
<transpile from="Java" to="C#" via="XML"
with="XSLT"/>
Michael Kay, Saxonica

This paper describes a project in which XSLT 3.0 was used to convert a substantial
body of Java code (around 500K lines of code) to C#. The Java code, as it happens,
is the source code of the Saxon XSLT processor, but that's not really relevant: it could
have been anything.

1. Introduction
For a number of years, Saxonica has developed the Saxon product 1, a Java
implementation of the W3C XSLT, XQuery, XPath, and XSD specifications. The product
has also been made available on the .NET platform, by converting the bytecode generated
by the Java compiler into the equivalent intermediate language (called IL) on .NET. The tool
for this conversion was the open-source IKVMC library2 developed by Jeroen Frijters.

IKVMC was largely a one-man project, and when Jeroen (after many years of faithful
service to the community) decided to move on to other things, there was no-one to step into
his capable shoes, and the project has languished.

In 2019, Microsoft announced a change of direction for the .NET platform3. .NET had
diverged into two separate strands of development, known as .NET Framework and .NET
Core, and Microsoft announced in effect that .NET Framework would be discontinued, and
the future lay with .NET Core. The differences between the two strands need not really
concern us here, except to note that IKVMC never supported .NET Core, therefore Saxon
didn't run on .NET Core, and therefore we needed to find a different way forward.

The way that we chose was source code conversion from Java to C#. At the time of writing
this has been successfully achieved for a large subset of the Saxon product, and work is
ongoing to convert the remainder. This paper describes how it was done.

Let's start by describing the objectives of the project:

◇ Automated conversion of as much of the source code as possible from Java to C#.

◇ Repeatable conversion: this is not a one-off conversion to create a fork of the code; we
want to continue developing and maintaining the master Java code and port all changes
over to C# using the same conversion technology.

◇ Performance: the performance of the final product on .NET must be at least as good
as the existing product. In fact, we would like it to be considerably better, because (for

1http://www.saxonica.com/
2http://www.ikvm.net/
3https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/

34

reasons we have never fully understood) some workloads on the current product perform
much more slowly than on the Java platform.

◇Maintainability: although we don't intend to develop the C# code independently, we will
certainly need to debug it, and that means we need to generate human-readable code.

◇ Adaptability: because the .NET platform is different from the Java platform, some parts
of the product need to behave differently. We need to have convenient mechanisms to
manage these differences.

I should also stress one non-objective: we were not setting out to provide a tool that
could convert any Java program to C# fully automatically. We only needed to convert one
(admittedly rather large) program, and this meant that:

1. We only needed to convert Java constructs that Saxon actually uses (which turns out to
be quite a small subset of the total Java platform).

2. In the case of constructs that Saxon uses rarely, we could do some manual assistance
of the conversion, rather than requiring it fully automatic. Indeed, by Zipf's law, many of
the Java constructs that Saxon uses are only used once in the entire product, and in
many cases they are used unnecessarily and could easily be rewritten a different way
(sometimes beneficially). The main device we have used for this manual assistance
is the use of Java annotations in the source code, annotations that are specially
recognised as hints by the converter.

2. Preliminaries
Our initial investigations explored a number of available tools for source code conversion.
The only one that looked at all promising was a commercial product, Tangible4. We
bought a license to evaluate its capabilities, and the exercise taught us a lot about
where the difficulties were going to arise. It was immediately apparent that we would
have considerable difficulties with Java generics, with anonymous inner classes, and with
our extensive use of the Java CharSequence interface, which has no direct equivalent
in .NET. The exercise also taught us that Tangible, on its own, wasn't up to the job. (Having
said that, the conversions performed by Tangible helped us greatly in defining our own
rules.)

Our next step was to reduce our dependence on the constructs that were going to prove
difficult to convert: especially generics, and the use of CharSequence. I have described in
more detail how we achieved this in blog postings: 5 6.

Generics are difficult because although Java and C# use superficially-similar syntax (for
example List<String>) the semantics are very different. In C# instances are annotated
at run-time with the full expanded type, and one can therefore write run-time tests such as
x is List<String>. Writing x is List will return false: List<String> is not a subtype
of List. By contrast, with Java, the type parameters are used only at compile time and
are discarded at run time (the process is called Type Erasure). This means that on Java, x
instanceof List<String> is not allowed, while x instanceof List returns true.

We decided to reduce the scale of the problem by dropping some of our use of
generics from the product. In particular, in Saxon 9.9, two key interfaces, Sequence
and SequenceIterator, were defined with type parameters restricting the type of items
contained in an XDM sequence, and we dropped this in Saxon 10.0. The use of type
parameters here had always been somewhat unsatisfactory, for two reasons:

4https://www.tangiblesoftwaresolutions.com
5https://dev.saxonica.com/blog/mike/2020/07/string-charsequence-ikvm-and-net.html
6https://dev.saxonica.com/blog/mike/2020/01/java-generics-revisited.html

Preliminaries

35

Most of the time, the code has to deal with sequences-of-anything: we don't know
statically, when we write the Saxon code, what type of input it is going to be dealing
with (that depends on the user-written stylesheet). So providing the type parameter
(Sequence<Item>) simply doesn't add any value.

