
XML Prague ŘŖŗŚ
Conference Proceedings

University of Economics, Prague
Prague, Czech Republic

February ŗŚȮŗŜ, ŘŖŗŚ

XML Prague ŘŖŗŚ – Conference Proceedings
Copyright © ŘŖŗŚ Jiří Kosek

IS”N şŝŞ-ŞŖ-ŘŜŖ-śŝŗŘ-ř

Streaming in the Saxon XSLT Processor
Michael Kay
Saxonica

<mike@saxonica.com>

“bstract

Streaming is a major new feature of the XSLT ř.Ŗ speciication, currently a
Last Call Working Draft. This paper discusses streaming as deined in the
WřC speciication, and as implemented in Saxon.ŗStreaming refers to the
ability to transform a document that is too big to it in memory, which depends
on transformation itself being in some sense linear, so that pieces of the output
appear in the same order as the pieces of the input on which they depend. This
constraint is relected in the WřC speciication by a set of streamability rules
that determine statically whether a stylesheet is streamable or not.

This paper gives a tutorial introduction to the streamability rules and they
way they are implemented in Saxon. It then does on to describe the implement-
ation architecture for implementing streaming in the Saxon run-time, by
means of push pipelines, and gives rationale for this choice of architecture.

ŗ. Introduction
Even seasoned readers of WřC speciications may ind it bewildering to read, in
the Last Call draft of XSLT ř.Ŗ[ŝ], that ȃif exactly one operand O of a construct C is
potentially consuming, and if the operand usage of O is absorption or inspection,
then the posture of C is grounded and the sweep of C is consumingȄ. Welcome to
the language of streamability. This talk has two purposesǱ irstly to give an introduc-
tion to these concepts, and secondly to explain how they relate to the challenge of
actually building a streaming implementation of XSLT.

Streaming is one of the main planks of XSLT ř.Ŗ ǻthe other is stylesheet modu-
larityǼ. Streaming is rather informally deined in the speciication as ȃa manner of
processing in which documents are not represented by a complete tree of nodes [in
memory], but rather... as a sequence of eventsȄ. The deinition is deliberately fuzzy,
to give maximum scope for implementors to innovate around it. Despite this, the
speciication gives a very precise deinition of a subset of the language that is deemed
to be ȃguaranteed streamableȄ, which means that every processor that claims to

ŗReferences to Saxon in this paper refer to the current development snapshot, that is, to the state of the
code base some time after the release of version ş.ś and some time before version ş.Ŝ. There may therefore
be no public release of Saxon that corresponds in every respect to the description herein.

Şŗ

implement streaming at all must be capable of streaming this subset ǻwhich in turn
means that when this subset is used, the processor is expected to be capable of
handling indeinitely large source documents.Ǽ

Inevitably, in formulating the rules that deine this subset, the working group
had in mind ideas as to how streaming might be implemented in real processors,
and the kind of constraints they might be operating under. Some of the constraints
can be formalized, at least in principleǱ for example, to be streamable, there must
be some kind of ordered correspondence between the events representing the source
tree and the events representing the result tree. ”ut the WG has not attempted to
articulate the constraints in these termsǲ rather it has used intuitive reasoning to
recognize that some functions and operators ǻsuch as min(), max(), and sum()Ǽ can
be evaluated in a forwards pass through the document, and others ǻsuch as sorting,
or reverse()Ǽ can not.

The general streamability rules that emerge are derived essentially from a process
of abstracting these observations into a set of general rules. How do max() and
count() difer, for example? The answer is that count() has no problems handling
an input sequence that contains overlapping nodes, whereas max() cannot handle
overlapping nodes without bufering. The streamability of a function like count()
or max() thus depends on two factorsǱ the nature of the supplied argument ǻdoes it
contain streamed nodes, and if so, can they overlap?Ǽ and the way in which the
function uses the items supplied as the argument. The irst property is called "pos-
ture", the second ǻmore intuitivelyǼ is called "usage". When the posture is striding,
overlapping streamed nodes are allowed, when it is crawling, they are not. From
this we get rules that say, for example, that ǻfor an expression to be streamableǼ, if
the operand usage is inspection then the posture can be striding or crawling, but if
the operand usage is absorption then the posture must be striding.

Streaming in Saxon[Ŝ] divides into two parts. The irst part is static analysis to
determine whether a construct is streamable and to devise the streamed execution
plan. This follows the WřC analysis very closely, though Saxon implements some
extensions, for example where it is able to take advantage of optimizations such as
function and variable inlining. The second part is the actual streamed evaluation
at run-time. Streamed execution is in principle possible using either a pull or push
approach. The merits of the two approaches were described in [ś]. To summarise
the conclusions of that paper, the main advantages of a pull approach are ǻaǼ the
ability to merge two streamed inputs ǻfor constructs such as deep-equal(), the
union operator, or the new <xsl:merge> instructionǼ, and ǻbǼ easier coding, because
most of the state of the processing can be kept on the programming language stack.
”y contrast, the advantage of push processing is that input events can be directed
to more than one destination, which is essential for constructs such as <xsl:fork>.
Saxon's streaming implementation is based largely on push processing, because
although the implementation is more work, the architecture is more lexible. The

ŞŘ

Streaming in the Saxon XSLT Processor

fact that signiicant components of Saxon have always used push processing ǻfor
example, the schema validator and the serializerǼ is another contributory factor.

The push pipelines used for streamed evaluation in Saxon are interesting because
they include a mix of ine-grained events ǻstartElement, endElementǼ, and complete
items ǻincluding complete treesǼ. The paper will include some examples of how a
few simple streamable expressions translate into such hybrid-granularity pipelines,
and how the structure of these pipelines relates to the classiications established by
the WřC streamability model.

Ř. Streamability
The static analysis performed by Saxon is modelled very closely on the rules in the
WřC speciication. The main concern in these rules is to show that
• the body of an <xsl:stream> instruction, and
• the body of an <xsl:template> whose mode is declared with streamable="yes"
are in fact streamable.

