
<Angle-brackets/> on the Branch Line
John Lumley, jωL Research,

Abstract

As a retirement 'hobby', somewhat removed from the computing milieu, the author has started building
a model railway in his garden. Surveying the extant tools for designing such layouts and ABnding them
“not quite right”, he started building a design tool himself, using the familiar technologies of XSLT3 and
SVG executing in a browser, employing Saxon-JS as the processing platform. By adding animations, the
tool expanded beyond simple design to in e>fect become an active model train system. The results of this
were demonstrated, with some success, at Markup UK in 2018. This paper describes the design of this
tool in some detail, as well as possible developments since that demonstration.

101

Introduction

1. Introduction
The author decided to take up a retirement “hobby” as a change from wrestling with programmatic complexities. Having
chosen to build a garden railway, having been trained as an engineer and having read some of the sage advice from those
already “in the scene”, it was clear that the layout would need some careful design. Issues such as maximum gradients,
minimum turn radii and loading gauge clearances required a clear and calculated design. Naturally there are CAD tools
speciABcally targetted at model railways, but equally well, I found none of them to be just right.

So, having spent many years developing sof1ware, and in recent times being deeply immersed in XML technologies,
particularly XSLT3.0[XSLT] and SVG[SVG], I decided to build a speciABc design tool with these technologies. Given
Saxon-JS[Saxon-JS] as the XSLT execution engine, the tool was run through a browser connecting to a localhost web
server.

The main design used an XML deABnition of garden “background” and the possible layouts, and at ABrst calculated all
the resulting geometry, producing both a tabular summary and a set of SVG graphic elements that could be displayed
on a grid. This permitted for example interferences between tracks and garden elements (e.g. bushes) to be examined.
Simple XHTML controls were added to allow various aspects of the display to be altered dynamically, using Saxon-JS's
interactive modes (e.g. ixsl:on-change) to alter style or class properties of parts of the XHTML/SVG DOM tree.
Textual styling (fonts, colours. etc.) were deABned in a set of CSS stylesheets.

Once a simple system was operational, the “picture” was enhanced, both by supporting an isometric view of the garden/
layout, but also more “realistic” graphics for the track and other aspects.

A little experimentation showed that the animation facilities present in SVG should allow objects to move around the
paths of the track. A simple facility was added to enable “block” objects to be run, moving from section to section under
controllable and alterable speeds. Simple click interaction allowed the points to be changed, so the path of these blocks
could be altered whilst they were still running.

The model for these “locomotives” was improved to support a three-dimensional deABnition consisting of a number
of orthogonal rectangular blocks and cylinders, from which an isometric SVG view of a simple locomotive could be
displayed. This would then be animated to follow the path of the current track section, with tangential rotation to “point
forward” and with suitable rotation animations on the wheels. Simple sound e>fects (running sound, whistles etc.) were
added to the design.

Finally, this system was demonstrated at MarkupUK 2018 in the DemoJam session, with some success.

In this paper I describe the deign and implementation details of the system that was demonstrated, and outline some
additional possible developments. In conclusion I discuss how suitable the combination of XSLT3, SVG and Saxon-JS
has been to tackling this design task.

2. Overall Design
The system designed is of course inFGuenced by the external factors of the garden itself and the track components from
which the railway will be built. The garden area chosen is approximately 10m x 4m on two levels:

102

Overall Design

Figure 1. The Garden for the Railway

Both levels are substantially FGat1 with a step of about 250mm between, so it should be possible to climb a connecting
embankment. (Generally gradients should be less than 1 in 40 and certainly no more than 1 in 25). The area was surveyed
(marked by the red survey points shown above) and a simpliABed plan of the garden drawn up:

Figure 2. The garden plan

I decided that the railway would be built at SM32 gauge/scale, also known as 16mm. The track has a gauge of 32mm, and
is taken to represent a 2f1 narrow-gauge line2 so the scale is 16mm to the foot or 1:19. As such, models of narrow-gauge
locomotives are large enough to be totally steam-powered. The tracks themselves would not carry electrical power — all
engines would be self-powered, and remotely controlled. The commercially available track had a small set of points of
di>ferent tightness and FGexible track sections of some 900mm length. This meant that apart from the ABxed-design points,
the rest of the track could be “freeform”, subject of course to a recommended minimum turn radius, which whilst being
dependent upon locomotive wheelbase, would be about 900-1000 mm.

The original design consists of ABve major sections:

1Only when laying out the track bed did it become apparent that several elevation changes O(50mm) existed on the upper level.
2Many of the UK's “little trains”, such as the Ffestiniog and the Talyllyn, run on 1' 11½" gauge track

103

Layout Topology and Geometry

• A declarative description, as an XML structure, of the design environment, consisting of background components
(e.g. pictures of the garden and schematics of ABxed sections such as walls, paving and plants) and a series of layouts.
A layout is described as a sequence of (mainline) track sections of straights, curves and points, each represented by an
XML element describing length, radius and/or turn angle. Branch lines are children sequences of a point element.
Where necessary track connections between leaves of the tree are joined to make a complete graph thrrough named
link declarations.

• A geometry computational engine, written in XSLT3, which calculates the position and orientation of each track
section, and produces a map of the layout, keyed by section 'name', each entry describing both the track segments of
the section and the two-way connectivity between section ends.

• A graphical display of the design as an SVG tree. Background elements are generated as SVG groups from the
enviroment description. Track components are generated from unit descriptions and positioned with use instructions.
Within this, some components which can di>fer in display dependent upon state, such as points, are represented by
several views, each classed separately. The overall display can be subject to transform, most noteably an isometric one.
Textural styling and initial visibility is deABned in a series of CSS stylesheets.