The XDM model for sequences has the property that an item is a sequence of length one.
So Item implements Sequence<Item>. Which means that a subclass of Item, such as
DateTimeValue, implements Sequence<DateTimeValue>. Which followed to its logical
conclusion mans that a DateTimeValue is an Item<DateTimeValue>, and a generic
item is therefore an Item<Item> (or is it an Item<Item<Item<...>>>?). Modelling
the XDM structure accurately using Java generics proved very difficult, and in the end, it
introduced a whole load of complexity without adding much value. Getting rid of it was
welcome.

As far as the CharSequence interface is concerned, we used this extensively in
interfaces where strings are passed around, to enable us to use implementations of
strings other than the Java String class. For example, the whitespace that often occurs
between elements in an XML document is compressed using run-length encoding as a
CompressedWhitespace object, which implements the CharSequence interface, and
can therefore be substituted in many cases for a Java String.

The use of CharSequence isn't perfect for this purpose, however. Firstly, it has the
same problem as a Java String in that it models a string as a sequence of 16-bit
UTF-16 char values, using a surrogate pair to represent Unicode astral codepoints. In
XPath, strings need to be codepoint-addressible (at least for the purposes of functions
such as substring() and translate()), and neither String nor CharSequence
meets this requirement. There are also issues concerning comparison across different
implementations of the CharSequence interface, plus the fact that many commonly used
methods in the standard Java class library require the CharSequence to be converted to
a String, which generally involves copying the content. In addition, the CharSequence
interface doesn't guarantee immutability. For these reasons, we had already introduced
another string representation, the UnicodeString, which we were using in many corners
of the code, notably when processing regular expressions.

C# has no direct equivalent of CharSequence: that is, an interface which is implemented
by the standard String class, but which also allows for other implementations. The interface
IEnumerable<Char> comes close, but that doesn't allow for direct addressing to get the
Nth character in a string.

So we decided to scrap our extensive use of CharSequence throughout the product,
and replace it with our own UnicodeString interface – which allows for direct codepoint
addressing, rather than char addressing with surrogate pairs. There is a performance hit
in doing this, because there's a lot of conversion between String and UnicodeString
when data crosses the boundary between Saxon and third-party software (notably the XML
parser, but also library routines such as upperCase() and lowerCase()). However, it's
sufficiently small that most users won't notice the difference, and we can mitigate it – for
example we have our own UTF-8 Writer used by the Saxon serializer, and it was easy to
extend the UTF-8 Writer to accept a UnicodeString as input, bypassing the conversion
of UnicodeString to String prior to UTF-8 encoding.

3. Examples of Converted Code
To set the scene, it might be useful to provide a couple of examples of converted code,
illustrating the challenges.

Here's a rather simple method in Java:

Examples of Converted Code

36

@Override
 public AtomicSequence atomize() throws XPathException {
 return tree.getTypedValueOfElement(this);
 }

And here is the C# code that we generate:

public override net.sf.saxon.om.AtomicSequence atomize() {
 return tree.getTypedValueOfElement(this);
}

Nothing very remarkable there, but it actually requires a fair bit of analysis of the Java code
to establish that the conversion in this case is fairly trivial. For example:

◇ The class name AtomicSequence has been expanded; this requires analysis of the
import declarations in the module, and it can't be done without knowing the full set of
packages and classes available.

◇ The @Override declaration is optional in Java, but optional is mandatory in C#;
moreover they don't mean quite the same thing, for example when overriding methods
defined in an interface or abstract class.

◇ The conversion of Java this to C# this works here, but there are other contexts where
it doesn't work.

Now let's take a more complex example. Consider the following Java code:

public Map<String, Sequence> getDefaultOptions() {
 Map<String, Sequence> result = new HashMap<>();
 for (Map.Entry<String, Sequence> entry : defaultValues.entrySet()) {
 result.put(entry.getKey(), entry.getValue());
 }
 return result;
}

In C# this becomes (with abbreviated namespace qualifiers, for readability):

public S.C.G.IDictionary<string, n.s.s.o.Sequence> getDefaultOptions() {
 S.C.G.IDictionary<string, n.s.s.o.Sequence> result =
 new S.C.G.Dictionary<string, n.s.s.o.Sequence>();
 foreach (S.C.G.KeyValuePair<string, n.s.s.o.Sequence> entry in defaultValues) {
 result[entry.Key] = entry.Value;
 }
 return result;
}

There's a lot going on here:

◇We've replaced the Java Map with a C# Dictionary, and its put() method has been
replaced with an indexed assignment;

◇ The Java iterable defaultValues.entrySet() has been replaced with the C#
enumerable defaultValues;

◇ The references to entry.getKey() and entry.getValue() have been replaced with
property accessors entry.Key and entry.Value.

