Multi-user interaction
using client-side XSLT

O'Neil Delpratt, Saxonica <onei | @axoni ca. conp
Michael Kay, Saxonica <m ke@axoni ca. conp

Abstract

We describe two use-case applications to illustrate the capabilities of the first XSLT 2.0 processor designed

to run within web browsers. The first isatechnical documentation application, which permits browsing and
searching in aintuitive way. We then present a multi-player chess game application; using the same XSLT 2.0
processor asthefirst application, it isin fact very different in purpose and design in that we provide multi-user
interaction on the GUI and implement communication viaa socia media network: namely Twitter.

Table of Contents

g1 0T (1 1 o o PP 1
Browsing and searching technical documentationcocouiiiiiiiiii e 2
XML 0N the SEIVES ..o e e e e e eaas 3
Implementing the User INtErfaceooviviiiiii e 4
(019155 AN o] o 1o (o] o PP 8
F N o 011 = o (1 SN 9
GUI interaction and Twitter COMMUNICAIONccvuniiiiieiii e e e e e 10
101915530 7= 10 01 oo [o 13
ACKNOWIEAGEMENT .. oeeii e e e e e e e e e e eaa s 15
REFEIEINCESeeii e 15
Introduction

One of the original aims of XSLT was that it should be possible to use the language to convert
XML documents to HTML for rendering on the browser. This aim has largely been achieved, but
it took along time before XSLT processors with a sufficient level of conformance and performance
were available across all common browsers; and while that was happening, the landscape changed.
It changed in several ways:

* XSLT 2.0 came along, raising the level of capability of the language and making the limitations
of XSLT 1.0 even more obvious

* XML processing in the browser went out of fashion, in good measure because of the absence of
universal XSLT support (and because, for users writing in Javascript, handling JSON was a lot
easier)

* Microsoft's near-monopoly on browser installations was broken, with the result that web
applications could only adopt new technol ogieswhen there was consensusto i mplement them across
al the browsers; this added further to the disinclination of browser vendors to improve the level
of XML support

* Web 2.0 came along: the web was no longer about producing pretty renditions of static documents,
but about generating interactive applications. So XSLT asoriginally conceived was only capable of
doing half the job. Why would anyone want to use a mix of two languages (XSLT and Javascript)
when Javascript could tackleit all?

» Mobile devices became as common aclient platform as the traditional desktop, increasing the need
for content repurposing to meet different device capabilities

Multi-user interaction
using client-side XSLT

Javascript has become a mature and powerful language, and there are good reasons for its popularity.
However, in the areas where XSLT is strong, Javascript is at its weakest. Simple document
transformation tasks, like sorting or grouping the rows of a table, or generating a table of contents,
are painfully tortuous. So there are good reasons for feeling that the user community has a right to
expect something better; developers writing web applications where document manipulation plays a
significant role are currently using tools that deliver very poor productivity.

But if XSLT isto be viable in this space, it needs to be able to do far more than simple XML to
HTML conversion; it also needs to handle the user interaction, and the other tasks that a modern
web application is expected to perform, such as “behind-the-scenes’ interaction with the server (still
sometimes known by the inappropriate name of AJAX).

Although the rule-based processing model of XSLT was designed primarily with document rendition
in mind (it lends itself well to handling documents with unpredictable or variable structure), it turns
out that the same model iswell suited to handling the other asynchronous and unpredictabl e tasks that
arise in aweb application. The way in which XSLT “push-mode” stylesheets are written to handle
events from the XML parser is not at all dissimilar to the kind of event-based programming used in
many graphical user interface toolkits.

Thistalk will examine how thefirst implementation of XSLT 2.0 on the browser, Saxon-CE, addresses
this opportunity. Thiswill be done by demonstrating example applicationsin which it is deployed.

We will look in particular at two applications.

