
1 XT-Speedo - https://github.com/Saxonica/XT-Speedo/

Benchmarking XSLT Performance
Michael Kay

Saxonica

Debbie Lockett

Saxonica

Abstract

his paper presents a new benchmarking framework for
XSLT. he project, called XT-Speedo1, is open source and we
hope that it will attract a community of developers. he
tangible deliverable consists of a set of test material, a set of
test drivers for various XSLT processors, and tools for
analyzing the test results. Underpinning these deliverables is
a methodology and set of measurement objectives that
inluence the design and selection of material for the test
suite, which are also described in this paper.

1. Objectives and Motivation

Performance of XSLT is, of course, important, though
we need to qualify that by pointing out that performance
is not the only thing that matters.

For Saxonica as a developer of one of the leading
XSLT engines, performance is not actually our number
one objective. Our irst objective is standards
conformance; the second is usability, and performance
comes third. his means that we will (almost!) never
sacriice standards conformance in order to achieve
improved performance, and we are prepared to take a
performance hit in order to improve usability, for
example by maintaining extra run-time information that
is needed only for diagnostics when things go wrong.

We choose these priorities because we think this is
what the market wants. We are probably rather obsessive
about corner cases when it comes to standards
conformance, but being obsessive about cases that most
users don't care about means that we almost always get
things right in the more common cases where users care a
lot. Standards conformance is typically a major objective
for vendors who can't take their place in the market for
granted, and for Saxonica, achieving standards
conformance was what gave us a place at the top table of
XSLT vendors alongside the likes of Microsoft and IBM.

As for usability, we believe that far more users notice sub-
standard usability than notice sub-standard performance.
Most users only care that performance is good enough,
not that it is the best available. If one processor runs a
transformation in 0.1s and another does the same work
in 0.2s, most users won't notice the diference. hey are
much more likely to end up using your product because
they discover, from experience, that its error messages are
more helpful.

But even though performance is our third priority,
it's still extremely important. Saxonica has users running
some seriously impressive workloads, and when we get
things wrong, they notice.

In measuring performance, our main objective is to
avoid regression between successive releases. Such
regression is probably the most obvious source of
complaints; the last thing users want if they move
forward to a new release is to ind that their particular
workload runs more slowly. Although we have always
included some performance tests in our standard quality
assurance checklist before release, experience has shown
that these are inadequate, and too many mistakes slip
through.

Another signiicant objective is to be able to test the
impact of product changes. When we introduce a change
(perhaps a new optimization) that is designed to improve
performance,we will often do some ad-hoc tests to ensure
that the particular test case it is tackling shows the
expected improvement. But assessing the overall impact
of the change is much more diicult.

doi:10.14337/XMLLondon14.Kay01Page 10 of 162

https://github.com/Saxonica/XT-Speedo/

1 A description of the XSLTMark benchmark, including an acknowledgement of the problems in using it for cross-product comparisons
http://www.xml.com/pub/a/2001/03/28/xsltmark/index.html

2 A set of XSLTMark results from 2001 http://www.xml.com/pub/a/2001/03/28/xsltmark/results.html
3 XSLTMark II http://xsltbenchmarking.masicek.net

Some readers may be surprised that we do very little
competitive benchmarking of our own product against
products from other vendors. We did more of this in the
early days, before Saxon became well established. One
explanation is that the primary reason people adopt
Saxon has always been that they want access to XSLT
2.0, and are switching from a product that only supports
XSLT 1.0. In that situation, the only thing they want to
be sure of is that the change will not cause an
unacceptable performance hit. We've had lots of positive
feedback from users making this transition, and very
little negative feedback, so we haven't felt any pressure to
improve our competitive position, although we have
always been aware that some of the competitors'
products have excellent performance.

As regard competitive performance, it's worth
emphasizing that this is not a race in which the winner
takes all. Firstly, speed is not a one-dimensional metric,
so there will never be a single winner regardless what you
choose to measure. Secondly, being within 5% of the
leader is good enough for all practical purposes, since if
two products difer only by 5% in performance, then
users will choose between the products based on other
factors. If a user has a performance problem, it's most
unlikely that a 5% improvement will solve it.

2. Previous work

here have been previous benchmarking environments
for XSLT.

An early attempt was the XSLTMark benchmark
from Datapower, which later became part of IBM.
Datapower ofered this as a free download from their web
site for a number of years, but it disappeared at around
the time of the IBM acquisition. he licensing terms
were unspeciied, so although we (and no doubt others)
have continued to use this benchmark in-house, we have
no authority to make it public. XSLTMark sufered a
common problem when comparing results across
diferent products: diferent drivers measured diferent
things. For some products, the cost of compiling the
stylesheet was included in the execution cost, for others it
was discounted. his made product comparisons fairly
useless, but it was still a useful tool for comparing
successive releases of the same product.12

XSLT processors have come on a long way since
2001, but it's very hard to ind any more recent data that
compares their performance.