Examples of Converted Code

37

◇ The replacement of result.put(key, value) by result[key] = value is fine in
this context, but it needs care, because if the return value of the expression is used, the
Java code returns the previous value associated with the key, while the C# code returns
the new value. The rewrite works here only because the expression appears in a context
where its result is discarded.

4. Architecture of the Converter
The overall structure of the transpiler is shown below:

Let's explain this:

◇On the left, we have 2000+ Java modules.

◇ These are converted to an XML representation by applying the JavaParser, and
serializing the resulting parse tree as XML.

◇ An XSLT transformation takes all the XML files as input and generates a digest of the
class and method hierarchy.

◇ A further XSLT transformation enhances the digest by analyzing which methods override
each other.

◇ Each of the 2000+ XML modules is then converted to C# by applying an XSLT
transformation, which takes the enhanced digest file as an additional input.

The first stage of conversion is to parse each Java module and generate an abstract syntax
tree, which can be serialized as XML. For this purpose we use the open-source JavaParser
product7.

JavaParser generates the parse tree as a hierarchy of (not very well documented) Java
objects. It also includes the capability to serialize this hierarchy as XML. We don't use its

7http://javaparser.org

Architecture of the Converter

38

out-of-the-box serialization however: we augment it with additional semantic information.
JavaParser in fact has two parts (originally developed independently, and still showing
evidence of the fact): the parser itself, which is exactly what it says, and the "symbol
solver", which is a set of queries that can be executed on the parse tree to obtain
additional information. For example, if the raw source code contains the expression new
HashMap<>(), this will appear in the raw tree as:

<value nodeType="ObjectCreationExpr">
 <type nodeType="ClassOrInterfaceType">
 <name nodeType="SimpleName" identifier="HashMap"/>
 <typeArguments/>
 </type>
</value>

But with the aid of the symbol solver, it is straightforward to establish that the name
HashMap refers to the class java.util.HashMap, and we output this as an additional
attribute on the tree, thus:

<value nodeType="ObjectCreationExpr">
 <type nodeType="ClassOrInterfaceType"
 RESOLVED_TYPE="java.util.HashMap">
 <name nodeType="SimpleName" identifier="HashMap"/>
 <typeArguments/>
 </type>
</value>

Similarly, the symbol solver is usually able to find the declaration corresponding to a
variable reference or method call, and hence to establish the static type of the variable
or of the method result. I say usually, because there are cases it gives up on. It struggles,
for example, with the types of the arguments to a lambda expression, for example the
variable n in

search.setPredicate(n -> n.name="John")

Similarly it has difficulty with static wildcard imports:

import static org.w3.dom.Node.*;

The other problem with the symbol solver is that it can do a lot of things that aren't
mentioned in the documentation: we've found some of these by experiment, or by studying
the source code. No doubt there are other gems that remain hidden.

The result of this process is that for each Java module in the product, we generate a
corresponding XML file containing its decorated syntax tree.

In principle we could now write an XSLT transformation that serializes this syntax tree
using C# syntax. But there's another step first. In some cases we can't generate the C#
one file at a time: we need some global information. For example, if a C# method is to
be overridden in a subclass, it needs to be flagged with the virtual modifier. Similarly,
overriding methods need to be flagged as override. We therefore need to construct a
map of the entire class hierarchy, working out which methods are overridden and which are
overrides.

So the second phase of processing is to scan the entire collection of XML documents and
generate a digest file (itself an XML document, naturally) which acts as an index of classes,
interfaces, and methods, and which represents the class hierarchy of the application. Then

Architecture of the Converter

39

(our third phase) we do a transformation on the digest file which augments it with decisions
about which methods are overriding and which are virtual.

Now finally we can perform the XML-to-C# phase, implemented as an XSLT transformation
applied to each of the XML documents generated in phase one, but with the digest file
available as additional information.

The C# is then ready to be compiled and executed.

5. Difficulties

In this section we outline some of the features of the Java language where conversion
posed particular challenges, and explain briefly how these were tackled.

It's worth noting that there are broadly three classes of solution for each of these difficulties:

◇ Create an automated conversion that handles the Java construct and converts it to
equivalent C#. Note that although this is an automatic conversion, it doesn't necessarily
have to handle every edge case, in the way that a productised converter might be
expected to do. In particular, it doesn't have to handle edge cases that the Saxon code
doesn't rely on: for example the converted code doesn't have to handle null as an input
in exactly the same way as the original Java, if Saxon never supplies null as the input.