Ř.ŗ. The WřC Streamability Rules
The rules ǻgiven in section ŗş of the XSLT ř.Ŗ speciicationǼ appear complex but
once formulated, they are not in fact diicult to implement. Most of the apparent
complexity is not in the logic of the rules, but in understanding the abstractions
used in the rules, and understanding why the rules work.

The rules start with the idea of modelling a stylesheet ǻor at least, the parts of it
that need to be analysedǼ as a tree of constructs. Construct is our irst new technical
termǱ itȂs a generalisation of an XPath expression, an XSLT instruction, and a few
other things that are capable of being evaluated, like sequence constructors and
patterns. The children of a construct in the construct tree are called its operands.
The result of evaluating a construct is always a value. ǻWhich sounds obvious, but
we would have to modify this to handle FLWOR expressions in XQuery, which
deliver not values but tuple streams.Ǽ

The sweep indicates how much of the input document is needed to evaluate the
construct. The values areǱ
• MotionlessǱ the construct either doesnȂt look at the input document at all, or it

only needs to look at the place where the input document is currently positioned.
Examples are 2+2, name(), and @status. This relies on an assumption that as the
input document is read, the system maintains a stack holding the names and
attributes of the current node and all its ancestors, and the contents of this stack
are always available without moving the input position.

Şř

Streaming in the Saxon XSLT Processor

• ConsumingǱ the construct needs to read everything between the current start tag
and the corresponding end tag. Examples are string(), data(), number(),
<xsl:value-of>, <xsl:copy-of>.

• Free-rangingǱ the construct potentially needs to read outside the slice of the doc-
ument represented by the current element and its ancestors. Examples are pre-
ceding-siblingǱǱx, and xslǱnumber. Such constructs are never streamable. ǻ”ut
note, this doesnȂt prevent preceding-siblingǱǱx or xslǱnumber appearing in a
streamable stylesheetǲ the construct is free-ranging only if it operates on the
streamed input document.Ǽ

The other property of a construct that afects streamability is a bit harder to visualize,
and is referred to as the posture of the construct. Posture is concerned with determ-
ining whether an expression returns nodes from the streamed input document, and
if so, where these nodes come from. There are ive valuesǱ
• GroundedǱ this means that the expression doesn't return nodes from the streamed

input. It either returns atomic values ǻor function itemsǼ, or it returns nodes from
non-streamed documents only.

• StridingǱ this means that the expression returns a set of nodes from the streamed
input document, in document order, and that none of these nodes will contain
another node in the result ǻnone is an ancestor or descendant of anotherǼ. “
typical example is an axis expression using the child axis.

• CrawlingǱ again, the expression returns a set of nodes from the streamed input
document, in document order, but this time some of the nodes may be ancestors
or descendants of others. “ typical example is an axis expression using the des-
cendant axis.

• ClimbingǱ The spec assumes that when an input document is streamed, a stack
of information is retained containing details of the names and attributes of all
ancestor elements of the element at which the stream is currently positioned.
“ny expression that accesses ancestor nodes or their attributes from this stack
has a posture of climbing. The key thing to remember about climbing expressions
is that you can go upwards to ancestors of the current node, but you can't then
navigate downwards again, because the children/descendants of these nodes
are not retained in memory.

• RoamingǱ This indicates that an expression navigates of to parts of the document
that aren't accessible when streaming, such as preceding or following siblings.
This always makes the containing expression non-streamable.

“lthough some constructs have their own special rules, itȂs worth summarising and
explaining the general streamability rules that apply to most instructions and ex-
pressions. The rules aim to determine the sweep and posture of a construct. The
rules depend on identifying the operands ǻsubexpressionsǼ of a constructǲ for each
operand you potentially need to knowǱ

ŞŚ

Streaming in the Saxon XSLT Processor

• its static type ǻthis in fact is not often usedǼ
• the sweep and posture of the operand ǻwhich you get by applying the rules re-

cursivelyǼ
• the way in which the value of the operand is used, called the operand usage.

This is one of the followingǱ
• “bsorptionǱ the parent expression makes use of information from the entire

subtree rooted at nodes returned by the operand expression. ExamplesǱ
string(), data(), .//descendant::x

• InspectionǱ the parent expression makes use of properties of the nodes returned
by the operand expression that can be established while positioned at a node's
start tag. ExamplesǱ name(), base-uri(), @status, ../@status.

• TransmissionǱ the parent expression returns nodes delivered by the operand
expression. ExamplesǱ A|B, tail(X), ilter expressions.

• NavigationǱ the parent expression performs arbitrary reordering of the re-
turned nodes, or navigates away from them in arbitrary ways. ExamplesǱ
reverse(), <xsl:number>.

The general streamability rules start by reining the sweep and usage of the operands
by taking additional information into account. SpeciicallyǱ
• If the type of the operand is a childless node kind, for example text(), then usage

absorption is changed to inspection, because the entire subtree of such nodes is a
simple property of the node and doesn't involve advancing the input stream.

• If the usage of the operand is absorption ǻfor example if the parent expression
atomizes the value of the operandǼ, then the sweep of the operand may have to
be increased. For example given the expression contains(., "e"), the sweep
of the irst operand is consuming, not because "." is intrinsically consuming, but
rather because the contains() function performs atomization and this involves
reading the whole subtree of the context node.

Once the properties of all the operands have been established in this way, the
properties of the parent expression can be establishedǱ
• If there aren't any operands, the expression is grounded andmotionless. This applies

for example to simple literals like "London", and also to the empty sequence ().
It doesn't apply to axis expressions such as child::*, because axis expressions
have special streamability rules. The general streamability rules described here
are only the default.

• If any operand is non-streamable ǻtechnically, if it is free-ranging or roamingǼ then
the parent expression is also non-streamable.

• If several operands are consuming, then in general the parent expression is not
streamable ǻit is free-ranging and roamingǼ. We'll discuss this important rule

Şś

Streaming in the Saxon XSLT Processor

below, There are exceptions for conditional expressions, where both branches
can be consuming.

