Expression Elaboration

Michael Kay
Saxonica
<mike@saxonica.com>

Abstract

This paper describes an approach to evaluation of expression-based lan-
guages such as XSLT, XQuery, and XPath, in which nodes on the expres-
sion tree output by the language parser are converted to lambda expressions
in Java, Javascript, or C#, with the aim of doing as much work as possible
once only, in advance of the actual expression evaluation.

1. Introduction

Traditionally, when processing a language such as XSLT, XQuery, or XPath, there
is a choice of two approaches: interpretation, or code generation.

In its pure form, interpretation works by constructing a parse tree of the
source code, and then writing an interpreter that evaluates the constructs on this
parse tree, typically in bottom-up fashion: a node on the tree is evaluated by first
evaluating its operands (represented as child nodes on the expression tree), and
then combining the results according to the semantics of the relevant operator.

In practice it is possible to improve the performance of the interpreter by ana-
lyzing and modifying the expression tree before evaluation starts: examples of
these processes include resolving references (such as references to variables and
functions), inferring types, and optimizations such as loop-lifting (pulling code
out of a loop to avoid repeated execution). Declarative languages like XSLT,
XQuery and XPath benefit greatly from such optimisations.

By contrast, code generation in its pure form takes the parse tree and converts
it into a sequence of machine instructions that are then executed to evaluate the
program. Today, to achieve portability, these will normally be instructions for a
virtual machine (such as the Java VM) rather than physical hardware.

In practice the two approaches are not quite as distinct as it might appear, and
it's certainly possible to use a blend of both. In particular, even when code gener-
ation is used, much of the generated code will consist of calls into a run-time
library.

Both approaches have been used in the Saxon product. When code-generation
was first introduced, it often delivered a performance boost of the order of 25%
(though the range was anything from 0% to 50%). However, there was a penalty:
compile time costs increased. Given that in many workloads, stylesheets are com-
piled every time they are executed, this turned out to be a poor trade-off; it is

51

Expression Elaboration

quite common for compilation costs to exceed run-time costs by an order of mag-
nitude.

It's also noticeable that the benefits of generating Java byte-code have declined
over time. It's hard to be certain about the causes of this, but we suspect it's pri-
marily because the Java hot-spot compiler has improved over time to the extent
that it can often speed up our interpreted code to make it just as fast (or some-
times faster) than the code that we laboriously generate ourselves. That may be
partly because the bytecode that Saxon generates is rather different from the byte-
code that the Java compiler generates, and the hot-spot JVM (naturally) is opti-
mised for the latter. It may also have something to do with locality of reference: in
a modern CPU, the main bottleneck is not the speed of executing instructions, but
the speed of moving data from main memory into the CPU cache, which in turn
benefits substantially if all the data (and code) needed to execute some function is
in nearby storage locations, so they can be transferred to the CPU en bloc, thus
improving CPU cache hit rates. Generating code that takes advantage of these
low-level effects is a specialized skill, and it's not surprising if the team working
on the hot-spot compiler are better at it than we are.

In the Javascript version of Saxon (Saxon]S) we developed an alternative
approach to expression evaluation, which has proved very successful. We call this
"elaboration” (a term borrowed from Algol68, though we don't claim to use it
with precisely the same meaning.) This approach relies heavily on the fact that
the languages we are dealing with are side-effect free, which gives us a lot more
freedom in rearranging how code is executed. We've recently been extending its
use to the Java and C# versions of the Saxon product, and this paper reports pre-
liminary results of this work. This paper describes how expression elaboration
works. But first we'll look in more detail at how the two existing strategies, the
interpreter and the bytecode generator, are implemented, and at their strengths
and weaknesses.

