
Transforming JSON using XSLT .
Michael Kay

Saxonica
<mike@saxonica.com>

Abstract

The XSLT . and XPath . speciications, now at Candidate Recommen-
dation status, introduces capabilities for importing and exporting JSON da-
ta, either by converting it to XML, or by representing it natively using new
data structures: maps and arrays. The purpose of this paper is to explore the
usability of these facilities for tackling some practical transformation tasks.

Two representative transformation tasks are considered, and solutions
for each are provided either by converting the JSON data to XML and
transforming that in the traditional way, or by transforming the native rep-
resentation of JSON as maps and arrays.

The exercise demonstrates that the absence of parent or ancestor axes in
the native representation of JSON means that the transformation task needs
to be approached in a very diferent way.

. Introduction
JSON [] has become a signiicant alternative to XML as a syntax for data inter-
change. The usually-cited reasons include
• JSON is simpler the grammar is smaller. The extra complexity of XML might

be justiied for some applications, but there are many others for which it adds
costs without adding beneits.

• JSON is a beter it to the data models of popular programming languages like
Javascript, and this means that manipulating JSON in such languages is easier
than manipulating XML.

• JSON is beter supported for web applications for example, for reasons that
are hard to justify, JSON is not subject to the same security restrictions as XML
for cross-site scripting .

However, some of the transformation tasks for which XSLT is routinely used for
example, hierarchic inversion are diicult to achieve in general-purpose lan-
guages like JavaScript.

I include here only the reasons that I consider to be credible. Many comments on the topic also claim
that XML is more verbose or that its performance is worse, but this appears to be folklore rather than
fact.

XSLT . [] together with XPath . [] provides capabilities for handling
JSON data. These capabilities include

Two new functions json-to-xml() and xml-to-json() to convert between
JSON and XML. These perform lossless conversion. The json-to-xml() function
delivers XML using a custom XML vocabulary designed for the purpose, and the
xml-to-json() function requires the input XML to use this vocabulary, though
this can of course be generated by transforming XML in a diferent vocabulary.

Two new data types are introduced maps and arrays. These correspond to the
"objects" and "arrays" of the JSON model. In fact they are generalizations of JSON
objects and arrays for example, the keys in map can be numbers or dates, where-
as JSON only allows strings, and the corresponding values can be any data type
for example, a sequence of XML nodes , whereas JSON only allows objects, ar-

rays, strings, numbers, or booleans.
“ new function parse-json() is provided to convert from lexical JSON to the

corresponding structure of maps and arrays. There is also a convenience func-
tion json-doc() which does the same thing, but taking the input from a ile rath-
er than from a string.

“ new JSON serialization method is provided, allowing a structure of maps
and arrays to be serialized as lexical JSON, for example by selecting suitable op-
tions on the serialize() function.

While XSLT . ofers all these capabilities , it does not have any new features
that are speciically designed to enable JSON transformations that is, conver-
sion of one JSON structure to another. This paper addresses the question can
such transformations be writen in XSLT . , and if so, what is the best way of ex-
pressing them?

Note that I'm not trying to suggest in this paper that XSLT should become the
language of choice for transforming any kind of data whether or not there is any
relationship to XML. ”ut the web is a heterogeneous place, and any technology
that fails to handle a diversity of data formats is by deinition conined to a niche.
XSLT . added signiicant capabilities to transform text using regular expres-
sions the EXPath initiative has added function libraries to process binary da-
ta[] and the support for JSON in XSLT . continues this trend. XSLT will al-
ways be primarily a language for transforming XML, but to do this job well it
needs to be capable of doing other things as well.

. Two Transformation Use Cases
We'll look at two use cases to study this question, in the hope that these are repre-
sentative of a wider range of transformation tasks.

The irst is a simple "bulk update" given a JSON representation of a product
catalogue, apply a price change to a selected subset of the products.

Some of these features are optional, so not every XSLT . processor will provide them.

Transforming JSON using XSLT .

The second is a more complex structural transformation a hierarchic inver-
sion. We'll start with a dataset that shows a set of courses and lists the students
taking each course, and transform this into a dataset showing a set of students
with the courses that each student takes.

For each of these problems, we'll look irst at how it can be tackled by convert-
ing the data to XML, transforming the XML, and then converting back to JSON.
Then we'll examine whether the problem can be solved entirely within the JSON
space, without conversion to XML that is, by manipulating the native representa-
tion of the JSON data as maps and arrays. We'll ind that this isn't so easy, but that
the diiculties can be overcome.