• An XSLT3 stylesheet, using Saxon-JS extensions, and invoked from an outer XHTML document, which populates the
XHTML with a series of interactive controls, and generates the detailed layout internal structures and SVG graphics
to be embedded in the web page. Templates respond to interaction, such as button state changes, or clicking on points
levers, altering the local CSS state of other components and controls.

• Adding “railway engines” as SVG objects, which are presented in both plan and isometric views from a simple “block-
and-cylinder” model. An event-based system animates these to run along tangential paths of the track sections, using
SVG animation facilities. Speed and direction of travel can be controlled interactively for multiple engines. Events are
generated at the conclusion of animations, and are caught by templates that consult the layout map to determine the
next sector to enter, then calculate the necessary animation duration, given length and speed, and start up the path-
following animation. Speed change involves stopping a current animation, recalculating duration for the remaining
section path and restarting an new animation partway through. Issues on collision detection (“train crashes”) will be
discussed.

As far as the sof1ware mix is concerned, the top-level XHTML document contains some constant background
components and div containers which will be populated, a script element containing a very small set of global
JavaScript functions, for primary control of animations and mapping from screen to SVG co-ordinates, and an invocation
of Saxon-JS with a precompiled program from an XSLT source of some 20 ABles and perhaps some 3000 source lines. This
program takes as input a ABle containingg deABnitions of the garden, possible layouts and locomotives. Textural styling is
supported by a set of associated (static) CSS ABles.

There are a number of (Javascript) libraries for supporting SVG e>fects and animation, and pretty much all the written
guides to “advanced” SVG use a combination of some of these, but I wanted to explore how much could be done almost
entirely in XSLT3.0. All the programming is limited to XDM data types, XHTML, SVG, CSS and XSLT3.0 with Saxon-
JS interaction extensions, with a minimum of (perhaps a dozen) globally deABned small JavaScript functions, mostly to
invoke,query and stop SVG animations.

3. Layout Topology and Geometry
The original motivation was as a tool to design my planned garden railway, in terms of a connected set of track
components that satisABed the requirements of i) being constructed from obtainable parts and ii) lay within the limits
of bend curvature and track gradient that were recommended for such railways. For the present, given the FGat nature
of the garden, apart from the step between sections, vertical gradients have been ignored — how they could be added
is discussed later.

I considered attempting a “drag and drop” style of interaction, but decided against this, especially as all straights and curves
could be “freeform” so a small set of track parts wasn't really appropriate. The starting point was a choosing an XML
representation that focussed on continuous sequences of track components, describing the “main line”, implemented as
a sequence of elements, such as:

Example 1. A simple layout

<layout name="simple">
 <start x="400" y="400" orient="30"/>
 <straight name="section1" length="1000"/>

104

Layout Topology and Geometry

 <curve r="1500" angle="-45"/>
 <curve r="1500" angle="45"/>
 <straight length="500"/>
 <curve r="500" length="1400"/>
</layout>

which deABnes a layout simple that contains one section section1. This starts at the point (400,400) with an orientation of
+30° from the positive X axis. The ABrst section is a 1000 long3 straight, preserving orientation, followed by a circular arc
curve, of radius 1500, turning lef1 though a positive angle of 45°, followed by a similar right turn, a short straight and a
tighter lef1-hand bend deABned by radius and curve length, rather than angle. When plotted out this section looks like:

Figure 3. Simple layout - pictorially

Circular arcs were chosen as the only curve representation as i) they support a design method of “turn this tightly for x
degrees”, ii) they are supported directly in SVG and iii) their geometry is simple to calculate. Polynomial splines could
have been used, but they are di>ABcult to deABne in terms of curve length. In real railway engineering, curves are deABned by
Cornu spirals - where the curvature (1/radius) is a piecewise linear function of arc length — lateral (centripetal) acceleration
increases at a uniform rate as a train moves along such a curve at constant speed. SVG alas does not support such curves.

Layouts that have such a simple topology (a single contiguous section) tend to be somewhat boring. Alterative routes
involve switching between di>ferent sections joined by points4. In our layout deABnition a point is represented as an
element, whose child is the “branch line”:

Example 2. A simple branch line

<layout name="simplePoint" start="section1">
 <start x="400" y="400" orient="30"/>
 <straight name="section1" length="1000"/>
 <point id="P1" radius="small" turn="left">
 <spur>
 <straight name="branch1" length="580"/>
 <curve r="2000" angle="-40"/>
 </spur>
 </point>
 <curve name="section2" r="1500" angle="-45"/>
 <curve r="1500" angle="45"/>
 <straight length="500"/>
 <curve r="500" length="1400"/>

3Any consistent distance units could be used of course, but for this case it's simplest to use millimetres.
4In American terminology turnouts.

105

Layout Topology and Geometry

</layout>

The branch line itself is deABned by a spur element, whose children deABne a set of sections. The point deABnes its type,
in this case a small radius point and its handedness — here the branch turns o>f to the lef1. This layout looks like:

Figure 4. Simple branch line - pictorially

The point obviously has two possible paths, one straight on, the not-set track, shown in green, and the turning branch,
the set track. The layout now consists of three sections, section1 leading up to the point P1, followed by section2 as the
mainline and branch1 on the branch.