Thefirst isan application for browsing and searching technical documentation. Thisisclassic XSLT
territory, and therequirement istraditionally met by server-side HTML generation, either in advance at
publishing time, or on demand through servlets or equivalent server-side processing that invoke XSLT
transformations, perhaps with some caching. While this is good enough for many purposes, it falls
short of what users had already learned to expect from desktop help systems, most obviously in the
absence of awell-integrated search capability. Even thiskind of application can benefit from Web 2.0
thinking, and wewill show how the user experience can beimproved my moving the XSLT processing
to the client side and taking advantage of some of the new facilities to handle user interaction.

The second application is a classic Web 2.0 use case, an interactive multi-player game, where
the communication between the players takes place over an underlying Twitter feed. Although the
presentation of this application will no doubt be entertaining to the conference audience, the purpose
is a serious educational one: the design of the application will be studied to show how real benefits
are obtained by coding it in a high-level declarative language like XSLT, with a push-based event-
driven approach at the heart of its processing model. It also gives an opportunity to examine some
of the security issues associated with client-side processing, proxy authentication, cross-site scripting
congtraints, and the like.

XSLT 2.0 on the browser has been demonstrated at XML Prague in previous years, but only with
very simple applications. Sincelast year's conference, Saxon-CE has become afully-released product,
and its capabilities have considerably increased. In particular, the interaction with the rest of the
browser environment has been greatly strengthened, and these demonstrationswill illustrate what can
be achieved by taking advantage of these new capabilities.

Browsing and searching technical
documentation

Thefirst application we examineis an application for browsing technical documentation: specifically,
it is used for display the Saxon 9.4 documentation on the Saxonica web site. (It is described as a
demonstration, but it has been running successfully for several months, and we intend to cut over to
this as the primary means of displaying the documentation at the next release.)

The documentation for Saxon 9.4 can be found at:

* http://www.saxonica.com/documentation9.4-demo/index.html

http://www.saxonica.com/documentation9.4-demo/index.html

Multi-user interaction
using client-side XSLT

When you click on this link for the first time, there will be a delay of afew seconds, with a comfort
message telling you that Saxon is loading the documentation. This is not strictly accurate; what is
actually happening isthat Saxon-CE itself is being downloaded from the web site. This only happens
once; thereafter it will be picked up from the browser cache. However, it is remarkable how fast this
happens even the first time, considering that the browser is downloading the entire Saxon-CE product
(800K b of Javascript source code generated from around 100K lines of Java), compiling this, and then
executing it before it can even start compiling and executing the XSLT code.

The documentation is presented in the form of a single-page web site. The screenshot in Figure 1
shows its appearance.

Figure 1. Technical documentation application in the browser

i

| | 3 Saem T Sz £ Extaniion +
4 \I & % A s m By - Fla @~
I -

& Mo Visited || Getimng Saried 55 Swoaicy Liomss Tood Laiest Hapdlinss =5 Sonica NELT and M0 . 55 Seeonicx imd 55 Saeonics - Dnline Shap

P

F |
- =

Screen-shot of the Technical documentation in the browser using Saxon-CE

Note the following features, called out on the diagram. We will discuss below how these are
implemented in Saxon-CE.

1. The fragment identifier in the URL

2. Table of contents

3. Search box

4. Breadcrumbs

5. Linksto Javadoc definitions

6. Linksto other pages in the documentation

7. The up/down buttons

XML on the Server

This application has no server-side logic; everything on the server is static content.

Onthe server, the content isheld as a set of XML files. Because the content isfairly substantial (2Mb
of XML, excluding the Javadoc, which is discussed later), it's not held as a single XML document,
but as a set of a20 or so documents, one per chapter. On initial loading, we load only thefirst chapter,
plus a small index document listing the other chapters; subsequent chapters are fetched on demand,
when first referenced, or when the user does a search.