Another benchmarking efort that appeared on the web
and then disappeared leaving very little trace was
Bumblebee. he main problem with this efort was that
the drivers were not open source, and there was
insuicient information provided to create your own
drivers. We used it in Saxonica for a while, but when we
found that we couldn't update or tweak the drivers to
experiment with diferent settings, we abandoned it.

Sarvega published results of a benchmarking study in
2003, but the results were only available on a commercial
basis, and the tools needed to reproduce the results were
not made available at all.

A more recent efort is XSLTMark II3, produced by
Viktor Mašíček as an M.Sc thesis at Charles University,
Prague. Mašíček is concerned to measure more than just
performance, but although he recognizes the importance
of other qualities such as usability, he does not attempt
any scientiic measurement. He also on occasions fails to
distinguish correctness from usability, for example when
he commends XSLT 1.0 processors that reject XSLT 2.0
constructs rather than ignoring them, which might well
be the right thing to do from a usability perspective, but
happens to be non-conformant with the XSLT 1.0
speciication.

On performance, Mašíček's reported results sufer
from a failure to distinguish the diferent factors that
contribute to execution time. In the case of Java
processors, he makes insuicient efort to discount the
efects of Java VM warm-up time; for example, he
reports Saxon-HE 9.4 as running three times slower than
Saxon 6.5, an efect which can only be explained by the
fact that Saxon-HE is larger and therefore takes longer to
load. For some workloads this start-up cost matters to
users, but for production web sites running thousands of
transformations per hour, as well as for one-of
transformations of very large documents, start-up cost is
irrelevant. he same arguments apply to the cost of
stylesheet compilation; Mašíček makes no attempt to
distinguish compilation time from execution time, but
for many workloads, compilation time can be ignored.

Another problem with Mašíček's benchmark is that
he runs every processor in the same environment (PHP).
For processors that are not designed to run in this
environment, this creates an artiicial overhead. For
example, to invoke Java processors he uses what is
essentially a command-line invocation. he overhead of
invoking a Java processor in this way swamps the actual
transformation cost, so the measurements are entirely
untypical of what can be achieved in a native Java
environment.

Page 11 of 162

Benchmarking XSLT Performance

http://www.xml.com/pub/a/2001/03/28/xsltmark/index.html
http://www.xml.com/pub/a/2001/03/28/xsltmark/results.html
http://xsltbenchmarking.masicek.net

1 XMark benchmark http://www.xml-benchmark.org/index.html
2 XQuery benchmarks survey http://leo.saclay.inria.fr/events/EXPDB2006/PAPERS/Afanasiev.pdf

Nevertheless Mašíček's work is valuable, in particular the
collection of stylesheets that he has collected, and our
work builds on this.

Other relevant work includes benchmarks for
XQuery and XPath. For XQuery the XMark benchmark1

is the best known. his includes a test data generator
which can be used to create data iles of diferent sizes,
which therefore enables measurement of how query
performance scales with data size. his is particularly
useful to enable comparison of strategies for join
optimization in diferent products. We have used this
benchmarking framework extensively in Saxonica, and
have adapted some of the 20 queries to XSLT, but they
are not very typical of real-world XSLT workloads and
this limits their usefulness.

A more recent paper from 2006 surveys XQuery
benchmarks2. his paper contains much useful discussion
of the characteristics of a good benchmark and the kind
of information it can yield if analysed intelligently; in
particular, the importance of determining the way in
which performance varies (for example, with document
size or query complexity) rather than collecting simple
numbers.

3. he design of the XT-Speedo
benchmark

he XT-Speedo benchmark has been designed to
measure the performance of diferent products for a
broad range of test transformations. In particular we have
chosen to measure the time for three processes (where
possible): compiling the stylesheet, ile to ile transform,
and tree to tree transform. Since diferent vendors may
have varying priorities, and since it is interesting in itself
to see the diference in performance for these diferent
parts of the transform process, we considered taking
these three measurements to be useful.

We have produced XT-Speedo benchmark packages on
the Java and .NET platforms, and in C/C++, to run
diferent test drivers for the diferent products which are
available in diferent environments. For each
environment, the packages each contain a class to run the
benchmark tests (called Speedo on Java, and RunSpeedo
on .NET), and an abstract class called IDriver, which is
subclassed for each product-under-test. he IDriver
interface deines methods to compile a stylesheet, to load
a schema, to build a source document, and to run tree-
to-tree or ile-to-ile transformations.

