
An XSD 1.1 Schema Validator Written in XSLT
3.0

Michael Kay, Saxonica

Abstract

The paper describes an implementation of an XML Schema validator written entirely in XSLT 3.0. The main beneDEt of doing
this is that the validator becomes available on any platform where XSLT 3.0 is implemented. At the same time, the experiment
provides a valuable test of the performance and usability of an XSLT 3.0 implementation, and the experience gained from writing
this application can feed back improvements to the XSLT processor that will beneDEt a large range of applications.

131

Introduction

1. Introduction
This paper describes the outline design of an XML Schema (XSD 1.1) validator written entirely in XSLT 3.0.

There were two reasons for undertaking this project:

• Firstly, we see a demand to make implementations of the latest XML standards from W3C available on a wider variety of platforms.
The base standards (XML 1.0, XPath 1.0, XSLT 1.0, XSD 1.0) that came out between 1998 and 2001 were very widely implemented,
but subsequent reDEnements of these standards have seen far less vendor support. One can identify a number of reasons for this:
perhaps the DErst versions of the standards met 90% of the requirements, and the market for subsequent enhancements is therefore
much smaller; perhaps the early implementors found that their version 1 products were commercially unsuccessful and they therefore
found it di=DEcult to make a business case for further investment. In the case of products like libxml/libxslt produced by enthusiasts
working in their spare time, perhaps the enthusiasts are more excited by a brand new technology than by version 2 of something well
established. Whatever the causes, XSD 1.1 in particular only has three known implementations (Altova, Saxon, and Xerces) compared
with dozens of implementations of XSD 1.0, despite the fact that there is a high level of consensus in the user community that the
new features are extremely useful.

• Secondly, as editor of the XSLT 3.0 speciDEcation and developer of a leading implementation of the language, I felt a need to "get
my hands dirty" by developing an application in XSLT 3.0 that would stretch the capabilities of the language. I am of1en called on
to provide advice to XSLT 3.0 users, and even now that the language speciDEcation is complete, I DEnd myself designing extensions
to meet requirements that go beyond the base standard, and this can only be done on the basis of personal experience in using the
language "in anger" for real applications. In addition, the usability of a language compiler depends in high measure on the quality
of diagnostics available, and improving the quality of diagnostics depends entirely on a feedback process: you need to make real
programming mistakes, spot when the diagnostics could be more helpful, and make the required changes.

More speciDEcally, Saxonica has released an implementation of XSLT 3.0 written in Javascript to run in the browser, and an obvious next
step is to extend that implementation to run under Node.js on the server. But for the server environment we need to implement a larger
subset of the language, and so the question arose, should we write a version of the schema processor in Javascript? However, Javascript
is not the only language of interest: we're also seeing demand for our technology from users whose programming environment is C, C
++, C#, PHP, or Python. Since (using a variety of tools) we've been trying to deliver XSLT 3.0 capability in all these environments, a
natural next step is to try and deliver a schema processor that will run on any of these platforms, by writing it in portable XSLT 3.0 code.

Architecturally, there are two parts to an XSD schema processor:

• The DErst part is the schema compiler. This takes as input the source XSD schema documents, and performs as much pre-processing
of this input as it can prior to the validation of actual XML instances against the schema. This preprocessing includes veriDEcation
that the schema documents themselves represent a valid schema, and other tasks such as expanding defaults. The XSD speciDEcation
from W3C describes a "schema component model" which is an abstract description of a data structure that can be used to represent a
compiled schema; and it gives detailed rules for translating source schema documents to this abstract data model. The Saxon schema
processor follows this approach very closely, and it also deDEnes a concrete XML-based representation of the schema component
model which realises the output of the schema compilation phase in concrete form. This output in fact contains a little more than the
SCM components and their properties; it also contains a representation of the DEnite state machines used to implement the grammar
of complex types deDEned in the schema.

• The second part is the instance validator. The instance validator takes two inputs: the compiled schema (SCM) output by the
schema compiler, and an XML instance document to be validated. In principle its output is a PSVI (post schema validation infoset)
containing the instance document as a tree, decorated with information derived from schema validation, including information
identifying nodes that are found to be invalid. In practice, in the Saxon implementation, there are two outputs: a validation report,
which in its canonical form is an XML document listing all the validation errors that were found, and a tree representation of the
instance document with added type annotations, in the form prescribed by the XDM data model used by XPath, XQuery, and XSLT.
Because the Saxon schema validator is primarily designed to meet the schema processing requirements of XSLT and XQuery, it only
delivers the subset of PSVI required in that environment: this means that the output XML tree is only delivered if it is found to be
valid, and the only tree decorations added by the validator are references from valid element and attribute nodes to the schema types
against which they were validated. In e=fect, if the input is valid, then the output of the Saxon schema validator is a representation
of the input XML instances with added type annotations; while if the input is invalid, then the output is a report listing validation
errors.

The sof1ware described in this paper is an XSLT 3.0 implementation of the instance validator. It would certainly be possible to write
an XSLT 3.0 implementation of the schema compiler, and we may well do that next, but we haven't tackled this yet.

Moreover, the only output of the instance validator described here is a validation report showing the validation errors. The sof1ware
doesn't attempt to produce an XDM representation of the input document with type annotations. In fact, this isn't possible to do using
standard XSLT 3.0 without extensions. XSLT 3.0 has no instructions to output elements and attributes with speciDEc type annotations;
the only way it can generate typed output is by putting the output through a schema validator, which is assumed to exist as an external
component. So to write that part of the validator in XSLT 3.0, we would need to invent some language extensions.