This “tree” representation can obviously be extended, such as adding a point on the branch line, with a sub-branch line
such as:

Example 3. A layout with two points

<layout name="twoPoints" start="section1">
 <start x="400" y="400" orient="30"/>
 <straight name="section1" length="1000"/>
 <point id="P1" radius="small" turn="left">
 <spur>
 <straight name="branch1" length="580"/>
 <curve r="2000" angle="-40"/>
 <point id="P2" radius="small" dir="trailing" turn="left">
 <spur>
 <curve r="400" angle="155"/>
 </spur>
 </point>
 <straight length="500"/>
 </spur>
 </point>
 <curve name="section2" r="1500" angle="-45"/>
 <curve r="1500" angle="45"/>
 <straight length="500"/>
 <curve r="500" length="1400"/>
</layout>

which looks like:

106

Representing the topology

Figure 5. Two points pictorially

Observant readers will note that the new point has been added in technically a trailing condition, i.e. proceeding from the
start it is only possible to enter the siding in reverse5. This leads us on to considerations of representing the layout topolo8.

3.1. Representing the topology
If we want to use a layout for any purpose other than design (such as interactive animation), we don't just need the
geometry of the layout: we also need to represent the topology — which sections are joined when points are in a given
state? If a train leaves one section, which is the one it will enter, if any? To do this we represent contiguous sections of
track and points as components with two or three ports:

face The port which faces against an oncoming vehicle in normal travel, i.e. trains usually start from the face port.
For points this is the entry from which the exit track (trail or spur) depends upon the state of the point.

trail The port from which a vehicle emerges in normal travel, i.e. trains usually end a section leaving the trail port.
For points entered in the normal switched direction this is the exit when the point is not set.

spur Only deABned for points, the exit port when the point has been set 6.

Using these deABnitions we can describe the topological relations between component sections in a simple map:

Figure 6. Topology of a two-point layout

This map has an entry for each component describing its type and its port connections in terms of a component/port pair
to which that port attaches. Note however that branch2 (the “backward” spur from point P2) is labelled down=false.

5Early railway practice only used trailing points on higher-speed main lines, to reduce risk of derailment from partially opened points.
6In theory an engine entering a set of points from the trail or spur direction, when the points are set against that direction, i.e. when set from trail or
not set from spur, may be able to “force” an automatic points switch, but this is not recommended practice.

107

Representing the topology

This means that the “main” direction (i.e. proceeding from P2 along branch2) of that section of track is in a reversed sense
to the rest of the layout — the importance of this will become apparent later.

Thus far we have a layout that has no loops or paths of multiple connection, and whilst totally representable by a tree is
not completely useful, especially if one wants to leave a train running around the layout indeABnitely. Suppose we have
a simple oval loop:

Figure 7. An oval becomes a loop

which starts at 2000,1000, and loops back through two straights and two curves to an end point co-incident in position
and orientation with the start. To “close the loop”, we have to convert our tree to a graph, in this case with “self-pointers”
by adding a speciABc link directive

Example 4. Describing a graph linkage

<layout name="oval" start="A">
 <start x="2000" y="1000" orient="20"/>
 <straight name="A" length="2000"/>
 <curve r="1000" angle="180"/>
 <straight length="2000"/>
 <curve r="1000" angle="180"/>
 <link>A.trail A.face</link>
</layout>

Now a vehicle ABnishing at A.trail can proceed happily into A again through A.face and similarly in a reverse direction.
Of course in this case we could infer from the geometrical co-incidence that such a link may be required, but sometimes
the geometry isn't quite accurate enough. Here is a passing loop:

108

Representing the topology

Example 5. A passing loop

<layout name="passingLoop" start="main-line1">
 <start x="400" y="400" orient="30"/>
 <straight name="main-line1" length="500"/>
 <point id="passing1" radius="small" turn="left">
 <spur>
 <curve name="passing-loop" r="1000" angle="-22.5"/>
 <straight length="1200"/>
 <curve r="1000" angle="-22.5"/>
 </spur>
 </point>
 <straight name="main-line2" length="1960"/>
 <point id="passing2" radius="small" dir="trailing" turn="right"/>
 <straight name="main-line3" length="500"/>
 <link>passing-loop.trail passing2.spur</link>
</layout>

Where now we have speciABcally linked the passing loop component onto the trailing point spur:

Figure 8. Passing loop graphically and topologically

But linking isn't quite as straightforward. Suppose in our earlier example we consider the “small gap” between section2
and branch3 is joinable, and we speciABcally add a link declaration:

Example 6. Linking arbitrary branches

 <layout name="twoPointsLinked" start="section1">
 <start x="400" y="400" orient="30"/>
 ...

109

Computing the geometry

 <point id="P1" radius="small" turn="left">
 <spur>
 ...
 <point id="P2" radius="small" dir="trailing" turn="left">
 <spur>
 <curve name="branch2" r="400" angle="155"/>
 </spur>
 </point>
 <straight name="branch3" length="500"/>
 </spur>
 </point>
 <curve name="section2" r="1500" angle="-45"/>
 ...
 <curve r="500" length="1400"/>
 <link>section2.trail branch3.trail</link>
</layout>

This link introduces a requirement for a “polarity shif1” — a locomotive proceeding forwards from section2 would ABnd
itself running in the reverse direction in branch2. To permit smooth continuous operations, our “cyber-locomotives” have
a “running in the wrong-direction” property (which is xored with reverse), and when similar ports are connected with
similar “down-line” properties, a dummy swap component is inserted in the link, which will invert this property as a
vehicle transits7:

Figure 9. Swapping direction across links.

(swap1 and swap2 could in theory be the same, but the implementation is easier to use one for each direction, and the
additional cost minimal.)