Not every product supports all these options. Some,
obviously, are not schema-aware. Some, such as Altova's
RaptorXML, do not provide an explicit interface to
compile the stylesheet (perhaps they rely on caching
instead). Some, such as James Clark's XT, do not separate
tree construction from transformation. A further
complication is that we want to compare the
performance of all processors when running XSLT 1.0
tests, but we are also interested in XSLT 2.0 and XSLT
3.0 performance, so we have to accommodate the fact
that for diferent processors, we may have diferent
subsets of the measurements, available over diferent
subsets of the tests. We therefore use XML-based catalog
iles to control which tests are run, using which
processors.

he design of the benchmark is illustrated by the
following schematic:

Page 12 of 162

Benchmarking XSLT Performance

http://www.xml-benchmark.org/index.html
http://leo.saclay.inria.fr/events/EXPDB2006/PAPERS/Afanasiev.pdf

Figure 1. Architecture diagram

he main command line input for the Speedo
benchmark (i.e. input for the 'run' method of the Speedo
class) is the tests catalog ile and the drivers catalog ile.
An option is also provided to supply the location of the
output directory for result iles. Further options are
provided to select which test cases from the catalog to use
— primarily by providing a regular expression name
pattern, but also for example by choosing to skip tests
which are slow.

he tests catalog ("catalog.xml") identiies a collection of
test cases, gleaned from various sources, plus some newly
created ones. Each test case is a particular transformation
for the product to process. he catalog contains a
description of the test transformation, links to the source
XML ile and XSL stylesheet (and in some cases, an XSD
schema), and an XPath assertion to be applied to the
output of the transformation to check the results are
plausible. (It's not a primary aim of this exercise to check
the conformance of processors to the speciication; but
we want to weed out results that are wildly out, especially
cases where the processor fails to perform the
transformation at all.)

Page 13 of 162

Benchmarking XSLT Performance

he drivers catalog ("drivers.xml") contains the driver
data, including: name, implementation class,
implementation language, XSLT version. his is where
initialization option settings and test run options can be
added. In the case of Saxon, we might have several entries
in the drivers catalog that run Saxon with diferent
coniguration options (optimization on or of, bytecode
generation on or of, and so on), allowing us to assess the
impact of these coniguration switches. he drivers
catalog can also indicate that particular tests should not
be run with a particular driver (because they are known
to crash, for example, or because they are excessively
slow.)

Because diferent processors run in diferent
environments, collecting a full set of data for all
processors requires more than one program run. As a
minimum, there will be three runs, one for Java
processors, one for .NET, and one for C/C++. But if we
want to measure diferent versions of Saxon, or
performance on diferent hardware or operating
systems,then additional runs will be needed. (We have
experimented with a mechanism that calibrates the
hardware speed and adjusts performance measurements
to compensate for diferences. However, this mechanism
is not fully operational.)

Each execution of the benchmark runs all the selected
tests from the test catalog (as selected by the speciied
coniguration), and produces one XML results document
per driver. For each test case, measurements are taken for
the times (in milliseconds) to perform three processes:
compiling the stylesheet, ile to ile transform, and tree to
tree transform. Each test case is run multiple times (by
default set at 20) and the average times for these
processes are taken, in order to eliminate warm-up time
and aberrations caused by activities such as garbage
collection. (For Java in particular, hotspot compilation
causes dramatic improvements in execution time the
more often the code is run, with performance often
stabilizing only after a minute or so.) hese average
process times are recorded in the result ile, indexed by
the test cases, where the level of success of the test run is
also recorded - 'success' if the run is ine, 'wrong answer'
if transforms take place but the assertion test fails (so the
transformation result is not as expected), and 'failure' if
the transformation fails at some point.

A selected subset of these result iles can then be collated
using the "report.xsl" XSLT stylesheet. Using the results
XML iles as input, this stylesheet produces HTML
documents (including SVG graphics) to view the results.
he results tables give times relative to a selected baseline
driver (chosen in the drivers catalog). he main overview
page contains, for each driver, a measure of the overall
performance relative to the baseline for each of our three
processes: ile to ile transform, tree to tree transform,
and stylesheet compile. he formatted report for each
driver contains tables with rows for each test case, giving
the relative times, and actual times, for the three
processes.

As our "bottom-line" metric we use the sum of the
process times (over all tests) for the driver, relative to the
sum for the baseline driver. his of course gives greater
weighting to tests which take longer; a diferent choice of
computation could well give a diferent picture. We also
give the minimum and maximum values of the relative
times for the individual tests, to give an idea of the
spread. We fully recognize that this is highly arbitrary;
there are other ways of doing the aggregation that would
give diferent results. XSLTMark, for example, divides
execution time by source document size to give a
transformation speed measured in bytes per second, and
averages across these speeds. In some cases, as we will see,
relative performance of diferent processors varies
substantially from one test to another, and because our
test collection makes no serious attempt to be
representative of any real workload, an average across all
the tests can fairly be dismissed as meaningless. In
defence, users of the benchmark are free to substitute a
diferent set of tests that relects their own choice of
workload more accurately.

Page 14 of 162

Benchmarking XSLT Performance

4. Test Data

he selection of data iles and stylesheets used in the
benchmark should not be regarded as being ixed in
concrete. XT-Speedo is intended as a framework for
measuring XSLT performance, not primarily as a set of
test programs which claim any kind of canonical status.
he variability of results across the diferent test data sets
often provides more information than any aggregate
numbers. he data included in the benchmark is a
motley collection, including some things that just
happened to be available (for example, iles from the
original Datapower XSLTMark benchmark), some that
we wrote specially because we wanted to investigate a
particular area of performance, some that we have used
in the past to study particular performance issues
reported by Saxonica customers, and also a translation of
the XMark XQuery benchmark, allowing us to see how
XSLT and XQuery performance compare. he XMark
data is particularly useful because it allows one to study
how performance varies as a function of the size of the
source data set.