• If exactly one operand is consuming, then the parent expression will usually have
the sweep of that operand. “n exception is where the consuming operand is
evaluated more than once ǻconsider an expression such as (1 to 5)!child::xǼ
in which case the result is not streamable. The posture of the result depends on
the operand usage of this operand. If the usage is transmission ǻfor example X[@a
= 3]Ǽ then the posture of the result is the same as the posture of the operand. If
the usage is inspection or absorption ǻfor example name() or data()Ǽ, then the
posture of the result is grounded, because the result does not include any streamed
nodes.

So thereȂs a general rule that ǻwith a few exceptionsǼ, no construct can have two
operands that are both consuming. This rule is fairly easy to learn, and itȂs fairly
easy for an implementation to give good diagnostics that explain when itȂs been
violated. itȂs also fairly easy to understand why it should be trueǱ you can only scan
the input ile once, and unless you're pretty smart, you can only evaluate one ex-
pression while doing so.

The exceptions are cases where the implementation is expected to be smart
enough to evaluate both operands during a single passǱ
• The <xsl:fork> instruction is explicitly introduced to request evaluation of two

or more instructions during a single pass. One can imagine this being done by
two parallel threads, but in fact it doesnȂt need true parallelismǱ as we'll see later
in the paper, Saxon implements it simply by passing each parsing event to sev-
eral expression evaluators in turn.

• Union expressions such as a|b, and map expressions such as map{'a': price,
'b': discount} can also have multiple consuming operands.

• “ rather diferent case is conditional expressions ǻ<xsl:choose>, or XPath
if-then-elseǼ where both branches can be consuming. This is a bit diferent
because only one of the branches is actually evaluated.

If implementations have to be smart enough to evaluate <xsl:fork> and map con-
structors, then one might reasonably ask why we don't require them to evaluate
multiple consuming operands wherever they occur, rather than treating these con-
structs as a special case. Perhaps some of the reason is pure cautionǲ if there were
no constraints at all, the number of parallel evaluations could run completely out
of control. This relects a recognition that forked evaluation has a cost, and indeed,
that itȂs not really pure streaming, because although the input is streamed, the
output has to be bufered so that the results of the separate construct evaluations
can be assembled in the right order on completion. XSLT has a tradition of not
leaving everything to the optimizer but allowing programmers to get involved in
some of the key performance trade-ofs, and this is an example of this philosophy.

ŞŜ

Streaming in the Saxon XSLT Processor

The rules given above ǻthe general streamability rulesǼ apply to most kinds of
expression, but they don't apply to the important case of path expressions and axis
expressions. For axis expressions, the posture of the result depends on the posture
of the context item and the choice of axis, using transition rules like the followingǱ
• striding + child => striding
• striding + parent => climbing
• grounded + any => grounded
• climbing + child => roaming
• crawling + child => roaming
This last rule is one of the trickiest to get used to. The rule in its simplest form can
be stated as "if you reached a node via the descendant axis, then you can't select
downwards from it".

The reason for this rule is as follows. Suppose you select a sequence of nodes
using the descendant axis. Then, in general, this sequence can contain two nodes
where the irst is an ancestor of the second. Suppose you want to process all the
nodes in this sequence in turn. When you evaluate a consuming expression while
positioned at the irst node ǻthe ancestorǼ, this will move the position in the input
stream to the end of that node, by which time you will have moved past the second
node ǻthe descendantǼ, which is the next one you want to process.

The way that posture is used in determining the streamability of path expressions
gives us another way of thinking about what posture actually means. Suppose that
all the navigation in a template is reduced to a simple path, then that path has to
match the regular expression C*D?A*, where C is a child step, D is a descendant step,
and A is an ancestor or attribute step. It turns out that the rules for permitted posture
transitions efectively deine a inite state automaton that is equivalent to this regular
expressionǲ the posture values, with their fanciful names such as striding, crawling,
and climbing can be seen as labels for the states in this automaton.

Note that the use of the descendant axis does not have to be explicit to fall foul
of this rule. Operations such as taking the string value or typed value of a node,
which are used all the time in XSLT programming, implicitly make a downward
selection and are therefore not allowed on nodes that were reached via the descend-
ant axis.

The rule disallowing multiple descendant steps is without doubt a great incon-
venience. There are a number of workaroundsǱ
• If you know, for example, that <title> elements will not be nested, then you

can use the function outermost(//title) to select those titles that do not contain
other titles. This expression, because it always selects nodes with disjoint subtrees,
is deemed striding rather than crawling, and therefore allows further downward
selection.

Şŝ

Streaming in the Saxon XSLT Processor

• If you only need a single node, you can write this in various waysǱ head(//title),
or (//title)[1], or zero-or-one(//title). “gain these expressions cannot return
nested nodes, so they are deemed striding rather than crawling.

• Similarly, text nodes are never nested, so the expression //text() is also striding.
• If several downward steps occur in a simple path expression such as //section/

title, the speciication says this is to be treated as equivalent to //
title[parent::section] Ȯ that is, it is crawling rather than roaming. The reason
here is that path expressions select nodes in document order, so itȂs always
possible to evaluate the entire path in a single scan of the subtree under the
current node, making it equivalent to a single use of the descendant axis.