. Use Case : Bulk Update
Rather than invent our own example, we'll take this one from json-schema.org

[
 {
 "id": 2,
 "name": "An ice sculpture",
 "price": 12.50,
 "tags": ["cold", "ice"],
 "dimensions": {
 "length": 7.0,
 "width": 12.0,
 "height": 9.5
 },
 "warehouseLocation": {
 "latitude": -78.75,
 "longitude": 20.4
 }
 },
 {
 "id": 3,
 "name": "A blue mouse",
 "price": 25.50,
 "dimensions": {
 "length": 3.1,
 "width": 1.0,
 "height": 1.0
 },
 "warehouseLocation": {
 "latitude": 54.4,
 "longitude": -32.7
 }
 }
]

Transforming JSON using XSLT .

The transformation we will tackle is for all products having the tag "ice", increase
the price by %, leaving all other data unchanged.

First we'll do this by converting the JSON to XML, then transforming the XML
in the traditional XSLT way, and then converting back. If we convert the above
JSON to XML using the json-to-xml() function in XSLT . , the result indented
for readability looks like this

[
<?xml version="1.0" encoding="UTF-8"?>
<array xmlns="http://www.w3.org/2005/xpath-functions">
 <map>
 <number key="id">2</number>
 <string key="name">An ice sculpture</string>
 <number key="price">12.50</number>
 <array key="tags">
 <string>cold</string>
 <string>ice</string>
 </array>
 <map key="dimensions">
 <number key="length">7.0</number>
 <number key="width">12.0</number>
 <number key="height">9.5</number>
 </map>
 <map key="warehouseLocation">
 <number key="latitude">-78.75</number>
 <number key="longitude">20.4</number>
 </map>
 </map>
 <map>
 <number key="id">3</number>
 <string key="name">A blue mouse</string>
 <number key="price">25.50</number>
 <map key="dimensions">
 <number key="length">3.1</number>
 <number key="width">1.0</number>
 <number key="height">1.0</number>
 </map>
 <map key="warehouseLocation">
 <number key="latitude">54.4</number>
 <number key="longitude">-32.7</number>
 </map>
 </map>
</array>

“nd we can now achieve the transformation by converting the JSON to XML,
transforming it, and then converting back

Transforming JSON using XSLT .

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version="3.0"
 xpath-default-namespace="http://www.w3.org/2005/xpath-functions">

 <xsl:mode on-no-match="shallow-copy"/>

 <xsl:param name="input"/>

 <xsl:output method="text"/>

 <xsl:template name="xsl:initial-template">
 <xsl:variable name="input-as-xml" select="json-to-xml(unparsed-
text($input))"/>
 <xsl:variable name="transformed-xml" as="document-node()">
 <xsl:apply-templates select="$input-as-xml"/>
 </xsl:variable>
 <xsl:value-of select="xml-to-json($transformed-xml)"/>
 </xsl:template>

 <xsl:template match="map[array[@key='tags']/string='ice']/►
number[@key='price']/text()">
 <xsl:value-of select="xs:decimal(.)*1.1"/>
 </xsl:template>

</xsl:stylesheet>

Sure enough, when we apply the transformation, we get the required output in-
dented for clarity

[
 {
 "id": 2,
 "name": "An ice sculpture",
 "price": 13.75,
 "tags": [
 "cold",
 "ice"
],
 "dimensions": {
 "length": 7,
 "width": 12,
 "height": 9.5
 },
 "warehouseLocation": {
 "latitude": -78.75,

Transforming JSON using XSLT .

 "longitude": 20.4
 }
 },
 {
 "id": 3,
 "name": "A blue mouse",
 "price": 25.5,
 "dimensions": {
 "length": 3.1,
 "width": 1,
 "height": 1
 },
 "warehouseLocation": {
 "latitude": 54.4,
 "longitude": -32.7
 }
 }
]

Now, the question arises, how would we do this transformation without convert-
ing the data to XML and back again?

Here we immediately see a diiculty. We can't use the same approach because
in the map/array representation of JSON, there is no parent axis. In the XML-
based transformation above, the semantics of the patern
map[array[@key='tags']/ string='ice']/ number[@key='price']/ text() de-
pend on matching a text node according to properties of its parent a <number>
element and grandparent a <map> element . In the map/array model, we can't
match a string by its context in the same way, because a string does not have a
parent or grandparent.