Any attempts to aggregate results over all the tests are
inevitably lawed. While a igure that averages
performance across a range of diferent tasks is likely to
be more reliable than a igure for one task alone, it would
be quite wrong to assume that the tests in this
benchmark collection are representative of any real
production workload. Although they are nearly all real
programs designed to perform (or at least emulate) a
useful task rather than to stress obscure corners of the
processor, some of them perform rather untypical tasks,
such as parsing XPath expressions.

It is therefore quite legitimate, and positively
encouraged, to run the XT-Speedo benchmark with
diferent data iles that better characterize the workload
for which performance data is required. Unlike some
classic industry benchmarks such as TPC, we have no
aspiration to deine a performance metric that vendors
can publish on billboards to proclaim that their product
is 32.87% faster than the competition. Rather, the
benchmark is a resource that anyone can use to compare
diferent workloads in diferent environments in any way
that suits their purposes.

5. he Problem of Bias

We are acutely aware that our results are not impartial.
We know that our own motivations are divided between
wanting to know the truth about how our product rates
against the competition, and wanting our own product
to perform well.

he problem of bias arises from several sources:
requirements, expertise and motivation.

• Requirements: in designing the benchmark, we are
choosing what to measure, and the metrics we choose
relect our assumptions about what we think is
important. For example, we consider compile-time
performance much less important than run-time
performance. But others might have diferent
priorities. Similarly, all our measurements focus on
latency rather than throughput (the time to execute
transformations in a single thread). We quickly found
that one particular processor, Altova RaptorXML,
fares very badly on this metric, because it is designed
to execute in an HTTP server environment and is
clearly optimized for throughput rather than latency.
he fact that it scores very badly on our
measurements does not mean it would score equally
badly if we chose diferent metrics.

• Expertise: we know how to get the best possible
performance out of our own processor, but we have
far less knowledge of the products of our competitors.
We've seen third-party benchmarks that ran Saxon in
hideously ineicient ways (for example, taking the
input from a DOM tree, which can increase
transformation time by a factor of ten), and we know
that we are at risk of making equally bad choices
when running other products that we are less familiar
with.

• Motivation: we naturally want to get the best possible
results for our own product, so if the results don't
look good, we will instinctively try again with
diferent settings. We don't have the same motivation
for other products, so we are less likely to make the
efort. To take an example of this efect, when we
compared Saxon/C against libxml our irst attempts
showed Saxon/C in a very poor light. We naturally
investigated, and found a gross error in the way the
measurements were being computed. Can we honestly
say that we would have investigated as thoroughly if
the results had been the other way around?

he bias is there despite our best intentions. We want
good data on our competitors' products; we don't want
to deceive ourselves. Our best defence against bias is to
make the benchmark open source. Our hope is that we
will get contributions from others whose bias is diferent,
in particular, who will apply the same diligence to other
products as we apply to our own. Meanwhile, however,
the biased results are the only ones available.

Page 15 of 162

Benchmarking XSLT Performance

Because we know there is bias, we refrain from
publishing detailed data for our competitors' products in
this paper. he results are available on the web site, where
they can be corrected if they turn out to be wrong. hey
will also be presented in the conference, but as a snapshot
of current results, not as part of the permanent record.

he problem of bias arises far less when we are
comparing our own product, Saxon, running in diferent
versions and conigurations. As explained earlier, this is
in fact our primary motivation for producing the
benchmark. So in the next section these results can be
seen as more impartial than the competitive rankings.

6. Selected Results

In this section we will present some of the results we have
obtained by running the benchmark, and our analysis of
these results. We focus on ive particular comparisons: an
overall comparison of all processors on the Java platform
(all of which, with the exception of Saxon, are XSLT 1.0
processors); a comparison of Saxon on the Java
and .NET platforms; a comparison of Saxon with
XMLPrime, this being the only other XSLT 2.0
processor we were able to study; a comparison of Saxon
9.5 with a current development snapshot of the
forthcoming Saxon 9.6 release.; and a comparison of the
new Saxon/C processor with libxslt.

6.1. Ranking of Java Processors

A number of XSLT processors have been developed for
the Java platform: as well as Saxon, there are several
versions of Xalan, including the XSLTC processor which
was developed separately but is now bundled with the
Xalan distribution; there is James Clark's original XT
processor; there is the no-longer-available jd.xslt, and
there is IBM's commercial Websphere processor. Of
these, Saxon and Websphere are the only two processors
that support XSLT 2.0, and the only two that are still
actively developed. For commercial reasons we have not
been able to include Websphere in our study. A
comparative study of Java processors is therefore conined
to XSLT 1.0, and the interesting question for us is how
Saxon stacks up against products that have been around
and stable for many years.

Here are the XT-Speedo results we are currently
getting, using Saxon EE 9.5 as the baseline (recall that we
do not get tree to tree transform times for XT).