132

The Validation Task

2. The Validation Task
In this section we describe what the validator actually does.

Let's start with an example of a very simple schema, like this:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="books">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="book" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:key name="isbn-key">
 <xs:selector xpath="book"/>
 <xs:field xpath="@isbn"/>
 </xs:key>
 </xs:element>

 <xs:element name="book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="publisher" type="xs:string"/>
 <xs:element name="author" type="xs:string" minOccurs="1" maxOccurs="5"/>
 <xs:element name="date" type="xs:gYear"/>
 <xs:element name="price" type="moneyType"/>
 </xs:sequence>
 <xs:attribute name="isbn" type="ISBNType" use="required"/>
 <xs:assert test="if (publisher eq 'McGraw-Hill') then starts-with(@isbn, '007') else
 if (publisher eq 'Academic Press') then starts-with(@isbn, '012')
 else true()"/>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="moneyType">
 <xs:simpleContent>
 <xs:extension base="xs:decimal">
 <xs:attribute name="currency" type="currencyType"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:simpleType name="currencyType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="USD"/>
 <xs:enumeration value="GBP"/>
 <xs:enumeration value="EUR"/>
 <xs:enumeration value="CAD"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ISBNType">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]{9}[0-9X]"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

A valid XML instance conforming to this schema might look like this:

133

The Validation Task

<?xml version="1.0" encoding="UTF-8"?>
<books>
 <book isbn="0070491712">
 <title>Apple PASCAL: a hands-on approach</title>
 <author>Arthur Luehrmann</author>
 <author>Herbert Peckham</author>
 <publisher>McGraw-Hill</publisher>
 <date>1981</date>
 <price currency="USD">13.95</price>
 </book>
 <book isbn="0124119700">
 <title>An Introduction to Direct Access Storage Devices</title>
 <author>Hugh Sierra</author>
 <publisher>Academic Press</publisher>
 <date>1990</date>
 <price currency="USD">72.95</price>
 </book>
</books>

The Saxon-EE schema compiler can be invoked to convert the source schema into an SCM DEle, for example with a command such as:

java com.saxonica.Validate xsd:books.xsd -scmout:xsd

Here is the resulting SCM DEle:

<?xml version="1.0" encoding="UTF-8"?>
<scm:schema xmlns:scm="http://ns.saxonica.com/schema-component-model"
 generatedAt="2018-06-04T10:39:09.702+01:00"
 xsdVersion="1.1">
 <scm:simpleType id="C0"
 name="currencyType"
 base="#string"
 variety="atomic"
 primitiveType="#string">
 <scm:enumeration value="EUR"/>
 <scm:enumeration value="CAD"/>
 <scm:enumeration value="USD"/>
 <scm:enumeration value="GBP"/>
 </scm:simpleType>
 <scm:simpleType id="C1"
 name="ISBNType"
 base="#string"
 variety="atomic"
 primitiveType="#string">
 <scm:pattern value="[0-9]{9}[0-9X]"/>
 </scm:simpleType>
 <scm:complexType id="C2"
 name="moneyType"
 base="#decimal"
 derivationMethod="extension"
 abstract="false"
 variety="simple"
 simpleType="#decimal">
 <scm:attributeUse required="false" inheritable="false" ref="C3"/>
 </scm:complexType>
 <scm:attribute id="C3"
 name="currency"
 type="C0"
 global="false"
 inheritable="false"
 containingComplexType="C2"/>
 <scm:element id="C4"
 name="book"
 type="C5"

134

The Validation Task

 global="true"
 nillable="false"
 abstract="false"/>
 <scm:complexType id="C5"
 base="#anyType"
 derivationMethod="restriction"
 abstract="false"
 variety="element-only">
 <scm:attributeUse required="true" inheritable="false" ref="C9"/>
 <scm:modelGroupParticle minOccurs="1" maxOccurs="1">
 <scm:sequence>
 <scm:elementParticle minOccurs="1" maxOccurs="1" ref="C10"/>
 <scm:elementParticle minOccurs="1" maxOccurs="1" ref="C11"/>
 <scm:elementParticle minOccurs="1" maxOccurs="5" ref="C12"/>
 <scm:elementParticle minOccurs="1" maxOccurs="1" ref="C13"/>
 <scm:elementParticle minOccurs="1" maxOccurs="1" ref="C14"/>
 </scm:sequence>
 </scm:modelGroupParticle>
 <scm:finiteStateMachine initialState="0">
 <scm:state nr="0">
 <scm:edge term="C10" to="1"/>
 </scm:state>
 <scm:state nr="1">
 <scm:edge term="C11" to="2"/>
 </scm:state>
 <scm:state nr="2">
 <scm:edge term="C12" to="3"/>
 </scm:state>
 <scm:state nr="3" minOccurs="1" maxOccurs="5">
 <scm:edge term="C12" to="3"/>
 <scm:edge term="C13" to="4"/>
 </scm:state>
 <scm:state nr="4">
 <scm:edge term="C14" to="5"/>
 </scm:state>
 <scm:state nr="5" final="true"/>
 </scm:finiteStateMachine>
 <scm:assertion xmlns:xs="http://www.w3.org/2001/XMLSchema"
 test="if (publisher eq 'McGraw Hill') then starts-with(@isbn, '007')
 else if (publisher eq 'Academic Press') then starts-with(@isbn, '012')
 else true()"
 defaultNamespace=""
 xml:base="file:/Users/mike/Documents/papers/markupuk2018/books.xsd"/>
 </scm:complexType>
 <scm:element id="C6"
 name="books"
 type="C7"
 global="true"
 nillable="false"
 abstract="false">
 <scm:identityConstraint ref="C8"/>
 </scm:element>
 <scm:complexType id="C7"
 base="#anyType"
 derivationMethod="restriction"
 abstract="false"
 variety="element-only">
 <scm:elementParticle minOccurs="1" maxOccurs="unbounded" ref="C4"/>
 <scm:finiteStateMachine initialState="0">
 <scm:state nr="0">
 <scm:edge term="C4" to="1"/>
 </scm:state>