However, all is not lost. With a litle help from a general-purpose helper style-
sheet, we can write the transformation like this

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:jlib="http://►
saxonica.com/ns/jsonlib"
 xmlns:map="http://www.w3.org/2005/xpath-functions/map"
 xmlns:array="http://www.w3.org/2005/xpath-functions/array" ►
version="3.0">

 <xsl:param name="input"/>

 <xsl:output method="json"/>

 <xsl:import href="maps-and-arrays.xsl"/>

 <xsl:mode on-no-match="deep-copy"/>

Transforming JSON using XSLT .

 <xsl:template name="xsl:initial-template">
 <xsl:apply-templates select="json-doc($input)"/>
 </xsl:template>

 <xsl:template match=".[. instance of map(*)][?tags = 'ice']">
 <xsl:map>
 <xsl:sequence select="map:for-each(.,
 function($k, $v){ map{$k : if ($k = 'price') then $v*1.1 ►
else $v }})"/>
 </xsl:map>
 </xsl:template>
</xsl:stylesheet>

This relies on the helper stylesheet, maps-and-arrays.xsl, containing default
processing for maps and arrays that performs the equivalent of the traditional
"identity template" called shallow-copy processing in XSLT . speciically, pro-
cessing an array that isn't matched by a more speciic template rule should create
a new array whose contents are the result of applying templates to the members
of the array while processing a map should similarly create a new map whose
entries are the result of applying templates to the entries in the existing map. Un-
fortunately the shallow-copy mode in XSLT . doesn't work this way it has the
efect of deep-copying maps and arrays.

For maps, we can write a shallow-copy template like this it's not actually nee-
ded for this use case

<xsl:template match=".[. instance of map(*)]" mode="#all">
 <xsl:choose>
 <xsl:when test="map:size(.) le 1">
 <xsl:sequence select="."/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:map>
 <xsl:variable name="entries" as="map(*)*"
 select="map:for-each(., function($k : $v) { map:entry($k, ►
$v) })"/>
 <xsl:apply-templates select="$entries" mode="#current"/>
 </xsl:map>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

This divides maps into two categories. “pplying templates to a map with less
than two entries returns the map unchanged. “pplying templates to a larger map
splits the map into a number of singleton maps, one for each entry, and applies

Transforming JSON using XSLT .

templates recursively to each of these singleton maps. In the absence of overrid-
ing template rules for any of these entries, the entire map is deep-copied.

To make it easier to write a template rule that matches a singleton map with a
given key, we can deine a library function

<xsl:function name="jlib:is-map-entry" as="xs:boolean">
 <xsl:param name="map" as="item()"/>
 <xsl:param name="key" as="xs:anyAtomicType"/>
 <xsl:sequence select=". instance of map(*) and map:size(*) eq 1 and ►
map:contains($key)"/>
</xsl:function>

“n overriding template rule can then be writen like this
<xsl:template match=".[jlib:is-map-entry(., 'price')]">...</xsl:template>

Writing a shallow-copy template rule for arrays is a litle bit trickier because of
the absence of XSLT . instructions for creating arrays we hit the problem of
composability, where XPath constructs such as array{} cannot directly invoke
XSLT instructions like <xsl:apply-templates/ > and we also hit the problem
that the only way of iterating over a general array one whose members can be
arbitrary sequences is to use the higher-order function array:for-each().

One way to write it might be like this
 <xsl:template match=".[. instance of array(*)]">
 <xsl:sequence select="array:for-each(., jlib:apply-templates#1)"/>
 </xsl:template>

 <xsl:function name="jlib:apply-templates">
 <xsl:param name="input"/>
 <xsl:apply-templates select="$input"/>
 </xsl:function>

”ut this has the disadvantage that tunnel parameters are not passed through a
stylesheet function call in addition, the current template rule and current mode
are lost. We can get around these problems using this more complicated formula-
tion, which uses head-tail recursion

<xsl:template match=".[. instance of array(*)]" mode="#all">
 <xsl:choose>
 <xsl:when test="array:size(.) = 0">
 <xsl:sequence select="[]"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:variable name="head" as="item()*">
 <xsl:apply-templates select="array:head(.)" mode="#current"/>
 </xsl:variable>
 <xsl:variable name="tail" as="array(*)">
 <xsl:apply-templates select="array:tail(.)" mode="#current"/>

Transforming JSON using XSLT .