3.2. Computing the geometry

The original intention of the design tool was to automate the calculation of track geometry. This proved to be
relatively easy, using a simple vector arithmetic package with a triple vector datatype of x,y,orientation8, and
the xsl:iterate instruction processing the track component sequences through template application as the track is
“constructed”. For example here is the code to process a straight element:

<xsl:template match="straight" as="map(*)" mode="makeTrack">
 <xsl:param name="start" as="map(*)"/>
 <xsl:param name="options" as="map(*)" select="map{}" tunnel="true"/>
 <xsl:variable name="length" select="@length" as="xs:double"/>
 <xsl:variable name="straight"
 select="v:new($length, 0) => v:rotateDeg($start?orient)"/>
 <xsl:variable name="end" select="v:add($start, $straight)"/>
 <xsl:variable name="path" select="p:line($start, $end)"/>

7Such an issue is faced by two-rail electric power systems on railways with such “re-entrancy”
8Adding a z (height) component would be simple, being altered by length * gradient. It is safe to assume that gradients will never be steep
enough to make signiABcant e>fects on planar (x,y) positions.

110

Computing the geometry

 <xsl:variable name="pieces" as="element()*">
 <g class="straight">
 <g class="schematic">
 <path d="{$path}"/>
 <xsl:sequence select="r:join($end)"/>
 </g>
 <g class="way"
 transform="translate({$start?x},{$start?y})
 rotate({$start?orient})">
 <xsl:if test="$options?layTrack">
 <xsl:sequence select="r:straight($length)"/>
 </xsl:if>
 </g>
 </g>
 </xsl:variable>
 <xsl:sequence select="map{
 'type':string(name()),
 'orient.start' : $start?orient,
 'orient.end' : $start?orient,
 'pieces': $pieces,
 'length': $length,
 'path': $path,
 'start' : $start,
 'end': $end,
 'name': string((@name,
 'S-'||string(accumulator-before('trackNo')))[1])
 }"
 />
</xsl:template>

$start is an input parameter which is a map whose principal members are x, y and orient9. The new end point,
including its orientation, is calculated e>fectively by

v:add($start, v:new($length,0) => v:rotateDeg($start?orient))

where v:rotateDeg($in,$rot) rotates a vector (and its end orientation) by $rot degrees. During this
operation the (SVG) graphic pieces for the schematic and the track pictures are constructed (see below) and added
to the resulting map as well as other needed information, such as track section length. Each piece is named, using an
xsl:accumulator to generate something suitable in the absence of a speciABc @name value.

This template is executed from an xsl:iterate instruction processing the children of a layout or a spur:

<xsl:template match="rail|spur|layout" as="map(*)*" mode="makeTrack">
 <xsl:param name="start" as="map(*)">
 <xsl:apply-templates select="start" mode="#current"/>
 </xsl:param>
 <xsl:iterate select="* except (start | link)">
 <xsl:param name="start" select="$start" as="map(*)"/>
 <xsl:choose>
 <xsl:when test="not(self::break)">
 <xsl:variable name="part" as="map(*)">
 <xsl:apply-templates select="." mode="#current">
 <xsl:with-param name="start" select="$start"/>
 </xsl:apply-templates>
 </xsl:variable>
 <xsl:sequence select="$part"/>
 <xsl:next-iteration>
 <xsl:with-param name="start" select="$part?end"/>
 </xsl:next-iteration>
 </xsl:when>

9Orientation is held in degrees and converted to radians as required. SVG describes its rotations in degrees and I know fairly closely what 30°, 45° and
225° look like, but not 1.5 radians.

111

Drawing pictures

 <xsl:otherwise>
 <xsl:break/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:iterate>
</xsl:template>

For each subsequent iteration the $start parameter becomes the end property of the $part just generated. Needless
to say processing a curve is similar to that for straight, though the calculation of the chord, end point and the
appropriate SVG ellipitical arc are more complex. For the point we need to construct two sections: the not set (straight
on) track section and its end point, and the set section with its attached branch line, which is constructed by a recursive call
on the iteration above, with the branch spur element as context and the spur position and orientation as the $start
parameter.

4. Drawing pictures
Thus far we have drawn schematic representations of the track as SVG line-based components. With a little work SVG
is entirely capable of generating much more detailed views, with a lot of possibility of caching intermediate and reused
sections. For example:

Figure 10. More detailed track

In this case the track is generated from a sequence of “rail-and-sleeper” subsection deABnitions, displayed via SVG's use
directive:

<g xmlns="http://www.w3.org/2000/svg" class="way"
 transform="translate(3769.549241302635,2599) rotate(30)">
 <use href="#track10" x="0" y="0"/>
 <rect class="ballast" x="360" y="-36" width="140" height="72"/>
 <use href="#sleeper" x="378" y="0"/>
 <use href="#sleeper" x="414" y="0"/>
 <use href="#sleeper" x="450" y="0"/>
 <line class="rail SM32" x1="360" y1="-16" x2="500" y2="-16"/>
 <line class="rail SM32" x1="360" y1="16" x2="500" y2="16"/>
</g>

In this case we have a “pre-built” 10-sleeper section of straight track (#track10), followed by “ballast”, three sleepers
and two rails to display the remainder of the required length. All these are sized to the actual dimensions of the track
being used. This is translated and rotated into the required start position.