135

The Validation Task

 <scm:state nr="1" final="true">
 <scm:edge term="C4" to="2"/>
 </scm:state>
 <scm:state nr="2" final="true">
 <scm:edge term="C4" to="2"/>
 </scm:state>
 </scm:finiteStateMachine>
 </scm:complexType>
 <scm:key id="C8" name="isbn-key" targetNamespace="">
 <scm:selector xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xpath="book"
 defaultNamespace=""/>
 <scm:field xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xpath="@isbn"
 defaultNamespace=""
 type="#string"/>
 </scm:key>
 <scm:attribute id="C9"
 name="isbn"
 type="C1"
 global="false"
 inheritable="false"
 containingComplexType="C5"/>
 <scm:element id="C10"
 name="title"
 type="#string"
 global="false"
 containingComplexType="C5"
 nillable="false"
 abstract="false"/>
 <scm:element id="C11"
 name="publisher"
 type="#string"
 global="false"
 containingComplexType="C5"
 nillable="false"
 abstract="false"/>
 <scm:element id="C12"
 name="author"
 type="#string"
 global="false"
 containingComplexType="C5"
 nillable="false"
 abstract="false"/>
 <scm:element id="C13"
 name="date"
 type="#gYear"
 global="false"
 containingComplexType="C5"
 nillable="false"
 abstract="false"/>
 <scm:element id="C14"
 name="price"
 type="C2"
 global="false"
 containingComplexType="C5"
 nillable="false"
 abstract="false"/>
</scm:schema>

Let's look brieGHy at what this contains. The children of the scm:schema element represent di=ferent schema components such as
element declarations, attribute declarations, simple and complex types, each with a unique identiDEer. For convenience I've rearranged
these in order of the component identiDEer (the actual order doesn't matter).

136

The Validation Task

• C0 is the simple type named currencyType. It is an atomic type derived from xs:string (the built-in type is represented as
#string). The scm:enumeration elements list the permitted values.

• C1 is the simple type named ISBNType. It is an atomic type derived from xs:string, with a pattern facet constraining the
permitted values.

• C2 is the complex type named moneyType. It is a "complex type with simple content", allowing simple content of type
xs:decimal, and an attribute. The complex type contains an scm:attributeUse element which is a reference to the
attribute declaration deDEning the attribute; like all references from one component to another, this uses the component identiDEer,
in this case C3.

• C3 is the attribute declaration for currency; it is a local declaration (global="false"). The type of the attribute is deDEned
by a reference to the simple type component C0.

• C4 is the element declaration for the book element; it is deDEned largely by a reference to the complex type C5 which deDEnes the
allowed content.

• C5 is the complex type deDEning the allowed content of book elements. The complex type itself has no name. The type is derived
by restriction from xs:anyType, and the permitted content is deDEned in terms of a modelGroupParticle containing a
sequence of elementParticles representing the permitted child elements: these are references to local element declarations
appearing later in the SCM DEle. The complex type component also contains a representation of the (deterministic) DEnite state
machine used to check instances against the grammar deDEned in the source schema. This deDEnes a set of states (the initial state is
0, the DEnal state is 5) and the permitted transitions between them. The transitions (edges) are deDEned by reference to the schema
components for the contained element particles. Finally, the complex type component contains the XPath assertion that constrains
the relationship between publishers and ISBNs. The scm:assertion element includes an xml:base attribute because it is
possible (in theory) for the evaluation of the XPath assertion to depend on the base URI of the containing element in the source
schema.

• C6 is the element declaration for the outermost books element: it refers to the complex type deDEnition C7 and the identity
constraint (the xs:key constraint) C8.

• C7 is the complex type deDEnition for the outermost books element. Like C5, it contains a (very simple) DEnite state machine used
to enforce the grammar.

• C8 represents the xs:key constraint specifying that ISBNs must be unique.

• C9 to C13 are the attribute and element declarations for the details of a book, and are all very simple. The meanings of the attributes
are very closely aligned with the properties of the abstract Schema Component Model deDEned in the W3C speciDEcation.

Given this schema and this instance document, the task of the validator is to produce an empty validation report showing that there
are no errors. The validation report becomes more interesting if the instance is invalid. For example, we can use this command:

java com.saxonica.Validate -xsd:books.scm -s:books-invalid.xml -report:report.xml

to validate this invalid instance:

<?xml version="1.0" encoding="UTF-8"?>
<books>
 <book isbn="0070491712">
 <title>Apple PASCAL: a hands-on approach</title>
 <publisher>McGraw-Hill</publisher>
 <date>1981</date>
 <price currency="NZD">13.95</price>
 </book>
 <book isbn="0134119700">
 <title>An Introduction to Direct Access Storage Devices</title>
 <author>Hugh Sierra</author>
 <publisher>Academic Press</publisher>
 <date>1990-04</date>
 <price currency="USD">72.95</price>
 </book>
</books>

and the result is the following report:

<?xml version="1.0" encoding="UTF-8"?>

137

Design Considerations

<validation-report xmlns="http://saxon.sf.net/ns/validation"
 system-id="file:/Users/mike/Documents/papers/markupuk2018/
 books-invalid.xml">
 <error line="6"
 column="15"
 path="/Q{}books[1]/Q{}book[1]/Q{}date[1]"
 xsd-part="1"
 constraint="cvc-complex-type.2.4">In content of element <book>: The
 content model does not allow element <Q{}date> to appear immediately
 after element <publisher>. No further elements are allowed at
 this point. </error>
 <error line="7"
 column="31"
 path="/Q{}books[1]/Q{}book[1]/Q{}price[1]/@currency"
 xsd-part="2"
 constraint="cvc-complex-type.3">Value "NZD" contravenes the enumeration
 facet "EUR, USD, CAD, GBP" of the type Q{}currencyType</error>
 <error line="11"
 column="17"
 path="/Q{}books[1]/Q{}book[2]/Q{}author[1]"
 xsd-part="1"
 constraint="cvc-complex-type.2.4">In content of element <book>:
 The content model does not allow element <Q{}author> to appear
 immediately after element <title>. No further elements are allowed
 at this point. </error>
 <error line="13"
 column="15"
 path="/Q{}books[1]/Q{}book[2]/Q{}date[1]"
 xsd-part="2"
 constraint="cvc-datatype-valid.1">The content "1990-04" of element <date>
 does not match the required simple type. Cannot convert '1990-04' to a
 gYear</error>
 <error line="9"
 column="29"
 path="/Q{}books[1]/Q{}book[2]"
 xsd-part="1"
 constraint="sec-cvc-assertion.0">Element book does not satisfy assertion
 if (publisher eq 'McGraw Hill') then starts-with(@isbn, '007') else
 if (publisher eq 'Academic Press') then starts-with(@isbn, '012')
 else true()</error>
 <meta-data>
 <validator name="SAXON-EE" version="9.9.0.1"/>
 <results errors="5" warnings="0"/>
 <schema file="books.scm" xsd-version="1.1"/>
 <run at="2018-06-04T11:12:24.651+01:00"/>
 </meta-data>
</validation-report>

The report shown here comes from the existing Saxon-EE validator written in Java. Our task is to reproduce this report with a validator
written entirely in portable XSLT.

3. Design Considerations
This section describes some of the design challenges posed.

3.1. Generic Stylesheet or Generated Stylesheet?
At the beginning of this exercise we considered two alternative designs: the validator could run as a generic XSLT stylesheet taking its
rules dynamically from the SCM input document, or it could be a custom XSLT stylesheet generated from the SCM input document
and dedicated to doing validation against this particular schema.

Both approaches have potential advantages, but we chose the DErst on the grounds of simplicity. As we will see later, there are some
technical challenges where the second approach might have a=forded a solution.

138

Subset of XSLT 3.0

3.2. Subset of XSLT 3.0

We decided that, if possible, the validator should be written in the subset of XSLT 3.0 that is supported by Saxon-JS (including the use
of xsl:evaluate which requires a later release of Saxon-JS). This decision means that we cannot use higher-order functions: these
are an optional XSLT 3.0 feature which Saxon-JS does not currently support.

3.3. Streaming

In an ideal world, we would use an XSLT 3.0 streaming transformation to process the input instance document, so that it does not
need to be held completely in memory.

The existing Saxon validator, written in Java, uses streamed processing whereever possible. The main case where streaming is not possible
is in evaluating XSD 1.1 assertions: assertions can use arbitrary XPath expressions to process the subtree of the source document rooted
at the element to which the assertion applies. The existing validator starts building an in-memory tree when it encounters such an
assertion; in the absence of such assertions it is full streamed. It would be possible in principle to avoid building the subtree if the
assertion uses a streamable subset of XPath, but the validator does not attempt this.

Emulating this behaviour in the new XSLT validator might be possible, but it is not easy, and in the current project we have not
attempted it. One of the main reasons for this is that there are other XSD features (notably the evaluation of uniqueness and referential
constraints) for which a streamed implementation is even more di=DEcult.

The main constraint here is that xsl:evaluate (the XSLT 3.0 instruction to perform evaluation of a dynamically-constructed
XPath expression) is not streamable, because static analysis has no access to the XPath expression in question, and streamability analysis
is always done statically. Since xsl:evaluate is essential to enable XSD 1.1 features such as assertions and type alternatives to be
evaluated, this is a stopper. We might be able to get around it by using the alternative design considered (a generated stylesheet in which
the XPath expressions become statically analyzable), but we decided not to go that way.

3.4. Typed data

We have already mentioned that XSLT 3.0 can only generate a typed result tree (speciDEcally, a node with non-trivial type annotations)
by invoking a schema validator to produce the type annotations, and this precludes the possibility of writing that schema validator in
XSLT 3.0. So the DErst obvious restriction we have to live with is that our validator will only do that part of the job concerned with
detecting invalidity, not the other part concerned with augmenting the supplied instance with type information.

Unfortunately, even the task of distinguishing valid from invalid documents requires some use of type information associated with
nodes. The most obvious example is that assertions (XPath expressions in xsd:assert declarations) are deDEned to operate on "semi-
typed" data - that is data that has been validated using all the constraints in the schema other than assertions, and typed accordingly.
For example, if @price and @discount are attributes of type xs:decimal, then the assertion test="@discount lt
@price" is deDEned to do a decimal comparison, not a string comparison.