◇ Convert with the aid of annotations manually added to the Java code. We'll see examples
of some of these annotations later.

◇ Eliminate use of the problematic construct from the Java code, replacing it with
something that can be more easily converted. A trivial example of this relates to the
use of names. Java allows a field and a method in a class to have the same name; C#
does not. Simple solution: manually rename fields where necessary so that no Saxon
class ever has a field and a method with the same name. (Very often, imposing such a
rule actually improves the Java code.)

The following sections describe some of the difficulties, in no particular order.

5.1. Dependencies

Java has a class java.util.HashMap (which Saxon uses extensively). C# does not have
a class with this name. It does have a rather similar class System.Dictionary, but there
are differences in behavior.

Broadly speaking, there are three ways we deal with dependencies:

◇ Rewriting. Here the converter (specifically, the XML-to-C# transformation stylesheet)
has logic to rename references to the class java.util.HashMap so they instead
refer to System.Collections.Generic.Dictionary, and to convert calls on the
methods of java.util.HashMap so they instead call the corresponding methods
of System.Dictionary. We've already seen an example of this above. Sometimes
there is no direct equivalent for a particular method, in which case we instead
generate a call on a helper method that emulates the required functionality.
(System.Collections.Generic.Dictionary, for example, has no direct equivalent
to the get() method on java.util.HashMap, largely because it cannot use null as
a return value when the required key is absent.)

The converter uses rewriting for the vast majority of calls on commonly used classes and
methods. There's more detail on how this is done below.

Difficulties

40

◇ Emulation. Here we implement (in C#) a class that emulates the behaviour of the Java
class – or at least, those parts of the behaviour that Saxon relies on. An example where
we do this is java.util.Properties, which has no direct equivalent in C#, but which
is easily implemented using dictionaries. Saxon doesn't use the complicated methods for
importing and exporting Properties objects, so we don't need to emulate those.

◇ Avoidance. Here we simply eliminate the dependency. For example, the Java product will
accept input from either a push (SAX) or pull (StAX) parser. On C# we will only support
a single XML parser, the one from Microsoft. This is a pull parser, so we eliminate all
the Saxon code that's specific to SAX support. This is non-trivial, of course, because the
relevant code is widely scattered around the product. But once found, it's usually easy to
get rid of it using preprocessor directives in the Java (//#if CSHARP==false). I should
perhaps have mentioned that there's a "phase 0" in our conversion pipeline, which is to
apply these preprocessor directives.

In cases where dependencies are handled by rewriting, there are two parts to this. Firstly,
we have a simple mapping of class names. This includes both system classes and Saxon-
specific classes. Here are a few of them:

<xsl:variable name="specialTypes"
 as="map(xs:string, xs:string)"
 select="map{
 'boolean': 'bool',
 'java.io.BufferedInputStream':
 'System.IO.BufferedStream',
 'java.io.BufferedOutputStream':
 'System.IO.BufferedStream',
 'java.io.BufferedReader':
 'Saxon.Impl.Helpers.BufferedReader',
 'java.lang.ArithmeticException':
 'System.ArithmeticException',
 'java.lang.ArrayIndexOutOfBoundsException':
 'System.IndexOutOfRangeException',
 'java.lang.Boolean': 'System.Boolean',
 'java.lang.Byte': 'System.Byte',
 ...
 'java.math.BigDecimal':
 'Singulink.Numerics.BigDecimal',
 ...
 'java.util.ArrayList':
 'System.Collections.Generic.List',
 'java.util.Collection':
 'System.Collections.Generic.ICollection',
 'java.util.Comparator':
 'System.Collections.Generic.Comparer',
 ...
 'net.sf.saxon.ma.trie.ImmutableHashTrieMap':
 'System.Collections.Immutable.ImmutableDictionary',
 'net.sf.saxon.ma.trie.ImmutableMap':
 'System.Collections.Immutable.ImmutableDictionary',
 'net.sf.saxon.ma.trie.ImmutableList':
 'System.Collections.Immutable.ImmutableList',
 'net.sf.saxon.ma.trie.TrieKVP':
 'System.Collections.Generic.KeyValuePair',
 ...
 'net.sf.saxon.s9api.Message':
 'Saxon.Api.Message',
 'net.sf.saxon.s9api.QName':

Dependencies

41

 'Saxon.Api.QName',
 'net.sf.saxon.s9api.SequenceType':
 'Saxon.Api.XdmSequenceType',
 ...
}"/>

Note that there are cases where we replace system classes with Saxon-supplied classes,
and there are also cases where we do the reverse: the extract above illustrates that we can
replace Saxon's immutable map implementation with the standard immutable map in .NET.
In the case of BigDecimal, we rewrite the code to use a third-party library8 with similar
functionality to the built-in Java class.