The problem with this rule, as it appears in the WřC spec, is that it is very rigid. “
great deal of the time, it prevents you writing constructs that you, with knowledge
of the data, know will actually be streamable in practice even though they are not
streamable in the worst case. Saxon therefore takes a more pragmatic view here ǻthe
spec permits thisǼ. Given a construct like the one above, Saxon will attempt an op-
timistic streamed implementation. If while processing one <section> element it
encounters another nested <section> element, then it will process both of them in
parallel during the same pass over the input. “ny output produced from the inner,
nested <section> will be bufered and emitted only when processing of the outer
<section> is complete. So in the worst case, the process is not fully streamed, but
it will still produce the right answer if enough memory is available for the bufered
results. In efect, Saxon is doing an implicit <xsl:fork>Ǳ when it inds that a crawling
expression produces two nodes where one contains the other, and there is then a
further downward selection from these nodes, then it evaluates these two downward
selections in parallel, bufers the results, and assembles the output in the correct
order at the end. The beauty of this is that in the common case where elements are
not in fact nested ǻas would typically be the case for <xsl:value-of select="//
title"/>Ǽ, no bufering is ever necessary, and the convenience of being able to write
the expression in the natural way is delivered without any performance penalty
and with no risk of running out of memory.

Ř.Ř. Visualising the Streamability Rules
Evaluating the streamability rules by hand for anything but trivial examples is
challengingǲ the detail quickly becomes overwhelming, especially as the rules are
highly recursive. This is of course a serious usability problem since stylesheet authors
need to know whether they are writing streamable code or not.

With experience, the efect of the rules starts to become more predictable. One
quickly develops an eye for coding patterns where the result of applying the rules
is immediately obvious. Two of these patterns ǻexpressions with multiple consuming

ŞŞ

Streaming in the Saxon XSLT Processor

operands, and downward selection from a node reached using the descendant axisǼ
have already been discussed.

However, for cases where the behaviour of the rules is less obvious, and for the
beneit of users who have not yet formed the ability to predict the efect of the rules,
Saxonica has developed a tool that allows the construct tree to be visualized, with
all the properties of each construct that are relevant to streaming ǻsweep, posture,
usage, type, context item posture, context item typeǼ explicitly displayed.

The tool can be found at http://dev.saxonica.com/stream. “t the time of writing
it does not handle all the rules in the WřC speciication, but it handles all the most
frequently-encountered ones.

The tool is implemented using Saxon-CE[ŗ] ǻXSLT logic running client-side in
the browserǼ.

Ř.ř. Implementation of the Streamability Rules in Saxon
Saxon internally implements the streamability rules by means of a method
getSweepAndPosture() on its Expression class ǻwhich corresponds to what the
speciication calls a ConstructǼ. The general streamability rules are deined on the
class Expression itself, and constructs that have their own special rules override
the method as required. The method takes a parameter to indicate whether the
evaluation should proceed strictly according to WřC rules, or whether Saxon exten-
sions are permitted. This allows the user to decide whether to take advantage of
Saxon extensions or to prefer portability.

Implementation of the rules is not diicult. The expression class provides a
method operands() which returns the operands of an expression together with their
usageǲ it also provides static type information. So all the input to the WřC rules is
readily available. Once the sweep and posture of an expression have been computed,
the results are saved in the expression tree to avoid the costs of multiple computation.

Users don't only want to know whether an expression is streamable, they also
want to know why not. So the method getSweepAndPosture() also takes an ǻoutputǼ
parameter called reasons, which on return, if the expression is not streamable,
contains messages explaining which rules were violatedǲ these messages are used
as the basis for compiler diagnostics.

Saxon performs the streamability analysis after all type-checking and optimiza-
tion is complete. This creates the possibility that non-streamable code will be rewrit-
ten by the optimizer as streamable, or vice-versa.

The irst case is not a problem, except for the rather stringent requirement in the
WřC speciication that an implementation should be capable of distinguishing
stylesheets that are ‟guaranteed streamableȄ according to the spec, from those that
rely on implementation extensions for their streamability. The only way to achieve
that with Saxon is to switch optimization of.

Şş

Streaming in the Saxon XSLT Processor

Rewriting streamable code as non-streamable would be more of a problem for
users. The problem is avoided by ensuring that the optimizer is aware of the need
for streaming. In most cases this merely suppresses a rewrite that would otherwise
take place, for example the use of indexing to support ilter expressions such as //
emp[@id=$id].

In a few cases the optimizer deliberately tries to turn a non-streamable expression
into one that is streamable. “n example is the expression for $x in //emp return
($x/@name, $x/@salary). This is not streamable as written because it is not permitted
to bind a variable to a node in a streamed document. However, it can be rewritten
as //emp/(@name, @salary), which is indeed streamable.

On other occasions streamability is achieved as an unintended consequence of
optimization. For example, the streamability rules don't allow streamed nodes to
be bound to variables, passed as arguments to functions, or returned from functions
ǻthis is primarily to avoid the need for complex data-low analysisǼ. The Saxon op-
timizer will bypass this rule when it does variable and function inlining ǻreplacing
a variable reference or function call by the body of the variable or functionǼ. For
example, a call to the function

<xsl:function name="inc">
<xsl:param name="n"/>
<xsl:sequence select="$n + 1"/>

</xsl:function>
is not streamable according to the WřC rules, simply because it fails to declare the
type of its argument ǻand could therefore be processing a streamed nodeǼ. “fter
optimization, however, this function call will have been expanded inline, and the
expanded code will satisfy all the streamability rules.

ř. Run-time execution
While the WřC speciication has a lot to say about how a stylesheet is analyzed to
classify its constructs as streamable or not streamable, it says nothing at all about
how to actually organize evaluation at run-time in a streaming manner.

The architecture of a typical XSLT ŗ.Ŗ processor [ř] is shown in Figure ŗ. The
data low is from left to right, but the control low is more complex. In fact there
are two control modulesǱ the XML parser reads ǻpullsǼ data from a lexical XML input
stream and writes ǻpushesǼ it to a tree in memory. The XSLT transformer, via its
XPath engine, reads ǻpullsǼ data from this tree, and then writes ǻpushesǼ events
down a pipeline which constructs events representing nodes in the result tree, which
are in turn pushed to the serializer.

şŖ

Streaming in the Saxon XSLT Processor

Figure ŗ. The architecture of a typical XSLT ŗ.Ŗ processor

Note that the source tree is materialized in memory, but the result tree is not. Eval-
uation of XSLT instructions that construct nodes, and the serialization of those
nodes, operate in a seamless push pipeline.