Table 1. Results overview table for Java drivers

 Times relative to SaxonEE-9.5-J driver (smaller values represent faster times)

Driver File to file transform Tree to tree transform Stylesheet compile

Saxon-6
1.108

min = 0.271, max = 4.33
3.915

min = 0.178, max = 429.71
0.204

min = 0.081, max = 0.779

SaxonHE-9.5-J
1.076

min = 0.512, max = 3.329
1.279

min = 0.325, max = 98.844
0.212

min = 0.083, max = 1.802

Xalan
2.452

min = 0.467, max = 13.379
8.911

min = 0.37, max = 568.723
0.283

min = 0.1, max = 1.284

XSLTC
0.989

min = 0.273, max = 3.407
3.142

min = 0.182, max = 257.989
0.544

min = 0.203, max = 3.195

XT
1.398

min = 0.336, max = 7.717
NaN

min = NaN, max = NaN
0.23

min = 0.088, max = 0.886

Page 16 of 162

Benchmarking XSLT Performance

he tree-to-tree transformation times shown here
illustrate the diiculty of getting good measurements on
the Java platform. For all processors, the "max" igure
indicates the presence of outliers in the results that create
a completely distorted bottom line. If these rogue results
are excluded, the igures end up being much closer to the
ile-to-ile timings. So we'll concentrate on the ile-to-ile
numbers as they appear to show a more regular picture.

hese igures show Saxon-EE performing 7% faster
than Saxon-HE on average, which is not as large a
margin as we would like given the investment we have
made in features such as optimization and byte-code
generation, but perhaps relects that these advanced
techniques make little impression on straightforward
transformations which dominate the test suite. he 10%
edge over the old Saxon 6 processor (which implemented
XSLT 1.0 only) is also a satisfactory outcome. In fact
these igures mask the fact that there are a few transform
times where Saxon-EE dramatically outperforms the
other processors because of the way in which it optimizes
joins: for the test xmark-q8-4 Saxon-EE is almost 100
times faster than Saxon-HE (most processors have
quadratic performance on this test, which Saxon-EE
optimization reduces to near-linear).

James Clark's original XT processor is now of largely
historic interest, but in the early years it was noted for its
lightning-fast speed, so it is good to note that we are now
40% faster.

Saxon's very signiicant advantage over the
interpretive version of Xalan should not surprise anyone
who has compared the two. he fact that Xalan, being
the default XSLT processor in Java, is both the most
widely-used and the slowest of these products by a
signiicant margin, tends to reinforce the message at the
beginning of this paper that coming irst in the
performance race brings no guarantee of market
leadership.

he only product ahead of Saxon-EE is the XSLTC
processor (which is bundled with Xalan). his processor
makes heavy use of bytecode generation and the results
appear to demonstrate that there are still advances to be
made in this area. (Saxon-EE also uses bytecode
generation, but primarily for the XPath part of the
processing. Most of our measurements of the efect of
bytecode generation have been with XQuery, where we
generally record a boost of around 25%, but with wide
variations. It is not surprising that the speed-up we get
for XSLT should be lower.)

Let's take a closer look at the comparison of Saxon-
EE with XSLTC results (see charts below). Here we see in
more detail that for ile to ile transform, in the majority
of tests XSLTC is just a few percentage points better than
Saxon-EE, with XSLTC generally slightly faster (with
just a few exceptions). For many of these tests, especially
the XMark queries which dominate the right-hand half
of the chart, the actual performance for ile-to-ile
transformation is dominated by parsing and serialization
costs, and it appears to be in these areas that XSLTC has
the edge.

Tests whose results are outside the 95th percentile range
are shown with an arrow to indicate they are of the scale.
he actual numbers are available in the detailed results
listings. In this particular example, the outliers are not
extreme; for all tests the ratio between XSLTC speed and
Saxon-EE speed is somewhere between 0.25 and 4.

Figure 2. XSLTC ile to ile transform speeds relative to SaxonEE-9.5-J

1

1/2

Faster

Baseline speed

For tree-to-tree transformation we see a very diferent
picture (below). For these transformations the times for
XSLTC are generally close to Saxon or a little slower on
the left-hand part of the chart where source documents
are mainly rather small, but on the right-hand side,
where most of the source documents are 1-4Mb in size,

XSLTC is signiicantly slower than Saxon-EE. What isn't
immediately obvious from these charts is that for Saxon,
the tree-to-tree time for the larger source documents is a
tiny fraction of the ile-to-ile time (in one typical
example, 0.24ms rather than 20.4ms), but in the XSLTC
case the timings for the two scenarios are much closer

Page 17 of 162

Benchmarking XSLT Performance

(10.1ms compared with 16.2ms). We suspect that we are
running XSLTC sub-optimally here by providing a
DOM as input. Perhaps it is not using the source tree

that we supply directly, but rebuilding it internally into
its own format.