2. The Expression Interpreter

At static analysis time, Saxon parses the source XSLT or XQuery code and gener-
ates an expression tree: a hierarchic structure of Java objects in which each node
represents an expression (or another construct, such as an XSLT instruction, or a
clause in a FLWOR expression), with links to its subexpressions. For example, an
expression like $x > 3 * $i produces a ComparisonExpr node, with two child
nodes, a VariableReference node for $x, and an ArithmeticExp node for subex-
pression 3 * $i; this in turn has two child nodes for its operands (a
NumericLiteral and a VariableReference. Each kind of node is represented by
a subclass of the Expression class, and has additional fields for relevant proper-
ties such as the arithmetic operator, the name of the variable, and the value of the
literal.

52

Expression Elaboration

ComparisonExpr
$x >3 * $i

|
' v

VariableRef ArithmeticExpr
$x 3* 3

|
' v

NumericLiteral VariableRef
3 $i

In principle, every kind of Expression overrides the method
Expression.evaluate (Context context) which takes as its argument the cur-
rent evaluation context (providing access to details such as the context item, posi-
tion, and size, the current group, current mode, and so on). Calling this method
returns the result of evaluating the expression, which in general is a Sequence
object.

(The above is a simplification. We actually provide a variety of evaluation
methods: iterate () for lazy evaluation as an iterator, process () for push mode
evaluation where the result are written to a serializer rather than being returned
to the caller, evaluateItem() where the result is known to be a singleton, and so
on).

The expression tree originates from parsing of the source XSLT, XPath, or
XQuery code, but before we get to evaluate it, it goes through a number of modi-
fications. For example:

* Nodes are added to the tree to represent implicit operations such as type
checking, type conversion, and sorting of nodes into document order. To ach-
ieve this, type analysis first annotates the tree with information about the
expected type of each construct.

¢ Links are added, for example from a variable reference to the corresponding
variable declaration, or from a function call to the function declaration.

* Operational information is added to the tree, for example local variables are
allocated a slot number in the stack frame for their containing function or tem-
plate, so that reading and writing of variables at run-time can use simple
numeric addressing, rather than matching of user-oriented variable names as
strings.

53

Expression Elaboration

* Expressions are optimized using local tree rewrites. Some expression kinds
are used which can only result from such optimization rewrites: an example
might be an IntegerRangeTest with three operands representing the expres-
sion V = P to O, which tests whether the value of V is in the range P to Q
inclusive. Other rewrites generate constructs that could have been written by
the user explicitly, for example P = Q might be rewritten as P eq Q if it is
known (from type analysis) that both operands are singletons. The more pow-
erful optimizations change the structure of the tree, for example by moving a
subexpression out of a loop where it is safe to do so.

The design of the expression tree has some limitations:

* The same data structure is used during static analysis and at run time. In prin-
ciple much of the information that's needed for static analysis could be discar-
ded once evaluation starts; evaluation might benefit from a lighter-weight
structure designed explicitly for that purpose.

¢ The data structure is, for most purposes, read-only at run-time. That's neces-
sary for thread safety - if you process several source documents concurrently
in a web server using the same stylesheet, they will share the same copy of the
expression tree. This means it's not possible to do things like replacing a
global variable reference with the value of the variable once the value is
known. (Actually, it's not completely read-only. There are some changes that
happen when a node in the tree is evaluated for the first time, for example.
Such operations need careful attention to thread safety.)

3. Bytecode Generation

The Enterprise Edition of Saxon attempts to speed up execution by generating
JVM bytecode for evaluation of selected parts of the expression tree. Because
bytecode generation is itself an expensive process, and may consume large
amounts of memory, this is done very selectively. During static analysis, Saxon
identifies particular expressions as candidates for bytecode generation. The body
of a function or template is always such a candidate, but so are smaller units of
code such as the predicate in a filter expression, or the body of an xs1:for-each
instruction.

This isn't as sophisticated as the JVM hot-spot compiler, which actually moni-
tors how effective its optimizations are, and is capable of reversing them if they
prove not to be worthwhile. But it's the same general idea.

There are two interesting questions to ask about bytecode generation: how
effective is it, and why?