We don't currently have a solution to this problem. We found, however, that very few schemas are a=fected. With such schemas,
it is currently necessary to rewrite the assertion to do explicit typing: in this case test="xs:decimal(@discount) lt
xs:decimal(@price)"

Another case where typed data can be important is in key and keyref constraints. For example, if a uniqueness constraint applies
to an attribute @birthDate of type xs:date, then values of that attribute are compared as dates, not as strings. Again, we found
that this is rarely a problem in practice, but in this case we do have a solution that covers most cases: by doing static analysis of the XPath
expressions used in the selector and field elements of the constraint, we can usually determine the data type of the values these
expressions are selecting, and we can put this inferred type into the SCM and use it to cast the values before comparison. The only case
where this approach proves inadequate are pathological cases where the type cannot be statically inferred, for example when the XPath
expressions use union types or wildcards.

3.5. Support for xsi:schemaLocation

The current project is implementing a validator only, with no access to a schema compiler.

The xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes allow an instance document to
reference the location of a (source) schema document containing a schema for the instance document. Because this validator has no
access to a schema compiler, it cannot implement this capability.

This isn't a fundamental show-stopper. Support for these attributes isn't required for XSD conformance, and many applications avoid
using them (there are a number of arguments against using them, not least that when you validate a document, it's because you don't
trust it to be valid, and if you don't trust it to be valid, why should you trust it to tell you where the schema is?)

139

Implementation

If we had a schema compiler written in XSLT, then it would of course be possible to interface this.

4. Implementation
This section of the paper is not a complete top-down documentation of the working implementation. Rather it gives a selection
of snapshots into interesting aspects of the implementation, showing some of the techniques used and obstacles encountered. It is
particularly focused on showing how new features in XSLT 3.0 proved valuable.

4.1. Use of Maps for Returned Values
A classic problem with functional programming is that a function can only return one result. If you want to compute two values (say
a maximum and minimum) from the same input then you have two choices. You can either process the input more than once (which
may involve some redundant computation), or you can return a composite result.

In this application there are many cases where we need to return a composite result.

To take an example, suppose we are validating an attribute, and we DEnd that the declared type for that attribute is a user-deDEned list
type, where the item type of the list is part-number, and part-number is derived from xs:ID. The calling code wants to know
(a) whether the attribute is valid against its declared type; (b) what error messages to report if not; and (c) whether the value contains
any xs:ID or xs:IDREF values that need to be added to global tables of xs:ID and xs:IDREF values for document-level validity
checking at the end.

Our solution to this is that we recurse through the instance document in a tree-walk driven by xsl:apply-templates in
the normal way, but the return value from xsl:apply-templates is a map containing all the information gleaned from the
processing of this subtree.

Very of1en the information returned from several calls on xsl:apply-templates (for example, one call for child elements
and another for attributes) will need to be combined into a single map. At the top level, when we return from the initial call on
xsl:apply-templates on the root node, all the information that is needed to produce the validation report is present in one
large map, and the DEnal stage of processing takes this map and generates the XML report.

The maps that are produced by the di=ferent processing stages thus typically include some subset of a common set of DEelds. These
include:

Table 1. The structure of maps used to return partial results of processing

Name Value
valid An xs:boolean indicating whether the subtree is valid
errors A set of error objects indicating error information to be included

in the validation report
value The typed value of an element or attribute
type The type against which a subtree was validated
lexical The lexical form of an attribute or text node af1er whitespace

normalization
id A set of xs:ID values found in the subtree
id-map A mapping from xs:ID values found in the subtree, to the nodes

on which they appeared
idrefs A set of xs:IDREF values found in the subtree

When two of these maps representing properties of di=ferent subtrees are combined, di=ferent rules apply to each DEeld. For example,
for the id and idrefs and errors DEelds we can take the union of the two values. For the valid property, we can apply a logical
AND; a tree is valid only if all its subtrees are valid. For value and type we can drop the value; these DEelds are used only at the next
level up, and do not propagate all the way to the root.

4.2. Declaring Map Types
Standard XSLT 3.0 allows maps (as described in the previous section) to be returned from templates, stored in variables, and so on, so
this style of processing is perfectly possible without departing from the standard. However, the facilities for declaring the type of these
maps are very weak. The closest we can get is map(xs:string, item()*) which is satisDEed by any map whose keys are strings.

Much of the debugging process for this stylesheet involves understanding the contents of these returned maps, and it is therefore
frustrating that the XSLT 3.0 type system is so poor at validating these maps and reporting type errors. Saxon therefore introduces an
extension to XSLT 3.0, called tuple types. Here is a declaration of the returned structure as a tuple type:

140

Assessment against Complex Types using Finite State
Machines

 tuple(valid: xs:boolean?, (: indicates whether the subtree is valid
 (default = true) :)
 errors: element(vr:error)*, (: a list of errors found when validating the
 subtree :)
 value: xs:anyAtomicType*, (: the typed value of an element or attribute :)
 type: xs:string*, (: the types of the typed values, as component
 IDs :)
 lexical: xs:string?, (: the lexical form of a value after whitespace
 normalization :)
 id: xs:string*, (: any ID values found while validating an
 element or attribute :)
 id-map: map(xs:string, element())*, (: a mapping from ID values to elements :)
 idrefs: xs:string*) (: any IDREF values found while validating an
 element or attribute :)

This clearly documents the expected contents of the map much more precisely than the bland declaration map(xs:string,
item()*).