XSLT ŗ.Ŗ famously does not allow a stylesheet to create temporary trees and
then process them further using XPathǲ but in practice all ŗ.Ŗ processors implement
the EXSLT node-set() extension which circumvents this restriction. “ typical XSLT
ŗ.Ŗ processor with the node-set() extension operates as shown in Figure ŘǱ

Figure Ř. “n XSLT ŗ.Ŗ processor with the node-setǻǼ extension

Here variables containing temporary trees are materialized as trees in memory by
XSLT instructions operating in push mode, and they are read by XPath expressions
operating in pull mode.

XSLT Ř.Ŗ adds the possibility of schema validation, which can be applied to
source trees, result trees, and also to temporary trees. The places where a schema
validator can be invoked are shown with red tick-marks in Figure řǱ

şŗ

Streaming in the Saxon XSLT Processor

Figure ř. “n XSLT Ř.Ŗ processor with schema validation

The XML Schema speciication was designed to allow validation to be streamedǱ
that is, one can determine schema validity over a stream of events representing the
instance document, without needing to materialize the instance document as a tree
in memory. “lthough one could envisage schema processors operating in either
pull or push mode, in practice all the ones I know of work in push mode, and it can
be seen in this diagram that this is rather convenient because in each case we have
added the schema processor to a push pipeline.

In this architecture there are two kinds of pipelineǱ a push pipeline for the
parsing and source validation, a pull pipeline for XPath evaluation, and another
push pipeline for result tree consruction, result tree validation, and serialization.

“ simple pipeline contains one control module which pulls data from the source
end of the pipeline and pushes it to the result end of the pipeline. Data can low
naturally from a pull pipeline to a push pipeline, but the opposite is more diicult.
There are essentially two ways to do it. One is to bufer the data into a reservoir
from where another pipeline can read itǲ that needs memory. The other is to have
to control modules that operate in some kind of synchrony so that data pushed by
one is pulled by the other. This can be achieved by running the two control modules
in separate threads under some kind of synchronization control, or with appropriate
support from a programming language it can be achieved in a single thread by use
of co-routines.

For more detail on these concepts, see [ś]. The basic ideas are not at all new.
Until the advent of large online disc storage, most data processing was done with
magnetic tapes, and a major objective was to perform streamed processing of hier-
archic data held in sequential form to transform it to another hierarchic data set
also held in sequential form, with minimal use of tapes for holding intermediate
data. Michael Jackson built many of the ideas of Jackson structured programming

şŘ

Streaming in the Saxon XSLT Processor

[Ř] around these concepts, and the ideas are fully applicable to pipelines of XML
transformations today.

”oth pull and push pipelines can perform well, but a turbulent pipeline that has
to switch between push and pull mode is likely to be less eicient. Some measure-
ments demonstrating this efect can be found in [Ś].

To eliminate the need for interrupting the transformation pipeline with a reservoir
that holds everything in memory, one can envisage a number of possible architec-
turesǱ
• a single pipeline that operates in push mode from end to end.
• a single pipeline that operates in pull mode from end to end.
• a pipeline that has both push and pull sections, with the push-pull transitions

being handled through multithreading ǻthe co-routine alternative can probably
be eliminated because of the paucity of modern programming languages that
support the conceptǼ.

In Saxon's irst forays into streaming, the third approach was adopted. This had the
advantage that it was least disruptive to the existing architecture of the productǲ in
particular, the XPath engine could continue to operate in pull mode.

In a pull mode XPath engine, evaluation of XPath expressions operates top-
down. “ parent expression controls the evaluation of its child expressions, typically
asking child expressions to deliver their results as a stream of items which can be
read as required. There is usually no need for the entire result of a child expression
to be stored in memory, because each item can be processed as it becomes available.
For example, the sum() function might be coded like thisǱ

Iterator sum() {
int total = 0;
for item i in argument[0].evaluate() {
total += i;

};
return monoIterator(total);

}
In general, every XPath construct is implemented by a function that consumes
iterators representing the results of its subexpressions, and that itself delivers an
iterator over its results. That is, each XPath construct is implemented by a component
of a pull pipeline. This design approach is common in the implementation of func-
tional programming languagesǲ it can be seen as a combination of the Interpreter
and Iterator design patterns in [Gamma et al].

In particular cases, it is possible to recognize XPath expressions where the tree
does not need to be materialized. “n example might be sum(doc('employee.xml')//
employee/salary). This could be implemented either by having the XPath engine
make calls on an XML pull-mode parser as each salary element is requiredǲ or, as
in the Saxon case, it could be implemented by having a push-mode XML parser

şř

Streaming in the Saxon XSLT Processor

deposit a sequence of salary elements in a cyclic bufer, to be picked up by the XPath
engine running in a separate thread. In Saxon this style of processing is implemented
using the saxon:stream() extension function.

While this approach allows some useful applications to be written, it has many
serious limitations. In particular, it does not allow for streaming applications that
need to process the input data hierarchically. itȂs very hard to see how the XSLT ř.Ŗ
mechanism for streamable template rules, which perform a top-down hierarchic
ǻbut sequentialǼ processing of the source tree, could be implemented using this kind
of architecture.

Instead, Saxon is moving inexorably towards the irst approachǱ an end-to-end
push pipeline, illustrated by Figure Ś.

Figure Ś. “n XSLT ř.Ŗ streamed processor using a pure push pipeline

Many components of Saxon have always been implemented as push pipelines,
notably the XSLT instruction engine, node construction, serialization, and schema
validation. The serializer alone contains around řŖ components which are available
to be assembled into a push pipeline based on the serialization options selectedǲ the
schema validator also has around řŖ components each performing separate tasks.
So the only part of the run-time engine which needs to be re-engineered for this
streaming architecture is the XPath engine, where the existing pull-mode components
need to be replaced by components that work in push mode. The next section of
the paper explains how this works.