The answer to the first question is that we see bytecode generation speeding
up XSLT and XQuery execution by anything from 0 to 25%; but most cases, sadly,
are towards the lower end of that range. It's most effective with simple queries

54

Expression Elaboration

dominated by evaluation of a simple predicate — but it has to be one that can't be
optimized by other techniques such as indexing. For example, in the XMark
benchmark suite, query Q11 execution improves from 145ms to 115ms with byte-
code generation enabled (around 20%). This query is dominated by the execution
of a single predicate of the form [$vv > 5000 * data(.)]. Here $vv is a local
variable generated by the optimizer (as a result of loop-lifting an expression out
of the predicate), and data(.) involves atomizing a node and converting its
string value to an xs:double. In fact, string-to-double conversion dominates the
query execution time. This is done in a library routine, and there's no opportunity
for bytecode generation to speed it up.

By contrast, we found that execution of a large DocBook XSLT transformation
improves only from 10.17s to 10.08s as a result of bytecode generation. We've pro-
filed this, and it's very hard to identity significant hot-spots that account for a
substantial part of the total execution time.

Where exactly does bytecode generation help? It's surprisingly difficult to
answer this question.

It's easy to see where it doesn't help: most of the run-time execution is spent
doing things like string-to-number conversion, regular expression processing,
navigation of the TinyTree data structure, parsing, and serialization, where the
logic is all in library routines that are exactly the same whether invoked by the
interpreter or by generated bytecode. So where do we get gains? I think the
answer is some combination of the following:

* Reduced navigation of the expression tree. Some of the expressions on the
expression tree execute so quickly that finding your way to the expression that
needs to be evaluated is as much work as doing the actual evaluation. This is
pure overhead in the interpreter.

¢ Eliminating run-time checks. Even with interpreted code, we go to great
lengths to do everything we can at compile time to reduce work done at run-
time. For example, if a regular expression or a collation URI is supplied as a
string literal, we'll always try to take advantage of the fact. And we do static
type analysis to avoid unnecessary run-time type checking. But sometimes it's
just not practical. For example, there are many instructions where there's a
run-time error if the context item is absent, or if it isn't a node. We might know
at compile time that this check isn't needed on a particular path, but with the
interpreter, it's simplest to do it anyway. The bytecode generator can be a bit
more selective and avoid a few unnecessary instructions.

¢ Inlining. When we generate code for a predicate like [$vv > 5000 *
data(.)], the code all goes in a single generated method. There are no calls
from the method that does the comparison to the method that does the arith-
metic to the method that does the atomization. Fewer method calls means less

55

Expression Elaboration

overhead; it also means that the next instruction you want to execute is more
likely to already be in the CPU cache.

Now, you might ask, surely the JVM hot-spot compiler can do inlining
anyway, so why do we need to do it ourselves? Well, there's a very important
difference. In the Saxon interpreter, the methods are highly polymorphic
("megamorphic” is the term used by the JVM experts). That is, we have liter-
ally a couple of hundred subclasses of Expression to evaluate different kinds
of expression, and when ArithmeticExpression.evaluate() calls the
evaluate () method of its two operands, that method call could be despatched
to any one of a hundred different implementations of the evaluate () method.
In that situation, no inlining is possible, except perhaps in the case where one
kind of operand (perhaps a numeric literal) is much more common than any
other. By contrast, we're generating bytecode for a specific arithmetic expres-
sion where we know that the two operands are a literal and an atomizer, and
in that situation inlining is eminently possible.

So the key difference is: in the interpreter, one Java method is handling all
arithmetic expressions. In the generated bytecode, there's one Java method for
each individual arithmetic expression in the stylesheet (provided of course
that it's executed often enough to justify the code generation). An individual
arithmetic expression knows statically what kinds of operands are; the generic
code that handles all arithmetic expressions only finds this out when it gets
executed.

Avoiding boxing and unboxing. One of the consequences of using highly pol-
ymorphic methods like Expression.evaluate () is that data has to be passed
from caller to callee, and back, in a form that satisfies a strongly typed inter-
face. For example, the result of every XPath function call has to be returned as
an instance of the class net.sf.saxon.om.Sequence. So with an XPath expres-
sion like count ($x) + 1, the chances are that the implementation of count ()
is computing an integer, which has to be wrapped as an
net.sf.saxon.om.Sequence, merely so that this can be unwrapped again in
order to add one to the value. The bytecode generator is able to avoid a lot of
this boxing and unboxing.