Figure 3. XSLTC tree to tree transform speeds relative to SaxonEE-9.5-J

1

24

47

70

Slower

Baseline speed

Our inal metric is for stylesheet compile time. Here the
igures are fairly uniform across all tests, with XSLTC

compiling in around half the time of Saxon-EE on
average:

Figure 4. XSLTC stylesheet compile speeds relative to SaxonEE-9.5-J

1

1/2

1/3

1/4

Faster

Baseline speed

Both Saxon-EE and XSLTC compile to bytecode, so it is
not surprising that both are signiicantly slower at
compile time than the products that are pure
interpreters. It is noteworthy that Saxon-EE takes
signiicantly longer to compile the stylesheet than all the
other processors. We could argue that this is by design;
we deliberately do as much work as possible at compile
time in order to improve run-time execution speed. On
the other hand, there are workloads (the DocBook
rendering of this conference paper is an example) where
compiling the stylesheet takes longer than the actual
transformation, and there is deinitely an opportunity
here for Saxon to do better.

he conclusion we can draw from these results is that
while Saxon is not always the fastest, it performs well
overall. In particular, for anyone wanting to move
forward to XSLT 2.0 for the functionality and
productivity beneits it ofers, or who is attracted to
Saxon because the product is actively developed and
supported, performance is not an obstacle. For some
workloads, users have seen signiicant performance
beneits by moving to Saxon, but as the numbers show,
this cannot be expected to apply in every case.

he other apparent result, subject to conirmation, is
that the area where Saxon-EE has most improvement
potential is in parsing and serialization, not in
transformation proper. here are a great many workloads
where XML parsing (of the input) and serialization (of
the output) dominate the actual transformation time.

6.2. Comparing Saxon on Java with Saxon
on .NET

Saxon on .NET starts with a disadvantage: the product is
written in Java, and then cross-compiled using the
IKVMC compiler to the IL code supported on the .NET
platform. his inevitably introduces a performance
penalty.

he question for some time has been how large this
penalty is, and we have had conlicting reports on this
over the years. Sometimes we see an overhead of around
25%, but sometimes the .NET performance is reported
to be ive times slower.

Here are the XT-Speedo results we are currently
getting: File to ile transform relative time average 3.829
(min 1.136, max 8.716), tree to tree transform relative
time average 3.598 (min 0.239, max 8.938), stylesheet
compile relative time average 2.386 (min 0.168, max
3.454).

Page 18 of 162

Benchmarking XSLT Performance

Figure 5. SaxonHE-9.5-.NET ile to ile transform speeds relative to SaxonHE-9.5-J

1

3

5

7

Slower

Baseline speed

Figure 6. SaxonHE-9.5-.NET tree to tree transform speeds relative to SaxonHE-9.5-J

1

3

5

Slower

Baseline speed

Figure 7. SaxonHE-9.5-.NET stylesheet compile speeds relative to SaxonHE-9.5-J

1

1/2

Faster

Baseline speed

It is clear that generally Saxon on .NET is indeed
running transforms 3 to 4 times slower than on Java,
with some variation for diferent tests. Perhaps
surprisingly, Saxon on .NET sometimes performs tree to
tree transforms faster than on Java. By looking at the
table of results (not shown here) we see that .NET speeds
for tree to tree transform are only ever faster for
transforms which are very quick - those which take less
than 2ms (but .NET is not uniformly faster for these).
Generally performance worsens for longer transforms,
but we may note that in general the scaled pairs of xmark
tests have similar relative times.

he chart for compile times is particularly
remarkable, because most of the compilations are actually
faster on .NET, but the average is still slower: the
explanation for this paradox is that most of the
stylesheets are very small, but one test (on the far left of
the chart) compiles the DocBook stylesheets, which are
much larger than all the others combined. Again the
performance ratio seems worse for longer runs. One
possibility we need to explore is that we are measuring
diferent things on the two platforms (what are the
precise semantics of the instrumentation APIs we are
using?), or that the measurements are somehow sufering
from rounding errors.

We do not yet fully understand the reasons for the
discrepancies in these results. We have established that
there are no signiicant diferences in the code path with
Saxon, and we know that the overhead imposed by
IKVMC is not more than 25% or so. So far, our
investigations suggest that the problem lies somewhere in
the OpenJDK library. Saxon on .NET uses the
OpenJDK java library, cross-compiled to .NET using
IKVMC, and the data makes us suspect that there are
parts of this library that perform signiicantly worse than
the equivalent library delivered with the Oracle/Sun
JDK. We have conirmed this by building Saxon on the
Java platform to run with OpenJDK rather than with the
Oracle/Sun libraries. Hopefully, armed with these
measurements, we can identify a speciic cause within the
OpenJDK and eliminate it. As always, good
measurement data is the prerequisite to solving
performance problems, and we now for the irst time
have that data.

Page 19 of 162

Benchmarking XSLT Performance

6.3. Comparing Saxon with XMLPrime

For various reasons (which would make an interesting
subject for another talk), none of the XSLT 2.0
processors currently on the market are pure open source
products. Products from IBM, Intel, and MarkLogic are
purely commercial, while those from Saxonica, Altova,
and XMLPrime provide limited free versions in one form
or another, but ofer only commercial licenses for the full
product capability. his of course makes product
comparisons much more diicult and expensive.

he other XSLT 2.0 processors we have included in
our study are Altova's RaptorXML and XMLPrime. In
the case of Altova RaptorXML, the product architecture
is so diferent that the igures we obtained were not
meaningful to compare; each transformation requires an
HTTP request, and our performance data was
dominated by the costs of these requests. No doubt
much better igures could be obtained for Altova if we
did the measurements a diferent way, but for the present
we have discarded the numbers as not useful.