Tuples in Saxon are not a separate data type in the way that maps and arrays are separate data types. Rather, a tuple type is an alternative
way of constraining the content of a map. It deDEnes the (string-valued) keys that can appear in the map, and for each permitted key, the
permitted type of the corresponding values. Declaring the expected type of a map in this form gives much improved static and dynamic
type checking. For example, attempting to reference a non-existing DEeld using the lookup expression $result?Value can generate
a static error message, as can its use in an inappropriate context such as $result?valid eq "true".

Because tuple type declarations are of1en quite lengthy, as in this example, Saxon allows them to be declared once using a type alias:

<saxon:type-alias name="validation-outcome" type="
 tuple(valid: xs:boolean?, (: indicates whether the subtree is valid
 (default = true) :)
 errors: element(vr:error)*, (: a list of errors found when validating the
 subtree :)
 value: xs:anyAtomicType*, (: the typed value of an element or attribute :)
 type: xs:string*, (: the types of the typed values, as component
 IDs :)
 lexical: xs:string?, (: the lexical form of a value after whitespace
 normalization :)
 id: xs:string*, (: any ID values found while validating an
 element or attribute :)
 id-map: map(xs:string, element())*, (: a mapping from ID values to elements :)
 idrefs: xs:string*) (: any IDREF values found while validating an
 element or attribute :)

 "/>

And the type can then be referenced wherever an as attribute can appear, for example:

<xsl:template match="*" as="map(xs:string, item()*)" saxon:as="~validation-outcome"/>

The syntax of saxon:as is an XPath SequenceType augmented with Saxon-speciDEc syntax, in this case a reference to a type alias
marked as such by the presence of the leading tilde (~). The semantics of saxon:as are that it provides type information additional to
that contained in the as attribute. Because (under the XSLT extensibility rules) attributes in the Saxon namespace are ignored by XSLT
processors other than Saxon, this whole mechanism enables Saxon to do extra compile-time and run-time type checking, without in any
way sacriDEcing the interoperability of the stylesheet: it still functions correctly under other standards-conforming XSLT 3.0 processors.

4.3. Assessment against Complex Types using Finite State Machines

As we've seen, the DEnite state machines used to evaluate a sequence of elements against the grammar rules for a complex type are
constructed by the schema compiler and embedded in the SCM DEle that is used as input to the validator.

A simpliDEed validator for a simple DEnite state machine could be written like this:

141

Assessment against Complex Types using Finite State
Machines

<xsl:iterate select="$node/*">
 <xsl:param name="state" select="$initial-state" as="element(scm:state)"/>
 <xsl:on-completion>
 <xsl:if test="not($state/@final = 'true')">
 <xsl:sequence select="map{'errors':
 scm:error($node, 'Element content is
 incomplete')}"/>
 </xsl:if>
 </xsl:on-completion>
 <xsl:variable name="matching-edge" as="element(scm:edge)?"
 select="$state/scm:edge[scm:get(@term)[@name = local-name(current())
 and string(@targetNamespace) = namespace-uri(current())]]"/>
 <xsl:variable name="matching-wildcard-edge" as="element(scm:edge)?"
 select="$state/scm:edge[scm:get(@term)[self::scm:wildcard[
 scm:wildcard-matches($containing-type, .,
 current())]]]"/>
 <xsl:choose>
 <xsl:when test="empty($matching-edge) and empty($matching-wildcard-edge)">
 <xsl:break select="map{'errors': scm:error(., 'Element ' || name()
 || ' is not allowed here')}"/>
 </xsl:when>
 <xsl:when test="empty($matching-edge)">
 <xsl:variable name="wildcard"
 select="scm:get($matching-wildcard-edge/@term)"
 as="element(scm:wildcard)?"/>
 <xsl:sequence select="scm:check-wildcard-match($containing-type,
 $wildcard, .)"/>
 <xsl:next-iteration>
 <xsl:with-param name="state"
 select="$states[@nr =
 $matching-wildcard-edge/@to]"/>
 </xsl:next-iteration>
 </xsl:when>
 <xsl:otherwise>
 <xsl:variable name="decl"
 select="scm:get($matching-edge/@term)"
 as="element(scm:element)"/>
 <xsl:apply-templates select="." mode="explicit-decl">
 <xsl:with-param name="decl" select="$decl"/>
 </xsl:apply-templates>
 <xsl:next-iteration>
 <xsl:with-param name="state"
 select="$states[@nr =
 $matching-edge/@to]"/>
 </xsl:next-iteration>
 </xsl:otherwise>
 </xsl:choose>
</xsl:iterate>

The way this code works is as follows:

• The xsl:iterate instruction is new in XSLT 3.0. It is rather like xsl:for-each, except that it processes the selected items
strictly in sequence; the code for processing one item can set parameters for processing the next item; and it is possible to break out
of the loop early. The same e=fect could be achieved with a recursive template, but xsl:iterate is of1en easier to understand. In
this case we are iterating over the children of the element being validated.

• There is a single parameter, the current state, which is initially set (by the calling code) to the state numbered 0.

• The xsl:on-completion instruction is executed when we reach the end of the sequence of child elements. If the current state
is a DEnal state, we return nothing (meaning all is well, the input is valid). Otherwise we return a map containing an error value.

• There are two kinds of transition possible in a given state: named element transitions, and wildcard transitions. We DErst DEnd all the
matching named element transitions (the schema compiler will have ensured there can be at most one) and all the matching wildcard
transitions.

142

Checking Assertions

• If both sets are empty, there is no legal transition for the current child element in this state, so we return an error value.