How much does this matter? We don't really know. We know that the costs
of allocating and garbage collecting short-lived objects are much less than
they were in Java's early days, but small costs incurred millions of times do
add up.

4. Elaboration

In this section we'll first look at requirements: what are we trying to achieve?
Then we'll explain the concept of expression elaboration; and we'll illustrate it
with an example.

56

Expression Elaboration

4.1. Why try something new?

For this project we wanted to try a new technique, called expression elaboration,
which I will go on to explain in the next section. But before doing so, I should
explain why we were motivated to experiment with new ideas.

The immediate driver was the development of a new product (SaxonCS) tar-
geted at the .NET Core platform. ! For many years, we (Saxonica) delivered a ver-
sion of Saxon for the .NET Framework platform, which was built by using the
open source IKVM tool to convert the compiled Saxon] JAR file into a .NET exe-
cutable, and adding an API layer to integrate it with other facilities of the plat-
form. In 2019, Microsoft announced that they planned to discontinue
development of .NET Framework, and concentrate future work on .NET Core.
Although the two platforms offer very similar capabilities at the API level, the
internal engineering is very different, sufficiently so that IKVM would need a
complete rewrite to make it work with .NET Core; which was unlikely to be
forthcoming since the main developer of IKVM, Jeroen Frijters, announced that
he had no enthusiasm to take the task on. As a result we needed to find a differ-
ent way of bridging Saxon from the Java platform to .NET, and we did this by
writing our own source code transpiler [XML London 2021]. With IKVM (per-
haps surprisingly) our Saxon bytecode generation logic worked seamlessly
on .NET — as soon as we generate bytecode, IKVM translates it on the fly to .NET
's equivalent. In the new transpiler-based product, this wasn't going to work.

For the Java platform, we're a little disillusioned with bytecode generation
anyway, because there's a lot of code to maintain and the benefits, as we've seen,
are quite modest. We wanted to see if there might be another way of getting the
benefits with lower maintenance cost. Because of our business model where we
offer a free open-source product alongside a commercial Enterprise Edition, it's
useful to offer features like bytecode generation that provide an easy-to-under-
stand turbo-charger to the base product. So we were reluctant to drop it entirely,
but at the same time we wanted to see if we could do better.

On the Javascript product, Saxon]S, which is developed using completely sep-
arate source code, we had seen outstanding performance benefits from a techni-
que we called expression elaboration. In fact, the benefits were so clearly
apparent to the naked eye that we never took the trouble to make detailed meas-
urements of the actual speed-up. We knew that we were unlikely to achieve the
same kind of benefit with the Java product because we were starting with some-
thing that was already much more highly tuned; but it looked as if it might give
us an alternative to bytecode generation for the SaxonCS version, and perhaps
even enable us to drop bytecode generation from Saxon].

IThe terminology has evolved. SaxonCS = Saxon on the .NET platform (primarily for C#); Saxon] =
Saxon on the Java platform; SaxonJS = Saxon on Javascript platforms (Node.js and browsers)

57

Expression Elaboration

4.2. Expression Elaboration Explained

Expression elaboration starts with exactly the same expression tree that we use
for interpretation, but it then splits the work of evaluation into two phases:

The first time any expression node on the tree is evaluated, we construct a
lambda expression, which we then leave on the tree for subsequent use. The
name "elaboration" refers to this stage of the process.

All subsequent evaluations of the expression then merely call this lambda
expression, passing the evaluation context as an argument.

That's a convenient way to explain it, but in practice when an expression is
elaborated, this usually involves elaborating its subexpressions, and so on
down to the bottom of the tree. So typically, the first time a user-written func-
tion or template is called, the body of the function is elaborated into a lambda
expression, which invokes further lambda expressions held in its closure, and
so on recursively; in the typical case the original expression tree then plays no
further part.