The other part of the rewrite process is to handle method calls. We rely here on
knowing the target class of the method, and we typically handle the rewrite with a
template rule like this (long namespace names abbreviated for space reasons: S.N =
Singulink.Numerics, S.I.H = Saxon.Impl.Helpers)

<xsl:template match="*[@RESOLVED_TYPE = 'java.math.BigDecimal']"
 priority="20" mode="methods">
 <xsl:sequence select="f:applyFormat(., map{
 'add#1': '(%scope%+%args%)',
 'subtract#1': '(%scope%-%args%)',
 'multiply#1': '(%scope%*%args%)',
 'divide#1': 'S.N.BigDecimal.Divide(%scope%, %args%, 18)',
 'divide#2': 'S.N.BigDecimal.Divide(%scope%, %args%)',
 'divide#3': 'S.N.BigDecimal.Divide(%scope%, %args%)',
 'negate#0': '-%scope%',
 'mod#1': 'S.I.H.BigDecimalUtils.Mod(%scope%, %args%)',
 'signum#0': '%scope%.Sign',
 'remainder#1': 'S.I.H.BigDecimalUtils.Remainder(%scope%, %args%)',
 'divideToIntegralValue#1':
 'S.I.H.BigDecimalUtils.Idiv(%scope%, %args%)',
 'divideAndRemainder#1':
 'S.I.H.BigDecimalUtils.DivideAndRemainder(%scope%, %args%)',
 'valueOf#1': 'Saxon.Impl.Helpers.BigDecimalUtils.ValueOf(%args%)',
 'intValue#0': '((int)%scope%)',
 'longValue#0': '((long)%scope%)',
 'doubleValue#0':
 '((double)%scope%)',
 'floatValue#0':'((float)%scope%)',
 'longValueExact#0':
 'S.I.H.BigIntegerUtils.LongValueExact(%scope%)',
 'setScale#1': '%scope%', (:no-op, values are normalized:)
 'setScale#2': '%scope%', (:no-op, values are normalized:)
 'stripTrailingZeros#0':
 '%scope%', (:no-op, values are normalized:)
 'toBigInteger#0':
 '((System.Numerics.BigInteger)%scope%)',
 '*': '%scope%.%Name%(%args%)'
 })"/>

</xsl:template>

This is a template rule in mode methods, a mode that is only used to process
MethodCall expressions, so we don't need to repeat this in the match pattern. This
particular rule handles all calls where the target class is java.math.BigDecimal.
It delegates the processing to a function f:applyFormat() which is given as input

8https://github.com/Singulink/Singulink.Numerics.BigDecimal

Dependencies

42

a set of sub-rules supplied as a map in a custom microsyntax. Given the name
and arity of the method call, this function looks up the applicable sub-rule, and
interprets it: for example value1.add(value2) translates to (value1+value2) (C#
allows user-defined overloading of operators such as "+"). Some methods such as
mod() are converted into calls on a static helper method (written in C#) in class
Saxon.Impl.Helpers.BigDecimalUtils.

Most of the product's dependencies have proved easy to tackle using one or more of these
mechanisms. We were able to use rewriting more often than I expected – for example
it's used to replace the dependency on Java's BigDecimal class with a third-party library,
Singulink.Numerics.BigDecimal. It's worth showing the XSLT code that drives this:

5.2. Iterators and Iterables

There is a close correspondence between the Java interface Iterable and C#'s
IEnumerable; and similarly between Java's Iterator and C# IEnumerator. In both
cases the interface is closely tied up with the ability to write a "for each" loop. If we're going
to be able to translate this Java:

for (Attribute att : attributes) {...}

into this C#:

foreach(Attribute att in attributes) {...}

then the variable attributes, which is an Iterable in Java, had better become an
IEnumerable in C#. We can handle that by rewriting class names; and we can also
rewrite the method attributes.iterator() as attributes.GetEnumerable() so
that it satisfies the C# interface. What now gets tricky is that Java's Iterator has two
methods hasNext() and next() which don't correspond neatly to C# IEnumerator,
which has MoveNext() and Current. Specifically, hasNext() is stateless, and can be
called any number of times, while MoveNext() is state-changing and can only be called
once. However, "sane" code that uses an iterator always makes one call on hasNext()
followed by one call on next(), and that sequence translates directly to a call on
MoveNext() followed by a call on Current. So the converter assumes that the code
will follow this discipline – and if we find code that doesn't, then we have to change it9.

5.3. Inner classes

Java effectively has three kinds of inner class: named static inner classes, named instance-
level inner classes, and anonymous classes. Only the first of these has a direct equivalent
in C#.

Saxon makes extensive use of all three kinds of inner class. The converter makes a
strenuous effort to convert all of them to static named inner classes, but this doesn't always
succeed. In some cases it can't succeed, because there are things that static named inner
classes aren't allowed to do.