 </xsl:variable>
 <xsl:sequence select="array:join((array{$head}, $tail))"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

The complexity here doesn't really mater greatly, because the code only needs to
be writen once.

Returning to our speciic use case, of updating prices in a product catalog, the
main limitation of our solution is that all the update logic is contained in a single
template rule, which works for this case but might not work for more complex
cases. The match patern for the template rule matches a map that needs to be
changed, and this matching can only consider the content of the map, not the con-
text in which it appears. Moreover, the template body does all the work of creat-
ing a replacement map monolithically without further calls on <xsl:apply-
templates> it would be possible to make such calls, but the syntax doesn't make
it easy.

. Use Case : Hierarchic Inversion
In our second case, we'll look at a structural transformation changing a JSON
structure with information about the students enrolled for each course to its in-
verse, a structure with information about the courses for which each student is
enrolled.

Here is the input dataset
[{
 "faculty": "humanities",
 "courses": [
 {
 "course": "English",
 "students": [
 {
 "first": "Mary",
 "last": "Smith",
 "email": "mary_smith@gmail.com"
 },
 {
 "first": "Ann",
 "last": "Jones",
 "email": "ann_jones@gmail.com"
 }
]
 },
 {
 "course": "History",

Transforming JSON using XSLT .

 "students": [
 {
 "first": "Ann",
 "last": "Jones",
 "email": "ann_jones@gmail.com"
 },
 {
 "first": "John",
 "last": "Taylor",
 "email": "john_taylor@gmail.com"
 }
]
 }
]
},
{
 "faculty": "science",
 "courses": [
 {
 "course": "Physics",
 "students": [
 {
 "first": "Anil",
 "last": "Singh",
 "email": "anil_singh@gmail.com"
 },
 {
 "first": "Amisha",
 "last": "Patel",
 "email": "amisha_patel@gmail.com"
 }
]
 },
 {
 "course": "Chemistry",
 "students": [
 {
 "first": "John",
 "last": "Taylor",
 "email": "john_taylor@gmail.com"
 },
 {
 "first": "Anil",
 "last": "Singh",
 "email": "anil_singh@gmail.com"
 }

Transforming JSON using XSLT .

]
 }
]
}]

The goal is to produce a list of students, sorted by last name then irst name, each
containing a list of courses taken by that student, like this

[
 {
 "email": "ann_jones@gmail.com",
 "courses": [
 "English",
 "History"
]
 },
 {
 "email": "amisha_patel@gmail.com",
 "courses": ["Physics"]
 },
 {
 "email": "anil_singh@gmail.com",
 "courses": [
 "Physics",
 "Chemistry"
]
 },
 {
 "email": "mary_smith@gmail.com",
 "courses": ["English"]
 },
 {
 "email": "john_taylor@gmail.com",
 "courses": [
 "History",
 "Chemistry"
]
 }
]

“s before, a stylesheet can be writen that does this by converting JSON to XML,
transforming the XML, and then converting back. The XML representation of our
input dataset looks like this

<?xml version="1.0" encoding="UTF-8"?>
<array xmlns="http://www.w3.org/2005/xpath-functions">
 <map>
 <string key="faculty">humanities</string>

Transforming JSON using XSLT .

 <array key="courses">
 <map>
 <string key="course">English</string>
 <array key="students">
 <map>
 <string key="first">Mary</string>
 <string key="last">Smith</string>
 <string key="email">mary_smith@gmail.com</string>
 </map>
 <map>
 <string key="first">Ann</string>
 <string key="last">Jones</string>
 <string key="email">ann_jones@gmail.com</string>
 </map>
 </array>
 </map>
 <map>
 <string key="course">History</string>
 <array key="students">
 <map>
 <string key="first">Ann</string>
 <string key="last">Jones</string>
 <string key="email">ann_jones@gmail.com</string>
 </map>
 <map>
 <string key="first">John</string>
 <string key="last">Taylor</string>
 <string key="email">john_taylor@gmail.com</string>
 </map>
 </array>
 </map>
 </array>
 </map>
 <map>
 <string key="faculty">science</string>
 <array key="courses">
 <map>
 <string key="course">Physics</string>
 <array key="students">
 <map>
 <string key="first">Anil</string>
 <string key="last">Singh</string>
 <string key="email">anil_singh@gmail.com</string>
 </map>
 <map>
 <string key="first">Amisha</string>

Transforming JSON using XSLT .