ItȂs worth noting that where expressions operate on singleton values ǻfor example,
arithmetic expressionsǼ, the same code can be used in either a pull or push pipelineǲ
the entire input value is available in materialized form, so pipelined evaluation be-
comes meaningless. ”y contrast, there are a few expressions ǻan example is the
insert-before() functionǼ that have more than one sequence-valued operand, and

şŚ

Streaming in the Saxon XSLT Processor

where the roles of these operands are not symmetric. In a push pipeline multiple
push-based implementations of such an expression are needed, depending on which
operand is streamed ǻthe rule that requires at most one operand to be consuming
ensures that we can always choose one or the other, and of course we can select
which one statically, because we know statically which operand is consumingǼ.

ř.ŗ. Example of Push-based Expression Implementation
Perhaps some code would make these ideas more concrete. Here is an example that
shows a simpliied implementation of the sum() function in push mode. ǻitȂs simpli-
ied by only handling integers, by ignoring the second operand which gives a zero
value, and by ignoring conditions such as overlowǼ. Note that IntegerValue is a
subclass of Item.

IntegerValue total;
void open() {
total = 0;
getResult().open();

}

void processItem(Item it) {
total = total.add((IntegerValue)it);

}

void close() {
getResult().processItem(total);
getResult().close();

}
In push mode, evaluation is bottom-up, so these methods are called by whatever
component it is that is evaluating the argument to the sum() function. That compon-
ent is responsible for delivering a sequence of itemsǲ each one is delivered by calling
processItem(), and the sequence is topped and tailed by calls of open() and close().
The component implementing sum() delivers a singleton sequence to the next
component in the pipeline ǻavailable as getResult()Ǽ, and this too is delivered using
a sequence of three callsǱ open(), processItem(), and close().

In this example, the things passed from one component to another are complete
items. This is always the case for functions that operate on atomic values, which is
the case for sum() and for a great many other expressions. In fact, more generally
it is true whenever the operand is grounded or climbing. For functions that operate
on streamed nodes, however ǻspeciically, striding and crawling expressionsǼ, we
don't always want to assemble the items before we can process them. Consider the
expression count(//*)Ǳ the irst item to be counted is the outermost element of the
document, and we don't want to construct this as an object just so that it can be

şś

Streaming in the Saxon XSLT Processor

counted. For this example, the pipeline needs to operate at a iner level of granularityǱ
it needs to be notiied of startElement and endElement events. The push code for
count() looks like thisǱ

IntegerValue count;
void open() {
count = 0;
getResult().open();

}

void startElement(FleetingNode node) {
count = count.add(1);

}

void processItem(Item it) {
count = count.add(1);

}

void close() {
getResult().processItem(count);
getResult().close();

}
This implementation can handle both complete items and ine-grained events. Often
it will only have to handle one or the otherǱ if the operand is striding ǻ e.g. child::XǼ
or crawlingǻe.g. descendant::XǼ then it will be notiied of startElement events,
while if it is grounded ǻe.g. data(X)Ǽ or climbing ǻe.g. ancestor::A/@BǼ then it will
be notiied of complete items. Nodes other than element or document nodes are
also notiied via the processItem() method, so with an expression such as count(//
node()) the two methods will both be called, for diferent kinds of nodes.

The class FleetingNode used in the startElement call is a representation of a
node within a streamed document. It implements Saxon's NodeInfo interface, which
is the standard way that nodes in trees are represented, but it only supports opera-
tions that are permitted when positioned at the start tag in a streamed document
ǻclassiied in the spec as inspection operationsǼ. That is, you can call methods such
as name(), localName(), and baseUri()ǲ you can determine the type annotationǲ you
can navigate the attribute, ancestor, and namespace axesǲ but you cannot make a
downwards or sideways selection either explicitly by following axes such as
preceding-sibling, child, or descendant, or implicitly by getting the string value
or typed value. For the count() function, of course, we don't need to know any
properties of the node, we just need to note its existence by incrementing the tally.

“s well as constructs like count() that process ine-grained events representing
element start and element end, there are also constructs that create new element
nodes ǻfor example, the <xsl:element> and <xsl:copy> instructionsǼ. “gain, we
don't want to materialize these nodes in memoryǲ instead such constructs need to

şŜ

Streaming in the Saxon XSLT Processor

generate startElement and endElement events which can then ilter their way down
the output pipeline, usually ending up in the serializer where they can be turned
directly into start and end tags. “lternatively, if the streamed output is being cap-
tured in a variable, they might end up being passed to a tree builder that constructs
a tree in memory, but this will only happen if the tree is actually needed.

ř.Ř. Why not pull?
It would be possible to build a streaming processor that used a uniform pull model
throughout, rather than SaxonȂs push model. Indeed, in some ways it would be
easier.

“s explained in [ś] the primary beneit of a push model is that it allows events
to be sent to more than one destination. This is used when implementing the expres-
sions that explicitly allow more than one consuming operand, such as union expres-
sions, <xsl:fork>, and map constructors, and it is also used for the Saxon extensions
that permit downward selection from nodes reached using the descendant axis.

The other signiicant reason for using this model for Saxon streaming is that it
is already used in signiicant parts of Saxon such as the serializer and schema valid-
ator, and this model therefore permits better re-use of existing code.

The main drawbacks of a push model are ǻaǼ that the coding required to imple-
ment it is probably more complex, and ǻbǼ that it is more diicult to handle constructs
that merge two independent streamed inputs. There is only one such construct in
XSLT ř.Ŗ, the <xsl:merge> instructionǲ Saxon has yet to implement streamed merging,
but when it comes, it will probably use multiple threads.

Ś. Constructing the Push Pipeline
In the previous section we looked at how individual constructs in the expression
tree are represented by push-evaluation components feeding events to each other
in a bottom-up manner. This is bottom-up in the sense that subexpressions are
processed before their parent expressions, and that the code for a subexpression
calls the code for its parent expression to supply data, contrasted with top-down
evaluation where the control low is in the opposite direction. The relationship is
very much the same as that between a top-down parser and a bottom-up parser,
and the process of converting from one form to the other is known in Jackson
Structured Programming [Ř] as inversion. Jackson showed that the process of inver-
sion can be automated by a compiler.