Sometimes the conversion can be made to work with the help of hints supplied as
Java annotations. For example we might see the following annotation on a method that
instantiates an anonymous inner class:

9A benefit of having the parsed Java code in XML format is that it's easy to do queries to search for code that needs to be
inspected.

Iterators and Iterables

43

@CSharpInnerClass(outer=false,
 extra={"net.sf.saxon.expr.XPathContext context",
 "net.sf.saxon.om.Function function"})

This indicates to the converter that in the generated static inner class, there is no need
to pass a reference to the outer this class (because it's not used), but there is a need
to pass the values of variables context and function from the outer class to the inner
class. (Annotations, like anything else in the Java source code, are parsed by JavaParser
and made visible in the syntax tree.)

5.4. Overriding, Covariance, Contravariance

As we've already mentioned, C# requires any method that is overridden to be declared
virtual, and any method that overrides another to be declared with the modifier
override. We handle this by analyzing the class hierarchy and recording the analysis
in the digest XML file, which is available to the stylesheet that generates the C# code.

In addition, Java allows an overriding method to have a covariant return type: if
Expression.evaluate() returns Sequence, then Arithmetic.evaluate() can
return AtomicValue, given that AtomicValue is a subclass of Sequence. C# doesn't
allow covariant return types until version 9.0 of the language, and we decided this was a
new promised feature that we would be unwise to rely on. Instead:

◇ when we're analyzing the class hierarchy, we detect any use of covariance, and change
the overriding method to use the same return type as its base method;

◇ when we're analyzing the class hierarchy, we detect any use of covariance, and change
the overriding method to use the same return type as its base method when we find a call
to a method that's been overridden with a covariant return type, we insert a cast so the
expected type remains as it was.

Java allows interfaces to define default implementations for methods; C# does not. The
transpiler handles default method implementations by copying them into each subclass.
This of course can lead to a lot of code duplication, so we have eliminated some of the
cases where we were using default methods unnecessarily.

5.5. Generics

I've already mentioned that we identified early on that generics would be a problem, and
one of the steps we took was to reduce unnecessary and unproductive use of generic
types. In fact, we have almost totally eliminated all use of generics in Saxon-defined
classes, which was the major problem. That leaves generics in system-defined classes
(notably the collection classes such as List<T>) which we can't easily manage without.

In fact, most uses of these classes translate from Java to C# without trouble. But there are
still a few difficulties:

Diamond Operators

Java allows you to write List<X> list = new ArrayList<>() (referred to as
a diamond operator, though it's not technically an operator). In C# it has to be new
ArrayList<X>(). So we need to work out what X is – essentially by applying the same
type inferencing rules that the Java compiler applies. The way we do this is by recognising
common cases: object instantiation on the right-hand side of an assignment, in a return
clause, in an argument to a non-polymorphic method, etc. The logic is quite complex, and
it catches perhaps 95% of cases. The remainder are handled by changing the Java code:
either by introducing a variable, or by adding the type redundantly within the diamond.

Overriding, Covariance, Contravariance

44

XSLT template rules really come into their own here. We handle about a dozen patterns
where the type of the parameter can be inferred, and each of these is represented by a
template rule. As we get smarter or discover more cases, we can simply add more template
rules. Here's an example of one of the rules:

<xsl:template match="*[@nodeType='ReturnStmt']
 [ancestor::member[1]/type/@RESOLVED_TYPE]/*">
 <xsl:variable name="type"
 select="ancestor::member[1]/type/@RESOLVED_TYPE"
 as="xs:string"/>
 <xsl:value-of select="f:extract-type-arguments($type)"/>
</xsl:template>

This rule detects a diamond operator appearing in a return statement (the rule appears in a
module with default mode diamond, which is only used to process expressions that have
already been recognised as containing a diamond operator). It finds the ancestor method
declaration (ancestor::member[1]), determines the declared type of the method result,
and inserts that into the C# code as the type parameter in place of the diamond operator.

Wildcards

The Java wildcard constructs <? extends T> and <? super T> have no direct
equivalent in C#. The way we handle these depends on where they are used. The default
action of the converter is just to replace them with <T>, which often works. But in class and
method declarations we generate a C# where clause to constrain the type bounds, so

public class GroundedValueAsIterable<T extends Item>
 implements Iterable<T> {...}

becomes

public class GroundedValueAsIterable<T> : IEnumerable<T>
 where T : Item {...}

One issue we face is that the default type Object in Java is less all-embracing than the
object type in C#: the former does not include primitive types such as int or double, the
latter does. This means that where the required type is Object, the supplied value can be
null; but this is not so in C#, because primitive types do not allow a null. This permeates
the design of collection classes. Often the solution is to constrain the C# class to handle
reference types only, using the clause where T : class.