 <string key="last">Patel</string>
 <string key="email">amisha_patel@gmail.com</string>
 </map>
 </array>
 </map>
 <map>
 <string key="course">Chemistry</string>
 <array key="students">
 <map>
 <string key="first">John</string>
 <string key="last">Taylor</string>
 <string key="email">john_taylor@gmail.com</string>
 </map>
 <map>
 <string key="first">John</string>
 <string key="last">Taylor</string>
 <string key="email">john_taylor@gmail.com</string>
 </map>
 </array>
 </map>
 </array>
 </map>
</array>

Here is the stylesheet

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version="3.0"
 xmlns="http://www.w3.org/2005/xpath-functions"
 xpath-default-namespace="http://www.w3.org/2005/xpath-functions"
 expand-text="yes">

 <xsl:param name="input"/>

 <xsl:output method="text"/>

 <xsl:template name="xsl:initial-template">
 <xsl:variable name="input-as-xml" select="json-to-xml(unparsed-
text($input))"/>
 <xsl:variable name="transformed-xml" as="element(array)">
 <array>
 <xsl:for-each-group select="$input-as-xml//string[@key='email']" ►
group-by=".">
 <xsl:sort select="../string[@key='last']"/>
 <xsl:sort select="../string[@key='first']"/>
 <map>

Transforming JSON using XSLT .

 <string key="email">{current-grouping-key()}</string>
 <array key="courses">
 <xsl:for-each select="current-group()">
 <string>{../../../*[@key='course']}</string>
 </xsl:for-each>
 </array>
 </map>
 </xsl:for-each-group>
 </array>
 </xsl:variable>
 <xsl:value-of select="xml-to-json($transformed-xml)"/>
 </xsl:template>

</xsl:stylesheet>

Is it possible to write this as a transformation on the maps-and-arrays representa-
tion of JSON, without converting irst to XML? The challenge is again that we
can't use the parent axis to ind the course associated with each student. Instead,
the approach we will use is to laten the data into a simple sequence of tuples
containing the values that we need last name, irst name, email, and course , and
then use XSLT grouping on this sequence of tuples. We'll represent the intermedi-
ate form as a sequence of maps.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version="3.0"
 xmlns="http://www.w3.org/2005/xpath-functions"
 xpath-default-namespace="http://www.w3.org/2005/xpath-functions"
 expand-text="yes">

 <xsl:param name="input"/>

 <xsl:output method="json"/>

 <xsl:template name="xsl:initial-template">
 <xsl:variable name="input-as-array" select="json-doc($input)" ►
as="array(*)"/>
 <xsl:variable name="flattened" as="map(*)*">
 <xsl:for-each select="$input-as-array?*?courses?*">
 <xsl:variable name="course" select="?course"/>
 <xsl:for-each select="?students?*">
 <xsl:map>
 <xsl:map-entry key="'course'" select="$course"/>
 <xsl:map-entry key="'last'" select="?last"/>
 <xsl:map-entry key="'first'" select="?first"/>
 <xsl:map-entry key="'email'" select="?email"/>
 </xsl:map>

Transforming JSON using XSLT .

 </xsl:for-each>
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="groups" as="map(*)*">
 <xsl:for-each-group select="$flattened" group-by="?email">
 <xsl:sort select="?last"/>
 <xsl:sort select="?first"/>
 <xsl:map>
 <xsl:map-entry key="'email'" select="current-grouping-key()"/>
 <xsl:map-entry key="'courses'" select="array{ current-group()?
course }"/>
 </xsl:map>
 </xsl:for-each-group>
 </xsl:variable>
 <xsl:sequence select="array{$groups}"/>
 </xsl:template>

</xsl:stylesheet>

Interestingly, this technique of latening the data into a sequence of maps turn-
ing it into irst normal form and then rebuilding a hierarchy using XSLT group-
ing is probably a very general one it could equally have been used for our irst
use case.

. On the Question of Parent Pointers
I'm not sure if it was ever a conscious decision that XML structures should be
navigable in all directions in particular, in the parent/ancestor direction , while
JSON structures should only be navigable downwards. It's not only the XDM
model used by XSLT and XPath that makes this choice the same divergence of
approach applies equally when processing XML or JSON in Javascript. ”oth XML
and JSON are speciied primarily in terms of the lexical grammar rather than the
tree data model, and it's not obvious from looking at the two grammars why this
diference in the tree models should arise.

