCOM format.

Input

<data>
<gedcom level="0"/>
<indi level="1"/>
<name level="2"/>
<first level="3">Michael</first>
<last level="3">Kay</last>
<email level="2">mike@saxonica.com</email>
<indi level="1"/>
<name level="2"/>
<first level="3">Norm</first>
<last level="3">Walsh</last>
<email level="2">norm@nwalsh.com</email>
</data>

Output

<gedcom>
 <indi>
 <name>
 <first>Michael</first>
 <last>Kay</last>
 </name>
 <email>mike@saxonica.com</email>
 </indi>
 <indi>
 <name>
 <first>Norm</first>
 <last>Walsh</last>
 </name>
 <email>norm@nwalsh.com</email>
 </indi>
</gedcom>

3. ANALYSIS OF THE PROBLEM
3.1 The Need for a Solution
The XQuery 1.0 solutions to these problems either involve
recursive traversal of the sequence, or they involve the
construction and manipulation of sequences of integers
identifying subranges of items in the input sequence. Neither of
these approaches makes for easy programming: even for an
experienced user, it takes several attempts to construct correct
solutions. Furthermore, both approaches strain the ability of the
XQuery engine to deliver scalable performance. Recursive
solutions have a tendency to blow the stack limit as the sequence
length increases (tail call optimization can prevent this but is not
always possible). Solutions based on integer indexing do not lend
themselves well to streaming solutions. Yet, in the author’s
experience, these problems arise very frequently in practice.
In a functional programming language such as Haskell, the
problem would be addressed using higher-order functions. This
will be the conceptual basis of my approach also. However, to fit

within the language style of XQuery and the concepts familiar to
its typical users, a solution using custom syntax is preferred.

3.2 Positional Grouping as Parsing
One way to understand positional grouping is as an exercise in
parsing. To get from a sequence of items to a tree that reflects
their structure, we could use some kind of grammar that matches
the items in the sequence as tokens in an alphabet. This might be
a regular expression, or a BNF grammar; it might even be the
schema for the document itself.
I have rejected approaches using formal grammars or regular
expressions for two reasons. Firstly, such solutions are likely to
be rather complex (it’s not good enough, for example, to use
element names as the symbols in the regular expression alphabet,
since many positional grouping problems depend on criteria other
than the element name). Secondly, the complexity is unnecessary:
in all the use cases listed in the previous section, the criteria for
partitioning the population can be defined in much simpler ways
than with a full grammar.

3.3 Sequences of Sequences
Since the output of a grouping operation is a collection of groups,
we immediately hit a design problem because the XQuery data
model does not allow for sequences of sequences.
In practice the output of grouping is usually an XML tree, in
which the hierarchic levels are represented by newly constructed
element nodes. (Alternatively, the group may be summarized or
aggregated so that the only output is a count or a total.) Therefore,
it's best to think of grouping as being a higher-order operation in
which a function is invoked to process each group as it is
identified. The group itself is a simple sequence, and the groups
are then processed conceptually one-at-a-time, so that there is no
need ever to construct a sequence of sequences as an object.

3.4 XSLT 2.0 Facilities
XSLT 2.0 provides three variants of the <xsl:for-each-
group> construct to handle positional grouping. These are:

• group-adjacent: defines a value-based grouping key
(this can be any function of the items to be grouped, for
example the element name). Adjacent items from the
population go in the same group if they have the same
value for the grouping key.

• group-starting-with: defines a pattern; items in the
sequence that match this pattern form the first item of a
new group.

• group-ending-with: defines a pattern; items in the
sequence that match this pattern form the last item of a
group.

Between them, these facilities enable most of the use cases in
section 2 to be solved, though in some cases only by roundabout
techniques. The solutions are along the following lines:

XSLT 2.0 Solutions to Use Cases

Use Case XSLT 2.0 Solution

Headings and Paragraphs group-starting-with

Adjacent Bullets group-adjacent

Term Definition Lists first group the <dt> and <dd>
elements separately using group-
adjacent; then merge a group of
<dt> elements with the following
group of <dd> elements using group-
starting-with

Continuation Markers group-ending-with

Page Ranges group-adjacent, with a key of
(. - position())

Arrange in Rows group-adjacent, with a key of
(position() idiv 3)

Level Numbers group-starting-with, applied
recursively at each level of grouping

So the facilities in XSLT 2.0 are sufficient to solve the problems
in all cases; but in some cases, the solution is not easy.

3.5 Identifying Breaks
In all the use cases, the essential problem is to decide, given a pair
of adjacent items in the population, whether to put the second
item in the same group as the first, or to start a new group at that
point.
The information needed to make this decision can in nearly all
cases be made as a function of the two adjacent items. In one use
case, Arrange in Rows, the decision does not depend on the items
themselves, but on their position in the population.
This suggests that we can solve the positional grouping problem
by providing a higher-order function with the following
parameters:

1. The population to be grouped
2. A function to be called to process each identified group
3. A function that is called for each pair of adjacent items,

and which is supplied with those two items plus the
position of one of the items (let's say the second of the
two) in the population; as output this function returns
true iff the two items should go in different groups.