112

Isometric Views

4.1. Isometric Views

Planar views are useful, but they don't give a picture of what one might see, where the third dimension has some
importance. Luckily an isometric transformation can give a view “from above and aside”. This involves applying a
transform of translate(3000,0) rotate(30) skewX(-30) scale(1,0.8660254037844387)
to the graphics and altering some pieces to support a pseudo-3D view. For example, let us add a simple building:

Figure 11. A simple building

I could perhaps have looked at using a full 3D modelling package which was capable of generating SVG outputs, but
my needs were modest and could perhaps be handled by a simple declarative model, processed completely with XSLT to
generate suitable SVG. The building is deABned by a simple XML structure of boxes and a cylinder:

<buildings>
 <resources> …. </resources>
 <group x="1000" y="1000"
 fill="url(#brickWall)" stroke-width="10" stroke="black">
 <box width="1000" height="500" rotateZ="0" depth="500" z="0">
 <top fill="slategrey"/>
 </box>
 <box height="1" width="150" depth="400"
 z="0" x="100" y="0" fill="url(#wood)"/>
 <box height="1" width="250" depth="200" fill="black"
 z="200" x="350" y="0" />
 <box height="1" width="250" depth="200" fill="black"
 z="200" x="650" y="0"/>
 <box width="1" height="300" depth="200" fill="black"
 z="200" x="1000" y="100">
 <east >
 <svg:image xlink:href="images/officer-in-uniform.png"
 x="100" y="0" height="200"/>
 </east>
 </box>
 <cylinder radius="50" length="150" axis="z" fill="black"
 z="500" x="800" y="250" stroke="darkgrey"/>
 </group>
</buildings>

which is then used to generate an SVG group that look like:

113

Isometric Views

Figure 12. An iso-orthogonal building

such that when the entire SVG group, within which lie all picture pieces (grid, plan, track etc..), is subject to isometric
projection, the building appears to have depth and height. (We also produce a true orthogonal view, so we can look at
the scene from “directly above”.) Currently the repertoire is orthogonally-oriented rectangular blocks and cylinders, with
named “faces” to which styling and content can be attached (top, south and east for blocks, with bottom, north and west
normally hidden, and surface, top and bottom for cylinders.). Components are currently positioned absolutely and can be
grouped. Using this we can build models of the complexity of:

Figure 13. The Lady Anne

which is deABned by some 50 components, some of which are repeats of common substructures, implemented by bindings
and interpolations of XSLT variables. This ability to style and add content to the named faces of the component parts is
important . For example, adding the “smokebox handle” to the boiler front of Lady Anne merely requires:

<cylinder class="boilerFront" x="151" z="80" axis="x"
 radius="27" length="45">
 <end class="boilerEnd">
 <svg:g class="silver" stroke="silver" stroke-width="5">
 <line x1="0" y1="0" x2="10" y2="-10"/>
 <line x1="0" y1="0" x2="-5" y2="-14"/>

114

Interaction

 </svg:g>
 </end>
</cylinder>

and the graphic components will be placed and transformed correctly to sit in the boiler front. As we will see later, it is
critical that the SVG views of these model engines must be such that they produce the expected picture when subjected
to an isometric transformation, as shown for the building, as the trajectory paths trains must follow (which are e>fectively
on the flat) are themselves subjected to the same projection.

5. Interaction
The tool has two main types of interaction: animations, discussed in the next section, and view selection. Most of the view
selection is based on switching the display style of graphical or user inteface element on and o>f, through controls
that are generated from declarative descriptions. For example:

Figure 14. Controls for display options

<div name="show">
 <title>Show</title>
 <option default="">photos</option>
 <option>survey</option>
 <option>grid</option>
 <option>plan</option>
 <option>buildings</option>
 ...
 </div>

declares a group of controls, from which a group of labels and checkboxes are generated, some of which are preset and
whose rendering is shown above. Control of display is performed by a generic XSLT template, which ABelds change events
on the generated input checkboxes, all of which are class-labelled as show:

<xsl:template match="input[@class eq 'show']" mode="ixsl:onchange">
 <ixsl:set-style name="display" object="id(@value)"
 select="if(ixsl:get(.,'checked')) then 'inline' else 'none'"/>
</xsl:template>

The @value of the input is taken to the be id of an element (either XHTML or SVG) that contains all items of
the given type and display style modiABed accordingly. Generic hide/reveal controls for object with a given class token are
supported by a similar template.

Switching between orthogonal and isometric views of the garden/plan/layout involves modifying a top-
level transform attribute on the SVG and setting a class token to indicate the given view. As all (3D)
components have both orthogonal and isometric views, each class-labelled, simple CSS compound rules
such as .viewISO .partORTHO,.viewORTHO .partISO {display: none;} and
.viewISO .partISO,.viewORTHO .partORTHO {display: inline;} ensure that only the correct
class components are displayed for the currrent view.

Points obviously have state and this needs to be changed to direct trains to suitable parts of the layout. We construct
an XHTML “signal box” where all the point controls are checkboxes and through which speciABc points can be set into
switched or unSwitched classes. CSS styling ensures that the appropriate components for the given state are displayed.
Sometimes determining which control e>fects which point can be problematic. A solution to this is to support clicking
on the (SVG) points themselves, or an adjacent lever. This is achieved by the templates:

<xsl:template match="*[contains-token(@class, 'pointLever')]"

115

Animations

 mode="ixsl:onclick">
 <xsl:variable name="point"
 select="ancestor::*:g[contains-token(@class, 'point')][1]"/>
 <xsl:variable name="point.state"
 select="id($point/@id||'-state')"/>
 <xsl:sequence select="ixsl:call($point.state,'click',[])"/>
</xsl:template>

<xsl:template match="input[contains-token(@class, 'pointState')]"
 mode="ixsl:onchange">
 <xsl:variable name="checked" select="ixsl:get(., 'checked')"/>
 <xsl:sequence select="js:playAudio(id('pointChange'))"/>
 <xsl:for-each select="id('point-' || @value, .)/*:g[1]">
 <ixsl:set-attribute name="class"
 select="if($checked) then 'switched' else 'unSwitched'"/>
 </xsl:for-each>
</xsl:template>

where clicking on the (SVG) point lever dispatches another click event to the appropriate state control in the signal box.
Controls in the signal box respond to changes by playing the pointChange sound e>fect and changing the (un)switched
class of the actual signal, which changes which of the graphic groups is displayed:

Figure 15. Changing points with a signal box

6. Animations
SVG supports animations based on SMIL event-driven models. Of particular interest in this case is the use of path-based
animation where a given SVG group can be successively translated along a given path. As trains move along tracks, and

116

Animations

in our design tracks are deABned by sections from which SVG path deABnitions can be constructed easily, we should be
able to simulate the movement of trains around our tracks. And so it proved.