It would be nice to think that we could invert Saxon's pull-based implementations
of operations like count() and sum() to push-based implementations by an auto-
mated processǲ unfortunately doing so would require creating something akin to a
new Java compiler, so instead we have done the process by hand. However, the
assembly of these individual expression implementations into a working push

şŝ

Streaming in the Saxon XSLT Processor

pipeline is of course fully automated. This process is essentially performing a Jackson
inversion of the streamable XSLT templates in the stylesheet, and inversion at this
level is greatly simpliied because XSLT is a functional language free of side-efects.
It is akin to the process of creating a bottom-up parser from a top-down ”NF de-
scription, which is well-understood technology.

Consider irst a simple template rule such as the followingǱ
<xsl:template match="employee">

<e><xsl:value-of select="name"/></e>
</xsl:template>

Saxon will build an expression tree representing this template rule. The expression
tree is a little more complex than might be imagined, because it contains nodes
representing all the internal operations implied by the semantics of xslǱvalue-ofǱ
speciically a call to data() to atomize the <name> elementǲ a call to string-join()
to handle the case where there are multiple <name> elements.

Working top-down, the rule that a construct is only permitted one consuming
child allows us to construct a path through this tree that contains all the consuming
operations from bottom to topǱ this is called the streaming route, and the expressions
on the streaming route provide the raw material for assembling the push pipeline
that evaluates the template rule. Expressions on the streaming route may of course
have other non-consuming operandsǲ these are evaluated top-down in the usual
way, at the point where their values are needed.

“t the bottom of the streaming route there is always a pattern, which identiies
which nodes the template is interested in ǻthis is not the pattern that the template
matchesǲ it is a pattern that matches the nodes which the template reads from the
streamed inputǼ. In this case the irst operation in the push pipeline is to atomize
<name> elements, so the relevant pattern is name. When the template is activated, it
constructs a Watchǲ the Watch is a combination of the pattern, and the pipeline to be
invoked when the Watch is matched. This Watch is registered with a WatchManager,
which receives all events emanating from the XML parser, and tests each one against
a list of registered Watches, to see who needs to be notiied. When the start tag for
<name> is encountered, the WatchManager calls the startElement() method for the
irst component of this pipeline. This component is an atomizer, so it responds to
this startElement() call by telling the WatchManager that it wants to know about all
events up to the corresponding endElement() call. “s these events arrive, it constructs
the typed value of the element. The typed value of an element is in general a sequence
of atomic values ǻthough in the absence of a schema, this sequence will always be
of length oneǼ. Each value in this sequence is notiied to the next step in the push
pipeline by a call on processItem(), so this next step ǻin our example, it represents
the implicit string-join() operationǼ sees the sequence of atomic values comprising
its streamed input. The string-join() operation in our example probably does
nothing very interesting, because itȂs likely that employees only have one nameǲ it

şŞ

Streaming in the Saxon XSLT Processor

passes this name on to the next operation, which converts the string to a text node
as required by the xslǱvalue-of instruction. The next operation after this in the
streaming route is the literal result element that creates the <e> element. This emits
events corresponding to the <e> start and end tags as part of its open() and closeǻǼ
calls, while the processItem() call that supplies the text node is passed on un-
changed. So the template rule as a whole delivers a sequence of three calls ǻstartEle-
ment, text node, endElementǼ and these become the result of the
<xsl:apply-templates> instruction in the calling template rule, to be passed on up
that template ruleȂs pipeline.

The situation becomes a little more complex, of course, with template rules that
involve loops and conditionals. The logic, however, is very similar to what would
happen if all loops and conditionals were translated into apply-templates calls.
Saxon doesnȂt quite go as far as doing that literally ǻit probably wouldnȂt be very
eicientǼ, but in terms of deining patterns and registering them with the
WatchManager, it gives a good picture of what is going on.

“s mentioned earlier, there are some constructs like union expressions,
<xsl:fork> and <xsl:map> that explicitly allow multiple consuming operands.
Saxon handles these by registering with the WatchManager one pattern ǻand corres-
ponding pipelineǼ for each consuming operand. The pipelines operate in parallel
as matching nodes are encountered, and the inal step in each pipeline is to leave
the result somewhere ǻin memoryǼ where it is available to be assembled into the inal
result of the <xsl:fork> or <xsl:map> instruction.

ś. Early exit, and error handling
“ feature of functional languages like XPath is that it is not always necessary to
evaluate the whole of an operand sequence in order to establish the result of the
parent expression. For example, given the expression existsǻchildǱǱauthorǼ it is not
necessary to ind all the author childrenǲ as soon as one is found, the expression can
return true.

In a pull model, this is handled naturally by the parent expression iterating over
the nodes returned by the operand expression, and simply not reading any further
once it knows the answer.

This is less easy to achieve in a push ǻbottom-upǼ evaluation model, because the
child expression knows nothing of its parent, so it will keep supplying new author
elements until it reaches the end of the sequence of children. Of course, the parent
expression can simply ignore them, but there are sometimes performance beneits
to be gained by avoiding the unnecessary computation.

With streaming, particular gains are possible if the result to the entire transform-
ation can be delivered before the whole input document has been parsed. This is
more likely with some XPath or XQuery scenarios than with XSLT itself, but the
same principles apply. For example, one can imagine a phase of a publishing pipeline

şş

Streaming in the Saxon XSLT Processor

that is merely interested to read the value of the expression /article/@version ȯ
that is, an attribute of the outermost element of the document, which can be found
very near the start of the ile. Delivering this without parsing the rest of the ile is
potentially a big win.