Lambda expressions have become ubiquitous in nearly all modern programming
languages, and the syntax and semantics are similar across Java, C#, and Java-
script.

4.3. A simple example

Let's look at one particular instruction, called "negate". This implements the
unary minus operator: it corresponds to an XPath expression such as -$x. 2 In
Saxon], the code to evaluate a negate instruction in the interpreter looks like this:

@Override
public NumericValue evaluateItem(XPathContext context) throws
XPathException {

NumericValue vl = (NumericValue)

getBaseExpression () .evaluateltem(context);
if (vl == null) {
return backwardsCompatible ? DoubleValue.NaN : null;
}
return vl.negate();

}

Some observations:

2According to the XPath grammar, -1 is a negate expression applied to a literal; but we sort that out
during static analysis, so this will always appear as a constant at run-time. Unary minus operators are
rarely used with operands other than numeric literals, but we've chosen them as our example because
they are so simple.

58

Expression Elaboration

The method evaluateItem() takes the XPathContext as a parameter. There's a
lot of information in this object, but the only thing we do is pass it on when
evaluating the single operand (accessed as getBaseExpression())

The logic essentially does four things:

¢ Evaluate the operand.

e (Cast the result to a NumericValue (we know this cast is safe, because static

type analysis will have generated a guard expression on the expression
tree to check or convert the value in cases where it is necessary).

¢ if the value of the operand is null (representing an empty sequence) return
either NaN or null depending on whether XPath 1.0 backwards compatibil-
ity is in force

e call the negate () method on the NumericValue.

Now see what happens when we elaborate this instruction:

@Override
public ItemEvaluator elaborateForItem() {
final NegateExpression exp = (NegateExpression)getExpression();

final ItemEvaluator argEval =

makeElaborator (exp.getBaseExpression()) .elaborateForItem();

final boolean maybeEmpty =
Cardinality.allowsZero (exp.getBaseExpression () .getCardinality());
final boolean backwardsCompatible = exp.isBackwardsCompatible();
if (maybeEmpty) {
if (backwardsCompatible) {
return context -> {

NumericValue vl = (NumericValue) argEval.eval (context);
return vl == null ? DoubleValue.NaN : vl.negate();
b
} else {
return context -> {
NumericValue vl = (NumericValue) argEval.eval (context);
return vl == null ? null : vl.negate();
i
}
} else {

return context -> ((NumericValue)

argEval.eval (context)) .negate();

}
}

What's going on here? Remember that the method elaborateForltem() is called the
first time a particular negate instruction is evaluated. It does the following;:

Gets the operand expression in the expression tree (getBaseExpression())

Elaborates the operand expression, returning a lambda function

59

Expression Elaboration

Examines the expression tree to see (a) whether the result of the operand may
be an empty sequence, and (b) whether evaluation is in XPath 1.0 backwards
compatibility mode

Returns one of three different lambda functions, depending on these input
conditions. The resulting function performs no run-time check for backwards
compatibility, and no check for the operand being null unless this is actually a
known possibility.

If you're not familiar with lambda expressions in Java, there are three in
this sample, all taking the form params -> (expression | "{" statements
"}"). This corresponds to the lambda calculus notation A params : expr, but
neither Java nor any other of the mainstream programming languages was
prepared to take the plunge of using Greek letters in the concrete syntax. The
syntax denotes an anonymous function that takes a context object as its argu-
ment, and returns the result of evaluating the supplied expression (or state-
ments) which typically depend both on the explicit context argument
supplied by the caller, and on variables (such as argEval) that are in scope at
the point where the lambda expression appears: the values of these variables
are carried along with the function itself and are referred to as the function's
closure.

So comparing the interpreted code with the generated lambda function, what
have we achieved?

We've eliminated the code that navigates the expression tree at run-time to
locate the operand expression. Instead, the elaborated operand expression is
present in the closure of the generated function, as variable argEval.

We don't check at run-time for null values unless they can actually occur.