5.6. Lambda Expressions and Delegates

Lambda expressions in Java translate quite easily to lambda expressions in C#: apart from
the use of a different arrow symbol, the rules are very similar.

I've already mentioned that the JavaParser symbol solver struggles a bit with type inference
inside lambda expressions, and we sometimes need to provide a bit of assistance by
declaring types explicitly.

The main problem, however, is that Java is much more flexible than C# about where
lambda expressions are allowed to appear. To take an example, we have a method
NodeInfo.iterateAxis(Axis, NodeTest). On the Java side, NodeTest is a
functional interface, which means the caller can either supply a lambda expression such
as node -> node.getURI() == null, or they can supply an instance of a class
that implements the NodeTest interface, for example new LocalNameTest("foo").

Lambda Expressions and Delegates

45

In C# NodeTest must either be defined as a delegate, in which case the caller must
supply a lambda expression and not an implementing class, or it can be defined as a
regular interface, in which case they can supply an implementing class but not a lambda
expression.

To solve this, in most cases we've kept it as an interface, but supplied an implementation of
the interface that accepts a lambda expression. So if you want to use a lambda expression
here, you have to write NodeTestLambda.of(node -> node.getURI() == null).
Which is convoluted, but works.

5.7. Exceptions

The most obvious difference here between Java and C# is that C# does not have checked
exceptions. Most of the time, all this means is that we can drop the throws clause from
method declarations.

Try/catch clauses generally translate without trouble. A try clause that declares
resources needs a little more care but we hardly use these in Saxon. The syntax for
a catch that lists multiple exceptions is a little different, but the conversion rule is
straightforward enough.

The main problem is deciding on the hierarchy of exception classes. If the Java code tries
to catch NumberFormatException, how should we convert it? What exception will the C#
code be throwing in the same situation?

To be honest, I think we probably need further work in this area. Although we're passing
95% of test cases already, I think we'll find that quite a few of the remaining 5% are
negative tests where correct catching of exceptions plays a role, and we'll need to give this
more careful attention.

6. XSLT Considerations
In this section I'll try to draw out some observations about the XSLT implementation.

Like most XSLT code, it has been developed incrementally: rules are added as the need
for them is discovered. This is one of the strengths of XSLT as an implementation language
for this kind of task: the program can grow very organically, with little need for structural
refactoring. At the same time, uncontrolled growth can easily result in a lack of structure.
How many modes should there be, and how do we decide? How should the code be split
into modules? How should template rule priorities be allocated?

Again, like most XSLT applications, it's not just template rules: there are also quite a few
functions. And as in other programming languages, the set of functions you end up with,
and their internal complexity and external API, can grow rather arbitrarily.

It's worth looking a little bit at the nature of the XML we're dealing with. Here's a sample:

<member nodeType="MethodDeclaration">
 <body nodeType="BlockStmt">
 <statements>
 <statement nodeType="ReturnStmt">
 <expression nodeType="BinaryExpr"
 operator="PLUS">
 <left nodeType="MethodCallExpr"
 RETURN="double"
 RESOLVED_TYPE="net.sf.saxon.expr.Expression">
 <name nodeType="SimpleName" identifier="getCost"/>

Exceptions

46

 <scope nodeType="MethodCallExpr"
 RETURN="net.sf.saxon.expr.Expression"
 DECLARING_TYPE="net.sf.saxon.expr.BinaryExpression">
 <name nodeType="SimpleName" identifier="getLhsExpression"/>
 </scope>
 </left>
 <right nodeType="BinaryExpr" operator="DIVIDE">
 <left nodeType="MethodCallExpr" RETURN="double"
 RESOLVED_TYPE="net.sf.saxon.expr.Expression">
 <name nodeType="SimpleName" identifier="getCost"/>
 <scope nodeType="MethodCallExpr"
 RETURN="net.sf.saxon.expr.Expression"
 DECLARING_TYPE="net.sf.saxon.expr.BinaryExpression">
 <name nodeType="SimpleName"
 identifier="getRhsExpression"/>
 </scope>
 </left>
 <right nodeType="IntegerLiteralExpr"
 value="2"/>
 </right>
 </expression>
 </statement>
 </statements>
 </body>
 <type nodeType="PrimitiveType"
 type="DOUBLE"
 RESOLVED_TYPE="double"/>
 <modifiers>
 <modifier nodeType="Modifier"
 keyword="PUBLIC"/>
 </modifiers>
 <annotations>
 <annotation nodeType="MarkerAnnotationExpr">
 <name nodeType="Name" identifier="Override"/>
 </annotation>
 </annotations>
</member>

This represents the Java code

@Override
public double getCost() {
 return getLhsExpression().getCost()
 + getRhsExpression().getCost() / 2;
}

It's interesting to look at the values used (a) for the element name (e.g. body, left,
right, expression, statement), and (b) for the nodeType attribute (e.g. ReturnStmt,
BinaryExpr, SimpleName). Generally, the nodeType attribute says what kind of thing
the element represents, and the element name indicates what role it plays relative to the
parent. (Reminiscent of SGML architectural forms, perhaps?)