The basic animation we used is e>fectively “move this group g along this path p in a duration of dur seconds.” For each
section of the layout (i.e. a contiguous run of straight and curves, or the set and not set short sections of points), we
calculate both a path description (the d property of svg:path) and the total length. For example the dashed blue line
is the deABned (single) path for the section2 track section, for which a total length of 4,256 has been calculated :

Figure 16. A track section path

Assuming we wish our “train” to run at 100mm/s (a scale speed of ~ 7km/hr, i.e. a brisk walking pace), then the animation
should take 42.5 seconds. This is achieved by forming up an svg:animateMotion deABnition element:

<animateMotion xmlns="http://www.w3.org/2000/svg"
 id="train.animation" xlink:href="#train"
 begin="indefinite" fill="freeze" repeatCount="1"
 calcMode="linear" keyTimes="0;1" keyPoints="0;1"
 rotate="auto"
 dur="42.5" onend="eventEnded('train;section2.trail') >
 <mpath xlink:href="#section2.path" />
</animateMotion>

The graphics group that will be subject to the animation
Conditions for the start of the animation — in this case the animation waits until it is triggered explicitly. When
the animation has ABnished freeze the graphics state, i.e leave the graphics translated to the end of the path and do
not repeat.
keyTimes and keyPoints deABne a piecewise-linear mapping between proportions of the duration and
proportions of the total length — this is used to support moving in reverse and altering “speed”.
auto adds a rotation transform to the animated graphics corresponding to the current path tangent direction, so
the graphics object “turns” along the path.
When the animation completes the global function eventEnded() will be executed with an argument
containing information about which train has completed a move and where — in this case arriving at the trail port
of section2.
A reference to the path to be followed.

The animation is started by invoking the beginElement() function method of the animation element through a
minimal global JavaScript function. Thus our “train”(in this case a cyan arrow) progresses along section2 as below:

117

Animations

Figure 17. Movement along a track section.

When the animation ABnishes, the onend statement is invoked, which is ABelded by the global JavaScript function
eventEnded().

var ignoreEvent = false;
function eventEnded(e) {
 if(!ignoreEvent) {
 var event = new Event("change",{"bubbles":true});
 var store = this.document.getElementById("event");
 store.value = e;
 store.dispatchEvent(event);
 }
 ignoreEvent = false;
}

There are cases (described below) when we need to ignore an end event temporarily.
A (hidden) checkbox element in the DOM tree that is used to hold the event information as its value property.
Propogating an event that the value of the event information store has changed.

Af1er this function has executed, the checkbox id('event') receives a change event which is caught by an XSLT
template:

<xsl:template match="*:input[@id eq 'event']" mode="ixsl:onchange">
 <xsl:variable name="layout" as="map(*)"
 select="$layouts(f:radioValue('layouts', .))"/>
 <xsl:variable name="parts" select="tokenize(@value, ';')"/>
 <xsl:choose>
 <xsl:when test="exists($parts[3])">
 <!-- There is a new section to enter -->
 <xsl:call-template name="runTrain">
 <xsl:with-param name="engine" select="$parts[1]"/>
 <xsl:with-param name="trackComponentID" select="$parts[3]"/>
 <xsl:with-param name="tracks" select="$layout?tracks"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <!-- There is a no new section to enter - end of the line -->
 <xsl:for-each select="id($parts[1])">
 <ixsl:set-attribute name="position" select="$parts[2]"/>

118

Animations

 </xsl:for-each>
 <xsl:variable name="engine" select="$parts[1]"/>
 <xsl:call-template name="stopEngine">
 <xsl:with-param name="engine" select="$engine"/>
 </xsl:call-template>
 <xsl:call-template name="reverseEngine">
 <xsl:with-param name="engine" select="$engine"/>
 </xsl:call-template>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

There are a number of possible layouts, held as a named map global variable. Which is the active one is determined
by the value of the layouts radio button set.
This template expects the value of the event checkbox to be a string of the form train;current
port[;next port].
If there is a next port, then the train is run on that new section from that port, on the current layout.
If not then the train is assumed to have reached the end of the line. It is stopped and the direction reversed, so that,
as a convenience to the driver, “opening the throttle again” again will cause the train to move back along the section.