The run-time logic doesn't need to consider whether backwards compatibility
is in force or not: this decision has been "baked in".

This is only saving us a few instructions; but negating a number is only one
instruction, so in relative terms, we've cut out a lot of overhead.

I'm not going to show the code for bytecode generation of this expression, but I'll
show what the generated bytecode looks like (with added comments for explana-
tion). This bytecode is produced when compiling the XQuery function declare
function f:negate($x as xs:double) as xs:double {-$x};

// load the first argument (the XPathContext)

ALOAD 1

// Get the stack frame holding local variables

INVOKEINTERFACE net/sf/saxon/expr/XPathContext.getStackFrame ();
INVOKEVIRTUAL net/sf/saxon/expr/StackFrame.getStackFrameValues ();
// Load the value of the variable at slot 0 on the stack frame
ICONST 0

60

Expression Elaboration

AALOAD

// The value is in general a Sequence; call head() to get its first
and only item

INVOKEINTERFACE net/sf/saxon/om/Sequence.head ();

// Cast this to type NumericValue

CHECKCAST net/sf/saxon/value/NumericValue

// Invoke NumericValue.negate ()

INVOKEVIRTUAL net/sf/saxon/value/NumericValue.negate ();

// Wrap the result in a SingletonIterator

INVOKESTATIC net/sf/saxon/tree/iter/Singletonlterator.makelterator
(Lnet/sf/saxon/om/Item;) ;

// Return the iterator as the result of the XQuery function

ARETURN

The only really signficant difference from the elaboration case is that bytecode for
the operand expression is generated inline, rather than being invoked separately.

All three approaches (interpreter, compiler, elaborator) end up calling the
library routine NumericValue.negate () to do the real work. This is a polymor-
phic method with different implementations for integers, decimals, double, and
floats. In all three cases the JVM hotspot optimizer has the opportunity to opti-
mize the call by inlining, but it's only likely to do so in practice if one of these
types occurs much more frequently than the others.

It's possible that as a result of Saxon's static analysis the elaborator already
knows what the type of the numeric value will be. With bytecode generation, we
can easily pass this information to the Java compiler by casting to the relevant
type instead of to the generic type NumericValue (though in fact, we fail to take
advantage of this opportunity). With the interpreter, this isn't possible, because a
single method is handling all Negate expressions in the query or stylesheet, and
they will typically be handling different types of operand. For the elaborated
case, we could do it in principle, by generating different lambda functions for the
four cases, plus one for the case where the type is statically unknown. However,
the complexity multiplies exponentially -- instead of generating one of three pos-
sible lambda functions, we would be generating one of 15, and it would need
strong justification to attempt this.

4.4. Push mode, Pull mode

In the example above, the interpreter used a method evaluateItem() to evaluate
the negate expression (and its operand). We use that method where the expres-
sion result will always be a singleton item (or perhaps an empty sequence). Other
methods are used where an expression can return an arbitrary sequence. Elabora-
tion, similarly, can generate code that uses different modes of evaluation.

At the top level, we have two ways of evaluating an expression: pull mode
and push mode.

61

Expression Elaboration

¢ In pull mode, the iterate method returns the result of the expression (which
in the general case is a sequence) as an iterator over the items in the sequence.
This means we are doing lazy evaluation, which is an important technique in
all functional languages — it means that in many cases, evaluation of an
expression can finish before the operands are fully evaluated, because enough
information is available to establish the result.
The evaluateItem() method seen in the example above is a short-cut
method provided for convenience when an expression always returns a sin-
gleton result.

¢ In push mode, the results of the expression are not returned to the caller, but
are written to a result stream, which will often be the final serialized result of
a transformation. The advantage of push mode is that there is no need to hold
the entire result document in memory, it can be written out "on the fly".

Both modes are supported by elaboration: for any given expression on the tree,
we can generate either a pull function, or a push function, or both.

For pull mode, the function that we generate takes a single argument, the
object holding the dynamic context, and it returns an iterator over the expression
results. For push mode, we generate a function that takes two arguments, the
dynamic context object and the destination to be written to; the function returns
no result, but instead has a side-effect of writing to the destination.