XMLPrime, on the other hand, has a very similar
architecture to Saxon; indeed, a cursory glance at its
structure shows that it was strongly inluenced by Saxon's
design. So measurements here should be useful.

he most interesting result here is to show relative
speeds for each test case. We see that the pictures for ile
to ile and tree to tree are closely related. In general,
XmlPrime is running just a little slower than Saxon EE,
but it is sometimes faster. here are just a few cases where
XmlPrime is much (more than 5 times) slower than
Saxon, and here we see the diference for both ile to ile
and tree to tree transform times. hese cases are all
among the tests which take longest, and so are
meaningful. In contrast, the cases for which XmlPrime is
much faster than Saxon are all very quick tests, so we
may consider these numbers to be less reliable and
meaningful - the fact that these cases are diferent for ile
to ile and tree to tree transforms, where we have already
said that the results correlate strongly, backs this up.

Because Saxon is faster on some tests, while XMLPrime
is faster on others, any "bottom line" comparison of the
two products is highly sensitive to the choice of test
material, and to the way in which the results for diferent
tests are aggregated. he formula we use for aggregation
shows ile to ile transform relative time average 4.581
(min 0.266, max 189.62), tree to tree transform relative
time average 9.753 (min 0.29, max 469.095), stylesheet
compile relative time average 1.18 (min 0.218, max
21.681). But from the charts, we see that these igures
would change greatly if a few anomalous cases were
removed. If outliers are discarded, XmlPrime is on
average perhaps about 2 times slower that Saxon on
transformation time.

We see more variation in the stylesheet compile
times, and here more generally XmlPrime performs a
little faster. here are two anomalous cases, for which
XmlPrime is more than 20 times slower - these are cases
that also showed far worse transform times.

Page 20 of 162

Benchmarking XSLT Performance

Figure 8. XmlPrime ile to ile transform speeds relative to SaxonEE-9.5-J

1

5

9

13

Slower

Baseline speed

Figure 9. XmlPrime tree to tree transform speeds relative to SaxonEE-9.5-J

1

11

21

31

Slower

Baseline speed

Figure 10. XmlPrime stylesheet compile speeds relative to SaxonEE-9.5-J

1

2

1/2

1/3

1/4

Faster

Baseline speed

he most appropriate way of using these results is not to
compute a crude ranking, but to try to understand where
each product is stronger and where it is weaker. However,
isolating the features of the individual tests to achieve
such an understanding is not an easy task.

6.4. Comparing Saxon 9.5 with Saxon 9.6

As already stated, a key aim in writing this benchmark
was to enable us to avoid regression when shipping new
Saxon releases. Measuring Saxon 9.6 (currently under
development) with the current 9.5 release is therefore
particularly relevant.

Looking across all tests, this is the data we are
currently seeing:

Figure 11. SaxonEE-9.6 ile to ile transform speeds relative to SaxonEE-9.5

1

1/3

1/5

1/7

Faster

Baseline speed

Figure 12. SaxonEE-9.6 tree to tree transform speeds relative to SaxonEE-9.5

1

1/3

1/5

1/7

Faster

Baseline speed

Page 21 of 162

Benchmarking XSLT Performance

Figure 13. SaxonEE-9.6 stylesheet compile speeds relative to SaxonEE-9.5

1

1.25

Faster

Slower

Baseline speed

What we would expect to ind here is that for the
majority of tests, the performance is much the same
between the two releases, but for a minority of tests, the
performance may beneit from deliberate enhancements
in particular areas, or it may reveal performance bugs
that we need to address before shipping the inal
product.

here is a lot of noise in the results. here's no reason
at all why the performance ratio between the two releases
should be diferent for tree-to-tree transforms than for
ile-to-ile transforms. he fact that some of the ratios are
signiicantly diferent can be taken as a measure of the
inaccuracies that arise during measurement of Java
performance, caused (we believe) by the failure to
suppress unrelated activity on the system under test, for
example Java garbage collection, network traic or virus
checking.

Nevertheless, the overall picture is good. Most tests
are showing a performance ratio close to one, and a
cluster of tests are showing a substantial improvement.

his cluster of tests was speciically designed to assess
the efectivness of a redesign in 9.6 in the
implementation of maps. Maps are a new feature in
XSLT 3.0, providing a data structure akin to what some
languages call "dictionaries" or "associative arrays": a set
of key-value pairs providing eicient access to the value
associated with any key. As beits a functional language,
the maps in XSLT 3.0 are immutable, and herein lies the
performance challenge. In Saxon 9.5, the
implementation uses a layering of hash maps and deltas,
with deltas being absorbed and consolidated when they
reach a certain size. In Saxon 9.6, this has been replaced
with a hash trie, similar to the structure used to
implement immutable maps in Scala.