The trains are controlled by a simple interactive XHTML control group (obviously of class cab):

Figure 18. The Engine Cab

<div id="Arrow.cab" class="cab arrow">
 <div class="toggler">
 <input class="run" type="checkbox"
 value="Arrow" />
 <label class="text">Arrow</label>
 </div>
 <label class="title">Speed
 0</label>
 <div name="direction" class="direction">
 <div class="toggler">
 <input class="direction" type="checkbox"
 value="reverse"/>
 <label class="text">reverse</label>
 </div>
 </div>
 <input type="range" min="0" max="1200"
 value="0" list="tickmarks" />
 <div class="radio speed">
 ...
 <div class="toggler">
 <input class="speed" type="radio"
 value="200" />
 <label class="text">slow</label>
 </div>
 ...
 </div>
</div>

Apart from selecting a locomotive to run, the only current action is to change its speed or direction of travel. A number
of XSLT templates detect changes in the cab input controls such as:

<xsl:template match="input[contains-token(@class, 'speed')]"
 mode="ixsl:onchange">
 <xsl:variable name="cab"
 select="ancestor::div[contains-token(@class, 'cab')]"/>
 <xsl:variable name="run" select="$cab//input[@class eq 'run']"/>
 <xsl:variable name="value" select="@value"/>
 <ixsl:set-property object="$cab//input[@type eq 'range']"
 name="value" select="number($value)"/>
 <xsl:for-each select="$cab//span[contains-token(@class, 'value')]">

119

Animations

 <xsl:result-document href="?." method="ixsl:replace-content">
 <xsl:sequence select="string($value)"/>
 </xsl:result-document>
 </xsl:for-each>
 <xsl:if test="ixsl:get($run,'checked')">
 <xsl:variable name="engine" select="$run/@value"/>
 <xsl:for-each select="id($engine)">
 <ixsl:set-attribute name="speed" select="$value"/>
 </xsl:for-each>
 <xsl:call-template name="changeVelocity">
 <xsl:with-param name="engine" select="$engine"/>
 </xsl:call-template>
 </xsl:if>
</xsl:template>

which detects a change in the stop, slow, cruise, fast radio button set. The selected speed is the @value of the set, which
is written into a span element within the cab div and used to set the slider to a suitable point. If the engine is running
(the top lef1 checkbox checked), then the demanded speed is written as an attribute onto the selected engine object and
then the changeVelocity template is invoked.

The key idea here is to determine how far the current animation has progressed, from which the remaining distance to
travel can be determined. This is computed by a global JavaScript function with the animation object a as argument:

function animProgress(a) {
 if(a.getAttribute("dur")==0 ||
 a.getAttribute("dur")=="indefinite") {
 return 0;
 }
 var startTime;
 try{
 startTime = a.getStartTime();
 } catch(e) {
 return 0;
 }
 var t_ratio=(a.getCurrentTime() - startTime)/a.getSimpleDuration();
 return t_ratio;
}

which calculates the ratio of elapsed to total animation duration. In cases where the animation is not active (for which I
can't ABnd a simple test), the exception on ABnding start time is caught. Given the remaining distance and desired speed, a
new duration can be determined and the animation restarted using the keyPoints property to start somewhere down
the animation path, e.g. keyPoints="0.5;1" would be used for a speed change halfway along the track section10.

The animation is restarted by invoking the beginElement() method — the ignoreEvent FGag is used to prevent
the implicit endElement() event, triggered before the restart, that would normally be used to signal completion of
traversal of a section, propagating to the XSLT templates. In the case that the locomotive is running in reverse, the key
points are reversed, e.g. keyPoints="0.66;0" would be used for a speed change one-third of the way backwards
through a section.

In the absence of such speed changes a running locomotive involves animation movement along the current section until
the end event is executed, ABelded by the XSLT template shown earlier, which then starts animation along the next speciABed
section. In the case of entering points, the state of the point is examined (from the status of the point control in the signal
box!) and the correct path and next section determined for the animation11. When a locomotive enters a swap section,
described above, its internal running in the wrong direction FGag is inverted and it passes on to the following section.

A small number o>f other animation e>fects have been added. Firstly locomotives have wheels, which can be animated to
rotate at a rate and direction suitable for their diameter and the locomotive's speed, using the animation element:

<animateTransform type="rotate" begin="indefinite"
 attributeName="transform" from="0" to="360"
 dur="…." attributeType="XML" repeatCount="indefinite"/>

10The current animation may itself already involve a “partial” path, as a consequence of a previous change in speed — this is determined from the
existing @keyPoints value on the animateMotion element to determine the “distance to go”.
11Changing a point while a locomotive is moving through it will not e>fect the locomotive's path.

120

Developments

Secondly, locomotives can be given running sound e>fects by invoking play() method on an audio element when
they start movement, and can“whistle” when they enter a (zero length) whistle pseudo-track section. The end point of
this development was a case where multiple engines could be run on a layout, stopping, starting , reversing and changing
their speed independently and altering points to move them to di>ferent sections of the layout:

Figure 19. Three engines running simultaneously

But there is a problem with the isometric view “trick” and automatic path tangent rotation:

Figure 20. On the ceiling

The animation rotation transformation is applied before the isometric projection and our 3D trick no longer works with
signiABcant rotations. How this may be overcome is discussed in the next section.

7. Developments
There are a small number of developments I have been working on, but at the time of writing they are incomplete. This
section describes these ideas.

7.1. True 3D models and view rotation
The 3D model used so far is a collection of orthogonally arranged rectangular blocks and cylinders, declared in an order
that reFGects isometric view shadowing. For example an engine frame block is deABned before the boiler cylinder, to appear

121

Collision detection, a.k.a. train crashes

underneath it. From this model suitable SVG components can be generated to simulate a 3D view when subjected to
a uniform isometric transformation. But to support a non-orthogonal rotation of such a model about the z-axis, to
overcome the “on the ceiling” e>fect, the situation becomes somewhat more complex. There are three points to consider:

• What is a suitable graphic for a block or cylinder when rotated by θ degrees about the z-axis? A key requirement is that
the “faces” model of additional styling and content must still be supported.

• As a group of 3D parts is rotated, their obscuration relationships alter and any views must accommodate this. How
should a set of component parts be “depth-ordered” in the direction of the isometric view, when the ensemble is rotated
signiABcantly?

• How is the appropriate rotated view displayed as a locomotive turns?