To see how this solves each of the use cases, let's write the
determining function (item 3 above) as:

declare function break($first as item(), $second as item(),
$position as xs:integer) as xs:boolean {
….
}
and examine what goes in the body of the function for each of the
use cases.

3.5.1 Headings and Paragraphs
In this case the function takes the form:

declare function break($first as item(), $second as item(),
$position as xs:integer) as xs:boolean {
 $second[self::h2]
}
That is, we break between two items if the second item is an h2
element.

3.5.2 Adjacent Bullets
For this use case we break between two items if they are not both
bullet elements:

declare function break($first as item(), $second as item(),
$position as xs:integer) as xs:boolean {
 not($first[self::bullet] and $second[self::bullet])
}

3.5.3 Term Definition Lists
The break between groups occurs here when the first item is a
<dd> element and the second is a <dt>:

declare function break($first as item(), $second as item(),
$position as xs:integer) as xs:boolean {
 $first[self::dd] and $second[self::dt]
}

3.5.4 Continuation Markers
In this case we start a new group after an item that does not
specify cont="yes":

declare function break($first as item(), $second as item(),
$position as xs:integer) as xs:boolean {
 not($first/@cont="yes")
}

3.5.5 Page Ranges
Two numbers go in the same group if they are consecutive:

declare function break($first as item(), $second as item(),
$position as xs:integer) as xs:boolean {
 $first + 1 ne $second
}

3.5.6 Arrange in Rows
A new row starts if the position of the second item in the pair is
an integer multiple of the number of columns. Remember that in
XQuery all indexing starts at one.

declare function break($first as item(), $second as item(),
$position as xs:integer) as xs:boolean {
 ($position - 1) mod 3 = 0
}

3.5.7 Level Numbers
As with the XSLT solution, this requires recursive application of
positional grouping to handle the multiple levels. At a given level,
say level $N, the solution is:

declare function break($first as item(), $second as item(),
$position as xs:integer) as xs:boolean {
 $second/@level=$N
}

4. A SYNTAX PROPOSAL
The analysis in the previous section gives the conceptual basis of
the proposed approach. However, XQuery does not support
higher-order functions. Instead, higher-order operations such as
mapping and filtering are supported using custom syntax or
operators: for example the "/" in a path expression plays the role
of a higher-order map() or apply() function.
So we need to consider what surface syntax should be provided to
support this proposed functionality.
The addition of new syntactic constructs to XQuery is constrained
by the fact that the language has no reserved words. There are a
variety of conventions used to disambiguate keywords by their
syntactic context. The design below attempts to follow these
rules, but it has not been verified that the resulting grammar is
unambiguous.
As discussed in the introduction, I am proposing that positional
grouping and value-based grouping should be kept entirely
separate. Since the keyword "group" is likely to be used in the
context of value-based grouping, I will use the keyword
"partition" for positional grouping.
This suggests a syntax along the following lines:

partition $g in population
break
 after $a
 before $b
 at $p
 where condition
return action

In this structure:

• $g is a range variable bound to each group in turn,
allowing the group to be referenced within the action
expression.

• population is an arbitrary expression that selects the
sequence of items to be grouped.

• $a, $b, and $p denote the three variables that are
conceptually parameters to the function that decides
whether two items that are adjacent in the population
should go in the same group. Any of these that is not
required may be omitted. The actual variable names of
course may be user-chosen.

• condition is an expression, written in terms of $a, $b,
and $p, that determines whether the second item $b
should go in a different group from the first $a

• action is an expression, written in terms of $g, that
determines how each group is processed: often this will
construct elements to go on a result tree.

4.1 Use Cases with the Proposed Syntax
The following sections illustrate how the use cases may be solved
using the proposed syntax.

4.1.1 Headings and Paragraphs
partition $section in *
break before $h2 where $h2[self::h2]
return <section title="{$section/h2}">
 {$section/p}
 </section>

4.1.2 Adjacent Bullets
partition $children in *
break after $a before $b
 where not($a[self::bullet] and $b[self::bullet])
return
 if ($children/self::bullet) then
 <list> {$children} </list>
 else $children

4.1.3 Term Definition Lists
partition $term in *
break after $a before $b
 where ($a[self::dd] and $b[self::dt])
return <term>{$term}</term>

4.1.4 Continuation Markers
partition $para in para
break after $a where not($a/@cont = "yes")
return <para>{$para}</para>

4.1.5 Page Ranges
partition $range in $page-numbers
break after $a before $b where ($b != $a + 1)
return if (count($range) = 1) then
 $range
 else
 concat($range[1], "-", $range[last()]

4.1.6 Arrange in Rows
partition $rows in $colours
break at $p where (($p - 1) mod 3 = 0)
return <tr> {
 for $i in $rows return <td>{$i}</td>
} </tr>