To ensure that the new implementation performs
better than the old, we wrote a number of tests
speciically focused on creating, using, and modifying
maps. (We can note in passing that the existence of these
tests immediately means that our aggregate performance
results attach disproportionate importance to this area.)

Our irst results from these tests were very
discouraging: they showed the new code running ive
times slower than the old, and we were almost ready to

discard it. However, closer study revealed the reason for
the discrepancy: the implementation was caching data
relating to the types of the keys and values held in the
map, and this cache was not being maintained correctly.
Fixing this problem gave us new data which showed map
construction and retrieval taking a very similar amount
of time to the old release, addition of new entries being
slightly faster, and removal of existing entries
dramatically faster. Suicient evidence to justify
accepting the new code into the release.
Drilling down even further, we can see variation between
the diferent map tests. For example, test wordmap8 is
about 12 times faster on Saxon 9.6, whereas wordmap8a
is 1.5 times slower. he two tests are very similar: both
construct an index containing all the words in a source
document. he diference between the two tests is that
wordmap8a, after adding a new entry to the map, counts
how many entries are now present in the map using the
expression count(map:keys($map)). he implication is
that in the new data structure, the one thing that runs
slower is enumerating the keys present in the map. We
can live with this.
he results also show that compile-time performance has
got a little worse across all tests in 9.6. his is something
we may address before a inal release.

6.5. Comparing Saxon/C with libxslt

he newest addition to the Saxonica product stable is
Saxon/C: a version of the product issued as a native DLL
(or .so) library, suitable for calling from C or C++
applications, together with an interface ofering a PHP
extension API. his area has for many years been the
preserve of the open source libxslt product, which has an
excellent reputation, but which (like most of the open
source XSLT 1.0 processors) has not been upgraded to
XSLT 2.0. Saxonica is aiming to fulil the demand for an
XSLT 2.0 processor in this important space with a
version of Saxon that is cross-compiled to native code
using the Excelsior JET Java cross-compiler. Clearly the
main attraction of Saxon/C to libxslt users will be the
ability to take advantage of XSLT 2.0 features, but they
will want assurance that performance is adequate.

Page 22 of 162

Benchmarking XSLT Performance

Figure 14. Saxon/C tree to tree transform speeds relative to libxslt

1

4

1/4

1/7

Faster

Baseline speed

Our irst results comparing Saxon/C with libxslt are
shown below. he XT-Speedo driver for libxslt is
currently failing many tests when run in ile-to-ile
transform mode, so we present only the tree-to-tree
comparison. hese show Saxon/C consistently
performing better for the tests with larger source
documents, and a wide range of results for tests with
smaller documents. In the vast majority of cases,
however, the speed ratio between the products is between
0.5 and 2.0, so most users are likely to be content.
Producing a single metric for the speed ratio is not
something we can sensibly do, since it will depend
entirely on the selection of tests to run; the only thing we
can say with certainty is that Saxon/C consistently
performs better for larger source documents.

7. Conclusions

XT-Speedo was written primarily as a resource for use
within Saxonica, to enable us to test and compare the
performance of our various products. We developed it
because the existing performance tests we had been using
were woefully inadequate, and because there were too
many cases slipping through where, for some particular
workload, new Saxon releases showed regression over
previous releases despite the release as a whole passing all
performance tests.

We have published XT-Speedo as an open source project
for a variety of reasons. We want others to be able to
reproduce our results and perhaps show us where we have
got things wrong or made invalid assumptions. We want
others to be able to contribute test data and drivers
which we can then beneit from. We also hope that
others might be able to take it into areas that we haven't
yet tackled, like measuring throughput in a server
environment with a concurrent workload.

In this paper we have shown results for a number of
performance investigations where we have already found
that XT-Speedo gives us new insights into the behaviour
of our own products. In some cases the data conirms
what we knew and gives us conidence that all is well; in
other cases it suggests directions for more detailed
investigation, or for remedial action.

We stress again that performance is just one aspect of
product quality, one facet that can be used to compare
competitive products. It is not the only metric to be
used, and is not even our top objective. But we don't
want poor performance ever to be a reason for anyone
not to use our software. From that perspective, it's not a
major concern if Saxon doesn't come at the top of every
league table, but the measurements we have taken so far
give us conidence that we are in every case within a few
percentage points of the leader. More importantly, they
tell us where it is possible to do even better.

Page 23 of 162

Benchmarking XSLT Performance

	Benchmarking XSLT Performance
	1. Objectives and Motivation
	2. Previous work
	3. The design of the XT-Speedo benchmark
	4. Test Data
	5. The Problem of Bias
	6. Selected Results
	6.1. Ranking of Java Processors
	6.2. Comparing Saxon on Java with Saxon on .NET
	6.3. Comparing Saxon with XMLPrime
	6.4. Comparing Saxon 9.5 with Saxon 9.6
	6.5. Comparing Saxon/C with libxslt

	7. Conclusions