To achieve this in a push pipeline, Saxon adds a parameter to the open() method
for each each expression, whose value is a Terminator object. If the expression does
not need any more input, it can call the Terminator object to say so. This enables
expressions further up the pipeline to respond by themselves terminatingǲ potentially
the WatchManager itself is able to recognize that no more input is needed from the
XML input stream, and it can then terminate the parse by throwing a ǻrecognizableǼ
exception, which is then caught so the user never knows about it. This does have
the side-efect that XML well-formedness errors appearing subsequently in the ile
will never be detected ǻsomething that can be regarded as a bug or a featureǼ.

“ related issue is the implementation of the XSLT ř.Ŗ try/catch facility. “ con-
ventional top-down implementation of try/catch can take advantage of the exception
handling provided by the implementation language, which in Saxon's case is Java.
With bottom-up evaluation, however, throwing a Java exception is no use, because
the Java call stack is inverted so the exception will never reach the try/catch expres-
sion that is watching for it. Instead it is necessary to notify exceptions up the push
pipeline in the same way as success results.

“s it happens, the XSLT ř.Ŗ try/catch capability is not streamable according to
the speciicationǲ this is because it requires either output bufering or some kind of
rollback capability to ensure that output produced before a failure that is caught
does not make it into the result. Saxon however is more liberal here than the spe-
ciicationǱ it does allow try/catch with streamed input, and bufers the output in
case an error occurs. This extension to the streamability rules can be justiied on the
basis that the output is sometimes much smaller than the inputǲ indeed, in some
cases its size is independent of the input, which would make it truly streamable
even with bufering.

Ŝ. Conclusions
In this paper I have given a brief introduction to the concepts that are used in dein-
ing the streamability rules in the XSLT ř.Ŗ speciication, and have outlined some of
the more important rules that determine whether constructs are or are not considered
streamableǲ I have also explained some of the circumstances in which Saxon achieves
streaming even in cases where this is not guaranteed by the speciication. I then
went on to outline how streaming is implemented in Saxon using an end-to-end
push pipeline in which both whole items and ine-grained events can be notiied
in a bottom-up data low from called expressions to calling expressions, and I ex-
plained some of the consequences of this architecture.

ŗŖŖ

Streaming in the Saxon XSLT Processor

In ŘŖŖŗ [ř] I wrote ‟Perhaps the biggest research challenge is to write an XSLT
processor that can operate without building the source tree in memory. Many people
would welcome such a development, but it certainly isn't an easy thing to do.Ȅ I
was rightǱ it took a dozen years, but it has now been achieved.

References
[ŗ] Delpratt, O'Neil, and Kay, Michael. Multi-user interaction using client-side XSLT

Presented at XML Prague ŘŖŗř. httpǱ//archive.xmlprague.cz/ŘŖŗř/iles/
xmlprague-ŘŖŗř-proceedings.pdf

[Ř] Jackson, Michael “. JSP in Perspective. ǻ“ retrospective look at Jackson Structured
Programming, more accessible to a modern audience than the original
publications from the ŗşŝŖsǼ. SD&M Pioneers' Conference, ”onn, ŘŖŖŗ. httpǱ//
mcs.open.ac.uk/mjŜŜś/JSPPersŗ.pdf

[ř] Kay, Michael. “natomy of an XSLT Processor. Published online by I”M
DeveloperWorks httpsǱ//www.ibm.com/developerworks/library/x-xsltŘ/

[Ś] Kay, Michael. Ten Reasons why Saxon XQuery is Fast. ”ulletin of the IEEE
Technical Committee on Data Engineering. httpǱ//sites.computer.org/debull/
“ŖŞdec/saxonica.pdf

[ś] Kay, Michael. You Pull, I'll PushǱ On the Polarity of Pipelines. Presented at
”alisageǱ The Markup Conference ŘŖŖş, Montréal, Canada, “ugust ŗŗ - ŗŚ, ŘŖŖş.
In Proceedings of ”alisageǱ The Markup Conference ŘŖŖş. ”alisage Series on
Markup Technologies, vol. ř ǻŘŖŖşǼ. doiǱŗŖ.ŚŘŚŘ/”alisageVolř.KayŖŗ. httpǱ//
www.balisage.net/Proceedings/volř/html/KayŖŗ/”alisageVolř-KayŖŗ.html

[Ŝ] SaxonicaǱ XSLT and XQuery Processing httpǱ//www.saxonica.com/
[ŝ] XSL Transformations ǻXSLTǼ Version ř.Ŗ. WřC Last Call Working Draft, ŗŘ

December ŘŖŗř. Ed. Michael Kay. httpǱ//www.wř.org/TR/xslt-řŖ

ŗŖŗ

Streaming in the Saxon XSLT Processor

http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf
http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf
http://mcs.open.ac.uk/mj665/JSPPers1.pdf
http://mcs.open.ac.uk/mj665/JSPPers1.pdf
https://www.ibm.com/developerworks/library/x-xslt2/
http://sites.computer.org/debull/A08dec/saxonica.pdf
http://sites.computer.org/debull/A08dec/saxonica.pdf
http://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html
http://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html
http://www.saxonica.com/
http://www.w3.org/TR/xslt-30

Jiří Kosek ǻed.Ǽ

XML Prague ŘŖŗŚ
Conference Proceedings

Published by
Ing. Jiří Kosek
Filipka řŘŜ

ŚŜř Řř Oldřichov v Hájích
Czech Republic

PDF was produced from Doc”ook XML sources
using XSL-FO and XEP.

ŗst edition

Prague ŘŖŗŚ

IS”N şŝŞ-ŞŖ-ŘŜŖ-śŝŗŘ-ř

	XML Prague 2014
	Streaming in the Saxon XSLT Processor
	1. Introduction
	2. Streamability
	2.1. The W3C Streamability Rules
	2.2. Visualising the Streamability Rules
	2.3. Implementation of the Streamability Rules in Saxon

	3. Run-time execution
	3.1. Example of Push-based Expression Implementation
	3.2. Why not pull?

	4. Constructing the Push Pipeline
	5. Early exit, and error handling
	6. Conclusions
	References