• If there is a wildcard transition possible, but no named-element transition, then we check that the wildcard transition is really allowed
and that the element is valid against the wildcard (this will take account of its processContents attribute, and then proceed
to process the next child element in the state reached by this transition.

• If there is a named-element transition possible, then we call apply-templates to check that the child element is valid against
the required type for the named element, and then proceed to process the next child element in the state reached by this transition.

The actual logic is more complex than this. Firstly, we use a DEnite state machine with counters, to reduce the size of the DEnite state
machine needed for a grammar such as <element name="book" minOccurs="100" maxOccurs="200"/>. Secondly,
XSD 1.1 allows "open content" which allows elements matching a given wildcard to appear either (a) anywhere (interleaved content),
or (b) at the end of the sequence (su=DEx content). The possibility of open content is not integrated into the DEnite state machine,
but is instead handled by the validator as it arises. However, the basic principle is retained of stepping through the children using
xsl:iterate to maintain the current state.

4.4. Checking Assertions

The code for checking input data against assertions deDEned in the schema is very straightforward. Here is the actual logic (no
simpliDEcations this time):

<xsl:function name="scm:check-assertions" as="map(*)" saxon:as="tuple(error:
 element(vr:error)*)">
 <xsl:param name="type" as="element(scm:complexType)"/>
 <xsl:param name="node" as="element()"/>
 <xsl:variable name="copy-sans-comments" as="element()">
 <xsl:apply-templates select="$node" mode="copy-sans-comments"/>
 </xsl:variable>
 <xsl:variable name="failures" as="element(vr:error)*">
 <xsl:for-each select="$type/scm:assertion">
 <xsl:try>
 <xsl:variable name="assertion-result" as="item()*">
 <xsl:evaluate xpath="@test"
 context-item="$copy-sans-comments"
 namespace-context="scm:make-namespace-context(.)"
 base-uri="{base-uri($scm)}">
 <xsl:with-param name="value" select="$copy-sans-comments"/>
 </xsl:evaluate>
 </xsl:variable>
 <xsl:if test="not($assertion-result)">
 <xsl:sequence select="scm:error($node, ' must satisfy assertion '
 || @test)"/>
 </xsl:if>
 <xsl:catch errors="*">
 <xsl:sequence select="scm:error($node, ' must satisfy assertion '
 || @test || '.
 Evaluation of the assertion failed with a dynamic error: '
 || $err:description)"/>
 </xsl:catch>
 </xsl:try>
 </xsl:for-each>
 </xsl:variable>
 <xsl:sequence select="map{'errors': $failures}"/>
</xsl:function>

Notes relating to this code:

• The function returns a map, but the saxon:as declaration reveals that there is only one DEeld deDEned in this map, namely the
errors DEeld. If the constraint is satisDEed, an empty map is returned. The reason for deDEning it this way is that the calling code can
use its standard mechanism for combining the results of di=ferent validation processes.

• The function makes a copy of the element being validated, in which comments and processing instructions have been removed. This
is prescribed by the speciDEcation. A copy of the subtree is needed to ensure that the XPath expressions in the assertion have no access
to nodes in the input document that fall outside the subtree being validated.

143

Other Complications

• The assertion is evaluated using xsl:evaluate, a new XSLT 3.0 instruction that evaluates XPath expressions known only
dynamically (in this case, an expression read from the SCM DEle). The instruction provides machinery to establish the static and
dynamic context for evaluating the expression, here including the context item, the value of the $value variable, the namespace
context, and the base URI.

• If the e=fective boolean value of the assertion result is false, the function returns an error value.

• If a dynamic error occurs while evaluating the assertion, this is caught using the new xsl:try instruction in XSLT 3.0, and the
function returns an error value.

• The whole process is repeated for each deDEned assertion. If more than one assertion fails, then more than one error will be returned.

4.5. Other Complications

It's worth mentioning a few other complications that the implementation has to deal with, without going into gory detail:

• Gregorian types. XSD 1.1 introduces a new facet which allows you to specify that the timezone on a date/time value is mandatory or
optional. It turns out to be easy to check this using XPath expressions for an xs:date, xs:time, or xs:dateTime; but there's
no easy way to do it for xs:gYear, xs:gYearMonth, and friends. Similarly, XSD 1.1 allows facets to control the range of these
values, for which XPath o=fers no support. The validator therefore includes a library of functions for handling the Gregorian types.

• Regular Expressions. The syntax for regular expressions contained in the XSD pattern facet is very similar to the syntax for the
XPath fn:matches() function -- but not quite the same. Most of the di=ferences are extensions in the XPath version (for
example, support for back-references), and since the schema compilers has done static validation on the expression, we can ignore
these di=ferences. The remaining di=DEculty is the characters "^" and "$", which represent themselves in XSD, but are meta-characters
in XPath. To handle this we need to pre-process the regular expression to replace occurrences of "^" and "$"(if not within square
brackets) by "\^" and "\$".

• Equality semantics. The equality matching rules in XSD 1.1, used for example by the enumeration facet or in key/keyref comparison,
don't correspond directly to any of the ways of testing equality in XPath. For example, in XPath the integer 3 and the double 3e0
are equal, in XSD they are not. This also makes it di=DEcult to use XPath maps to enforce uniqueness constraints. It is therefore
necessary to use a custom function for comparing atomic values, and a function schemaComparable(x) with the property
that schemaComparable(x) eq schemaComparable(y) under the XPath rules if and only if x and y are equal under
the XSD rules.