Most instructions only support one mode of execution directly: for example
an element constructor supports push mode, while an arithmetic expression or
path expression supports pull mode. If the opposite mode is needed, it can be
easily achieved using a wrapping function that converts the results. But some
instructions - notably "flow of control” instructions such as conditional expres-
sions, iteration instructions (xsl:for-each in XSLT, for expressions in XPath/
XQuery), and function calls, support both modes natively.

5. Results

So, what benefits are we seeing from expression elaboration?

The results given here are provisional, for two reasons: firstly, implementation
is incomplete (we've only implemented elaboration in Saxon] for a selection of
commonly used expressions), and secondly, measuring the effect is not easy.

At this point I need to acknowledge the contribution of Chris Newland, who
has been working with us to improve our ability to benchmark the Saxon soft-
ware and assess the impact of changes. Benchmarking Java applications is a very
skilled task, and it's very easy to come to incorrect conclusions if you cut corners.
Getting repeatable results (where today's figures come out the same as yester-
day's) is challenging: don't try it on your laptop, where temperature variations or
a low battery can cause the CPU speed to be throttled. Getting good reliable data
needs a controlled stable machine configuration, and benchmark runs that take

62

Expression Elaboration

hours rather than minutes. And even where the results are consistent, that's no
guarantee that you will draw the right conclusions from the data.

We've been putting a lot of work into measurement on the Java platform, but I
mentioned that part of the motivation was to see what we could achieve on .NET,
where bytecode generation isn't an option. Our benchmarking activities on .NET
have been far less thorough, but the early indications are very positive: for exam-
ple the XMark query Q11 came down from 1192ms with the interpreter to 858ms
with elaboration — a 28% improvement, better than we get with bytecode genera-
tion on the Java product. Both figures have an error margin of around +5%. Other
queries also showed a benefit, though not usually as great as this: 10% is more
typical. With improvements of this order, we can probably declare victory and
dispense with the effort of doing more accurate measurement.

On Java, so far, we're seeing much smaller improvements. For XMark Q11, for
example, elaboration brings the timing down from 107ms to 104ms. Other queries
show similar results: the improvement, if it exists, is hardly measurable, and is
certainly a lot less than we get with bytecode generation. Needless to say, this is
disappointing.

Of course, there is a beneficial side-effect: when you put this much effort into
instrumentation, you discover all sorts of opportunities for performance improve-
ments that you weren't actually looking for, and following up on some of these
opportunities has probably distracted us from the task we set out to accomplish.
But they're out of scope for this paper.

We're still exploring why the benefit on Java is so small, and whether there's
anything we can do to improve matters. We've found that some of the switches
that Java provides to control the behaviour of the hot-spot compiler can make a
significant difference, but in the real world that's not very useful knowledge since
very few Saxon users in the field are likely to take advantage of it. And many of
the Saxon users who do care deeply about performance probably have applica-
tions in which Saxon is just one of many components. But observing how these
switches affect the results does give us clues about how the lambda functions
we're generating are treated by the hot-spot optimizer.

Perhaps the key finding (though a provisional one that we need to confirm) is
that the hot-spot optimizer is taking no notice of the values in the closure of a
lambda expression: just because a boolean variable in the closure is false, doesn't
mean that the hot-spot compiler is eliminating a run-time code branch that
depends on that value. That's because it's not optimizing for a particular expres-
sion in the query or stylesheet (say, a particular filter predicate), rather it's opti-
mising for a statistical average of all filter predicates in the stylesheet. The net
result is that with both elaboration and interpretation, the ability of the hot-spot
optimizer to work its magic is inhibited by the fact that the calls we are making to
evaluate subexpressions are so heavily polymorphic.

63

Expression Elaboration

It seems fairly clear that there's some significant difference in the way the Java
and C# optimizers handle lambda expressions that cause the technique to show
greater benefits in C# than on Java. But so far, we haven't been able to pin down
exactly what it is.

64