The ability to navigate upwards and to a lesser extent, sideways, to preceding
and following siblings clearly has advantages and disadvantages. Without up-
wards navigation, a transformation process that operates primarily as a recursive
tree walk cannot discover the context of leaf nodes for example, when processing
a price, what product does it relate to? , so this information needs to be passed
down in the form of parameters. However, the convenience of being able to deter-
mine the context of a node comes at a signiicant price. Most notably, the exis-
tence of owner pointers means that a subtree cannot be shared it is diicult to
implement the xsl:copy-of instruction without making a physical copy of the
afected subtree. This means that each phase of a transformation typically incurs
cost proportional to document size. It is diicult to implement iterative transfor-

Transforming JSON using XSLT .

mations, consisting of small incremental changes to localized parts of the tree.
This diiculty was reported a while ago [] in a project that atempted to use the
XSLT rules engine to perform optimization on the XSLT abstract syntax tree the
high performance cost of making small changes to the tree made this infeasible in
practice.

The ability to navigate freely in the tree also seems to imply a need to main-
tain a concept of node identity whereby two nodes that are independently cre-
ated difer in identity even if they are otherwise indistinguishable . Node identity
also comes at a considerable price, in particular by imbuing the language seman-
tics with subtle side-efects calling the same function twice with the same argu-
ments does not produce the same result.

The model that has been adopted for JSON, with no node identity and no pa-
rent navigation, makes certain kinds of transformation more diicult to express,
but it may also make other kinds of transformation especially the kind alluded
to, involving many incremental and localized changes to the tree structure much
more feasible.

. Conclusions
From these two use cases, we seem to be able to draw the following tentative con-
clusions

• Transformation of JSON structures is possible in XSLT . either by irst con-
verting to XML trees, then transforming the XML trees in the traditional way,
then transforming back to JSON or by directly manipulating the maps-and-
arrays representation of JSON in the XDM . data model.

• When transforming the maps-and-arrays representation, the use of traditional
rule-based recursive-descent patern matching is inhibited by the fact that no
parent or ancestor axis is available. This problem can be circumvented by irst
latening the data – moving data from upper nodes in the hierarchy so that it
is held redundantly in leaf nodes.

• The absence of built-in shallow-copy templates for maps and arrays is an irri-
tation, but is not a real problem because these only need to be writen once
and can be imported from a standard stylesheet module.

• The lack of an instruction, analogous to <xsl:map>, for constructing arrays at
the XSLT level is a further inconvenience it means that data constructed at the
XSLT level has to be captured in a variable so that the XPath array construc-
tors can be used to create the array.

• Similarly, it would be useful to be able to invoke <xsl:apply-templates> as a
function, to allow its use within the function supplied to map:for-each() or
array:for-each() – preferably without losing tunnel parameters.

Transforming JSON using XSLT .

References
[] ”inary Module . EXPath Module, December . htp //expath.org/spec/

binary
[] Introducing JSON htp //json.org
[] Writing an XSLT Optimizer in XSLT Proc. Extreme Markup Languages,

Montreal, . “vailable at htp //conferences.idealliance.org/extreme/html/
/Kay /EML Kay .html and with improved rendition at htp //

www.saxonica.com/papers/Extreme /EML Kay .html
[] XSL Transformations XSLT Version . . W C Candidate Recommendation,

 November . Ed. Michael Kay. htp //www.w .org/TR/xslt-
[] XML Path Language XPath . . W C Candidate Recommendation,

December . Ed. Jonathan Robie, Michael Dyck, and Josh Spiegel. htp //
www.w .org/TR/xpath-

Transforming JSON using XSLT .

http://expath.org/spec/binary
http://expath.org/spec/binary
http://json.org
http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html
http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html
http://www.saxonica.com/papers/Extreme2007/EML2007Kay01.html
http://www.saxonica.com/papers/Extreme2007/EML2007Kay01.html
http://www.w3.org/TR/xslt-30
http://www.w3.org/TR/xpath-31
http://www.w3.org/TR/xpath-31

	Transforming JSON using XSLT 3.0
	1. Introduction
	2. Two Transformation Use Cases
	3. Use Case 1: Bulk Update
	4. Use Case 2: Hierarchic Inversion
	5. On the Question of Parent Pointers
	6. Conclusions
	References