As an aside, the same dichotomy is present in the design of Saxon's SEF file, which
represents a compiled stylesheet, but there we do it the other way around: if an integer
literal is used as the right hand side of an addition, the JavaParser format expresses
this as <right nodeType="IntegerLiteral">, whereas the SEF format expresses it

XSLT Considerations

47

as <IntegerLiteral role="right">. Of course, neither design is intrinsically better
(though the SEF choice works better with XSD validation, since XSD likes the content
model of an element to depend only on the element name, not the value of one of its
attributes). But the choice does mean that most of our template rules in the transpiler are
matching on the nodeType attribute, not on the element name, and this perhaps makes the
rules a bit more complicated.

Performance hasn't been a concern. I'm pleased to be able to report that of the various
phases of processing, the phases written in XSLT are an order of magnitude faster than
the phase written in Java; which means that there's no point worrying about speeding
the XSLT up. This is despite the fact that (as the above example demonstrates) the XML
representation of the code is about 10 times the size of the Java representation.

(Actually, the Java code is 29Mb, the XML is 120Mb, and the generated C# is 18Mb. The
C# is smaller than the Java mainly because we drop all comments, and also because the
Java total includes modules we don't (yet) convert, for example a lot of code dealing with
SAX parsers, localisation, and optional extras such as the XQJ API and SQL extension
functions).

But I would like to think that one reason performance hasn't been a concern is that the code
was sensibly written. We've got about 200 template rules here, most of them with quite
complicated match patterns, and we wouldn't want to be evaluating every match pattern
for every element that's processed. In fact, a lot of the time we're doing three levels of
matching:

◇ If we find that we're processing a method call (which is rather common), we have a single
template rule in the top-level mode that matches *[@nodeType='MethodCallExpr'].

◇ This template rule then does <xsl:apply-templates select="."
mode="MethodCall"/>, which searches for a more specific template rule, but only
needs to search the set of rules for handling method calls, because they are all in this
mode.

To make the code manageable and maintainable, we put all the template rules for
a mode in the same module, and use the XSLT 3.0 construct default-mode="M"
to reduce the risk of accidentally omitting a mode attribute on a template rule or
xsl:apply-templates instruction.

◇Most of the template rules for method calls are structured as one rule per target class;
as described earlier, this uses a microsyntax for defining the formatting of each possible
method, using XSLT maps.

So it's not a flat set of hundreds of rules; we've used modes (and the microsyntax) to create
a hierarchic decision tree. This both improves performance, and keeps the rules simpler
and more manageable. It also makes debugging considerably easier: as with any XSLT
stylesheet, working out which rules are firing to handle each input element can be difficult,
but the splitting of rules into modes certainly helps.

(A little known Saxon trick here is the saxon:trace attribute on xsl:mode, which allows
tracing of template rule selection on a per-mode basis).

7. Conclusions
Firstly, we've confirmed the viability of using XSLT for transformation of abstract syntax
trees derived from parsing of complex grammars, on quite a signficant scale. The nature of
XSLT as a rule-based pattern matching language makes it ideally suited for such tasks. It's
hard to imagine how the pattern matching code would look if it were written in a language
such as Java; it would certainly be harder to maintain10.

Conclusions

48

At the same time (and perhaps not quite so relevant to this particular audience, but
significant nonetheless) we've demonstrated a pragmatic approach to transpilation. Without
writing a tool that can automatically perform 100% conversion of any Java program, we've
written a set of rules that works well on the subset of the Java language (and class library)
that we're actually using, and more importantly, done so in a way that allows manual
intervention to handle the parts that can't (cost-effectively) be automated, without sacrificing
repeatability - that is, the ability to re-run the conversion every time the Java code changes.
And by writing the rules in XSLT, we've created a transpiler that is readily capable of
extension to cover features that we chose to leave out first time around.

I take satisfaction in the quality of the generated C# code. It's human readable, and it
appears to be efficient. This is achieved partly by the policy of not worrying too much about
edge cases. By doing our own customised conversion rather than writing a product that has
to handle anyone's Java code, we can be pragmatic about exactly how faithfully the C#
code needs to be equivalent to the original Java in edge cases.

10While writing the paper, I discovered (without surprise) that transpilation using XSLT has been done before: see https://
www.ijcrt.org/papers/IJCRT2005043.pdf. That paper, however, gives little detail of how the conversion is done, and
appears only to tackle trivial code fragments.

Conclusions

49