4.1.7 Level Numbers
Here we give the full recursive solution:

declare function f:group($items as element()*, $level as
xs:integer) as element() {
 partition $group in $items
 break before $b where $b/@level = $level
 return element {$group[1]/node-name()} {
 f:group(remove($group, 1), $level + 1)
 }};
f:group(/data/*, 0)

4.2 Grammar
Here is a slightly more formal presentation of the proposed
grammar, using the conventions of the XQuery 1.0 specification,
and linking in to its metasymbol names where appropriate.
The production ExprSingle is extended to allow the option of
a PartitionExpr. We then define:

PartitionExpr ::= "partition" "$" VarName "in" ExprSingle
 "break"
 ("before" "$" VarName)?
 ("after" "$" VarName)?
 ("at" "$" VarName)?
 "where" ExprSingle
 "return" ExprSingle

4.3 Formal Semantics and Static Typing
I make no attempt at this stage to define a formal semantics for
the new construct, in particular I have not attempted to define the
type inferencing rules. As with a FLWOR expression, it is
possible to deduce the static types of the range variables from the
static types of the expressions to which they are bound; however,
it may be desirable to add optional type declarations to the syntax,
if only for consistency with other constructs in the language.

4.4 Performance
It should be self-evident that (like the XQuery 1.0 solutions to
these problems) the performance of the proposed construct will be
linear with respect to the size of the input sequence.
Because a range variable is bound to the contents of each group in
turn, a straightforward implementation will need to allocate
enough memory to hold the largest group. In Saxon, this approach
has so far proved adequate for implementing the similar grouping
constructs in XSLT 2.0. There is however potential for a smart
implementation to optimize the use of memory further by
analyzing how the range variable is actually used. In many cases
the group is simply copied to the output of the partition
expression. It is then quite feasible during a single pass through

the input data both to identify the group boundaries and to copy
the content of each group to the output.
Unlike the XQuery 1.0 solutions, no problems should arise as the
number of groups increases.

5. CONCLUSIONS
I have presented a number of use cases for positional grouping
problems: there is every reason to believe that these are
representative of real-world problems that XQuery users will need
to tackle, especially when handling narrative documents.
I then established that these can all be solved, at the conceptual
level, by means of a user-defined function that is called once for
each pair of adjacent items in the input sequence, and that
determines whether the second item should be in the same group
as the first, or should start a new group.
Based on this idea, I then proposed a syntactic extension to the
XQuery grammar to provide a capability for positional grouping
that meets all the use cases.
The proposed syntax tackles all the problems that the positional
grouping facilities in XSLT 2.0 handle, and in some cases handles
them more cleanly.

6. REFERENCES
[1] Fernandez, M. et al, XQuery 1.0 and XPath 2.0 Data Model

(XDM), W3C Candidate Recommendation 3 Nov 2005.
http://www.w3.org/TR/xpath-datamodel/

[2] Borkar, V., and Carey, M. Extending XQuery for Grouping,
Duplicate Elimination, and Outer Joins. XML 2004,
Idealliance (see http://www.idealliance.org/proceedings/
xml04/papers/229/XQueryExtensionsFinal.html

[3] Kay, M.H. saxon:for-each-group() extension function,
documented at http://www.saxonica.com/documentation/
extensions/functions/for-each-group.html

[4] Muench, S. and Scardina, M. XSLT Requirements Version
2.0. W3C, 14 Feb 2001. http://www.w3.org/TR/xslt20req

[5] xsl-list Open Forum on XSL.
http://www.mulberrytech.com/xsl/xsl-list/index.html

[6] Kay, M.H. XSL Transformations (XSLT) Version 2.0. W3C
Candidate Recommendation, 3 Nov 2005.
http://www.w3.org/TR/xslt20/

[7] Kay, M.H. Up-conversion using XSLT 2.0. XML 2004,
http://www.idealliance.org/proceedings/xml04/papers/111/m
hk-paper.html

	INTRODUCTION
	USE CASES
	Headings and Paragraphs
	Adjacent Bullets
	Term Definition Lists
	Continuation Markers
	Page Ranges
	Arrange in Rows
	Level Numbers

	ANALYSIS OF THE PROBLEM
	The Need for a Solution
	Positional Grouping as Parsing
	Sequences of Sequences
	XSLT 2.0 Facilities
	Identifying Breaks
	Headings and Paragraphs
	Adjacent Bullets
	Term Definition Lists
	Continuation Markers
	Page Ranges
	Arrange in Rows
	Level Numbers

	A SYNTAX PROPOSAL
	Use Cases with the Proposed Syntax
	Headings and Paragraphs
	Adjacent Bullets
	Term Definition Lists
	Continuation Markers
	Page Ranges
	Arrange in Rows
	Level Numbers

	Grammar
	Formal Semantics and Static Typing
	Performance

	CONCLUSIONS
	REFERENCES