5. Results
This section attempts to assess the quality metrics of the completed validator.

Saxonica's quality objectives for all its sof1ware are conformance, usability, and performance, in that order. We therefore assess the
validator against these criteria.

5.1. Conformance

W3C publishes a comprehensive test suite for XSD 1.1. The XSLT validator is currently passing 41330 out of 41363 tests. This is
af1er excluding tests that are not applicable, for example, tests that rely on xsi:schemaLocation. This level of conformance
comfortably exceeds that of many widely-used schema processors, and the failures largely involve edge cases that few users will ever
encounter.

5.2. Usability

Usability is measured primarily by the quality of the error messages. This is not yet as good as the Java validator. Here is the validation
report produced for the invalid booklist document supplied earlier:

<vr:validation-report xmlns:vr="http://saxon.sf.net/ns/validation">
 <vr:error path="/Q{}books[1]/Q{}book[1]/Q{}date[1]">Element date is not allowed
 here</vr:error>
 <vr:error path="/Q{}books[1]/Q{}book[2]/Q{}author[1]">Element author is not
 allowed here</vr:error>
 <vr:error path="/Q{}books[1]/Q{}book[2]"> must satisfy assertion
 if (publisher eq 'McGraw Hill')
 then starts-with(@isbn, '007')

144

Performance

 else if (publisher eq 'Academic Press')
 then starts-with(@isbn, '012') else true()</vr:error>
</vr:validation-report>

In comparison with the report produced by the Java validator, we see:

• There are no line and column numbers associated with the errors, only a path. This omission is because XSLT provides no standard
way of obtaining the line or column number of a node. Some versions of Saxon provide extension functions to get this information,
but we want to avoid using extensions; and in any case, a key target environment is Saxon-JS, where we rely on the Javascript DOM
as our data model, and the Javascript DOM does not provide line and column information.

• There is no information about which constraint in the XSD speciDEcation is violated (this information is of little value to most users,
but it is required by the conformance rules).

• There are only three errors reported, rather than DEve. This is because the XSLT validator is quicker to stop validating sibling elements
once one of them has been found to be in error.

So there is some work still to be done to get the usability up to the level of the existing validator.

5.3. Performance

No serious work on optimizing (or measuring) performance has yet been done. However, it's useful to get some very preliminary data
to assess whether performance is going to be a major obstacle to the feasibility of the approach.

I constructed a valid data DEle containing ten thousand book elements.

With the existing Saxon-EE schema validator, validation took 1.1 seconds.

With the XSLT validator, validation (using Saxon-EE on Java as the XSLT engine) took 9.4 seconds.

This represents a ballpark estimate of the relative e=DEciency. It's not a thorough benchmark in any way; there is no point in doing a
thorough benchmark until some basic performance tuning has been done.

There are clearly many opportunities for performance improvement. Some of the obvious ine=DEciencies, relative to the Java validator,
include:

• In evaluating items with a pattern facet, the regular expression is recompiled every time an item is validated. This is because the
fn:matches() function precompiles the regular expression if it is known statically, but it makes no attempt to cache the compiled
regular expression if the same regex is used repeatedly. The regex in this case is read from the SCM DEle at run-time, so no compile-
time optimization is possible.

• Similarly, XPath expressions used in assertions may be recompiled every time they are used. There are some circumstances in which
xsl:evaluate will cache compiled XPath expressions that are used repeatedly, but this doesn't appear to be happening in this
stylesheet.

• Too much data is being retained from validation and passed upwards from the validation of a child to the validation of its parent.
This results in bloated maps containing validation outcomes, that take a long time to combine. It's probably not di=DEcult to DEnd
"low-hanging" optimizations in this area.

It's clear that a lot of the time is being spent creating and combining the maps that are used to pass data up the tree. The whole application
relies very heavily on maps, and its performance depends on the performance of map operations such as map:put and map:merge.
It's possible that it might beneDEt from a di=ferent implementation of maps that is tailored to the usage patterns that occur when map
types are declared as tuple types. It could also beneDEt from changes to the application to make more selective use of maps. In particular,
we seem to be incurring heavy costs inspecting and copying maps that are actually empty, because all the data is valid: there's clearly
an opportunity for optimizations here.

For the moment, all we can conclude about performance is that more work needs to be done. Making the XSLT validator as fast as the
existing Java validator is probably unachievable, but we should be able to get acceptably close.

6. Conclusions
Firstly, we have shown that writing an XSD 1.1 validator in XSLT 3.0 is feasible, with a few caveats: the main limitation is that XSLT
3.0 does not allow the creation of typed element and attribute nodes except by use of an XSD validator, which creates a recursive
dependency. This limitation could probably be solved by means of a few simple XSLT extension functions.

145

Conclusions

Whether an XSD 1.1 validator written in this way can achieve an acceptable level of usability and performance remains an open question.
We're certainly close, but we're not quite there yet.

The experiment has certainly yielded insights on how to design complex applications to take advantage of new XSLT 3.0 capabilities;
and it has provided usability feedback that has led directly to improvements in the XSLT 3.0 processor, for example in the way type-
checking errors with maps are reported and with features for tracing and diagnostics.

It has not so far proved possible to write a streaming validator by exploiting the streaming capabilities of XSLT 3.0. The main obstacle
is that the xsl:evaluate instruction is intrinsically unstreamable because it cannot be statically analyzed. One way around this
problem would be to generate a custome stylesheet to perform validation against a speciDEc schema. Another approach might be to allow
a stylesheet author to assert that an xsl:evaluate instruction is streamable, and to have the XPath compiler check this assertion
when the instruction is evaluated.

146