Constructing the isometric-prepared components of a rotated block is a little tricky. The top surface is always visible
and can just be rotated as required. Ignoring any visibility of the base, only two of the four vertical sides will be visible
dependent upon rotation change ranges of 45° and 135°. Each visible face is subjected to additional scaling and skew
dependent on the rotation angle, so that it is correctly sized, positioned and any additional content “stays in place”. The
situation for horizontally aligned cylinders is very much more complex, and at the time of writing is work in progress.

To “view-order” an ensemble of rotated components it would be helpful if a (possibly multiple) value can be computed
that can be used as sort keys to arrange the parts into appropriate order using xsl:perform-sort/xsl:sort+.
This can be so for some very simple cases, but in general parts must be pairwise-compared, which requires some sorting
function that uses a compare function, rather than a key-generator. Sadly, XPath sort functions all use a “key” model, so
a generic XSLT higher-order pairwise sorting function may have to be constructed.

Calculating the rotation views on the fly would be catastrophically expensive, so the solution chosen is to generate a series
of groups, each corresponding to a deABned angle of rotation and labelled suitably (e.g. class="rotate-45" for a
view rotated by -45°). It would also be possible to generate the set of views o>FGine and include in the runtime. However
they can be sizeable — an interval of 5°, which certainly doesn't appear “smooth” would require 72 separate versions.

Assuming there is such a series of views of an engine, we need to arrange for the display property of the (approximately)
correct rotation view to be switched from none to inline. But we do know for a given locomotive which section it is in and
can map from the proportion of the animation completed to the tangential orientation at that point. (As we use only
straights and circular arcs, the tangent angle is a piecewise linear function of the “section proportion”, running from 0
to 1. This proABle is added to the map entry for the section.) Given that the speed of the engine is known, we can thus
predict how long it will be until the current rotation view should be superseded by the next one. This is enabled through
a template rotateTrain which both makes visible the suitable view and schedules a further rotateTrain call
af1er a suitable wait.

7.2. Collision detection, a.k.a. train crashes

As designed, my locomotives are ætheral beings, able to glide seamlessly and smoothly through each other. To prevent
this, we need to detect collision or interference. SVG does have some primitive collision detection based on bounding box
overlap, but given the isometric 3D nature of our engines, this is unlikley to be accurate, and certainly over-enthusiastic.
Moreover, normal movement of our engines is both highly restrained, i.e. to track sections, and predictable, as they travel
at known rates.

A simple approach, ignoring engine “size” and treating them as point entities, is to consider only cases where two (or
more) engines are in the same section12, travelling in either the same or opposite directions. Such a case can be checked
when either a locomotive enters a new section, or the speed of an engine is changed. In such circumstances, we know
both where, in distance, each locomotive is, and how fast they are approaching each other. Hence in the case of a
predicted collision we can schedule an action (using ixsl:scheduleAction) to trigger a “crash notiABcation” af1er
the required interval. However there is also the di>ABculty of a subsequent speed change altering this — this requires the
ability to delete some of the currently active scheduled actions, which has proved highly problematic.

7.3. Di>ABculties

Apart from the headache-inducing issue of calculating the geometry of the edege of the visible curved surface of a rotated
cyclinder, most of the di>ABculty has been managing the animations and events. In particular it appears that an active
animation cannot be stopped and deleted or restarted without invoking any associated onend event. The temporary
solution, of dubious robustness, uses a global FGag to suppress subsequent event propagation.

12Much of nineteenth-century railway signalling development was of course to stop such a situation happening in the ABrst place.

122

Conclusion

8. Conclusion
I originally built a small tool, using XSLT, that “did the geometry calculations” for a layout I was designing. A graphical
view is always helpful, and generating SVG to do so was straighforward. Developing the isometric view led towards a
more pictorial aspect to the output. Adding very simple animation opened the possibility of building something more
akin to a “train set”, and showed some of the ways controls and active state could be mixed in an XSLT/Saxon-JS/SVG/
browser environment. And this led to the idea of a demonstration at MarkupUK 2018...

The implementation needed a very small number of global JavaScript functions, that were invoked in XSLT/XPath
expressions through the Saxon-JS function mapping namespace http://saxonica.com/ns/globalJS. All
the rest of the code is XSLT3.0, with Saxon-JS extensions, generating all necessary XHTML and SVG structures, with
templates ABelding and processing events both from interaction and animation. Once up and running, the system is of
course stateful — the speed, direction and current track section of engines, the switched set state of points etc. This state
information is stored as attributes on the DOM tree.

Did it help with the original purpose — designing a garden railway? Well this was the layout design demonstrated at
Markup2018:

Figure 21. The layout as proposed

and this is what currently exists:

123

Conclusion

Figure 22. Lady Anne on the Garden Line

Without Saxon-JS this project wouldn't have even been attempted and thanks are due to my colleagues Mike Kay and
Debbie Lockett for the excellence of that product. The author is of course extremely grateful for the many votes cast in
his direction at last year's MarkupUK DemoJam — without them he wouldn't have had to write this paper.

References
[1] Debbie Lockett and Michael Kay. Saxon-JS: XSLT 3.0 in the Browser.. Balisage: The Markup Conference . 2016.

https://doi.org/10.4242/BalisageVol17.Lockett01.

[2] Scalable Vector Graphics (SVG) 1.1 (Second Edition). 2011. World Wide Web Consortium (W3C). https://
www.w3.org/TR/SVG11/.

[3] XSL Transformations (XSLT) Version 3.0. 2017. World Wide Web Consortium (W3C). https://www.w3.org/TR/
xslt-30/.

124