Multi-user interaction
using client-side XSLT

Our first idea was to hold the XML in DocBook form, and use a customization of the DocBook
stylesheets to present the content in Saxon-CE. This proved infeasible: the DocBook stylesheets are
so large that downl oading them and compiling them gave unacceptabl e performance. In fact, when we
looked at the vocabulary we were actually using for the documentation, it needed only atiny subset
of what DocBook offered. We thought of defining a DocBook subset, but then we realised that all
the elements we were using could be easily represented in HTML5 without any serious tag abuse (the
content that appears in highlighted boxes, for example, istagged as an <asi de>). So the format we
areusing for the XML isin fact XHTMLS5. This has a couple of immediate benefits: it means we can
usetheHTML DOM inthe browser to hold the information (rather than the XML DOM), and it means
that every element in our source content has a default rendition in the browser, which in many cases
(with alittle help from CSS) is quite adequate for our purposes.

Although XHTML 5.0 is used for the narrative part of the documentation, more specialized formats
are used for the parts that have more structure. In particular, there is an XML document containing
a catalog of XPath functions (both standard W3C functions, and Saxon-specific extension functions)
which is held in a custom XML vocabulary; and the documentation also includes full Javadoc API
specificationsfor the Saxon code base. Thiswas produced from the Java source code using the standard
Javadoc utility along with a custom "doclet" (user hook) causing it to generate XML rather than
HTML. The Javadoc in XML format is then rendered by the client-side stylesheets in a similar way
to the rest of the documentation, allowing functionality such as searching to be fully integrated.

Thefact that XHTML isused asthe delivered documentation format does not mean, of course, that the
client-side stylesheet has no work to do. Thiswill become clear when we look at the implementation
of the various features of the user interaction.

For the most part, the content of the site is authored directly in the form in which it is held on the site,
using an XML editor. Thework carried out at publishing time consistslargely of validation. There are
acoupleof exceptionstothis: the Javadoc content is generated by atool from the Java source code, and
we also generate an HTML copy of the site as afallback for use from devices that are not Javascript-
enabled. There appears to be little call for this, however: the client-side Saxon-CE version of the site
appearsto give acceptabl e resultsto the vast magjority of users, over awide range of devices. Authoring
the sitein itsfinal delivered format greatly simplifies the process of making quick corrections when
errors are found, something we have generally not attempted to do in the past when republishing the
site was amagjor undertaking.

Implementing the User Interface

This section discusses how the various aspects of the user interface are implemented. The
implementation is done almost entirely in XSLT 2.0, with afew helper functions (amounting to about
50 lines) of Javascript. The XSLT isin 8 modules totalling around 2500 lines of code. The Javascript
code is mainly concerned with scrolling a page to a selected position, which in turnis used mainly in
support of the search function, discussed in more detail below.

The URI and Fragment Identifier
URIsfollow the "hashbang" convention: a page might appear in the browser as:
* http://mww.saxoni ca.com/documentati on9.4-demo/index.html#! configuration

For some background on the hashbang convention, and an analysis of its benefits and drawbacks, see
Jeni Tennison's article at [11]. From our point of view, the main characteristics are:

» Navigationwithinthesite (that is, between pages of the Saxon documentation) doesn't require going
back to the server on every click.

» Each sub-page of the site has a distinct URI that can be used externally; for example it can be
bookmarked, it can be copied from the browser address bar into an email message, and so on. When
a URI containing such a fragment identifier is loaded into the browser address bar, the containing
HTML pageisloaded, Saxon-CE isactivated, and the stylesheet | ogic then ensuresthat the requested
sub-page is displayed.

http://www.saxonica.com/documentation9.4-demo/index.html#!configuration

Multi-user interaction
using client-side XSLT

* It becomes possible to search within the site, without installing specialized software on the server.

 The hashbang convention is understood by search engines, allowing the content of a sub-pageto be
indexed and reflected in search results asif it were an ordinary static HTML page.

The XSLT stylesheet supports use of hashbang URIs in two main ways. when a URI is entered in
the address bar, the stylesheet navigates to the selected sub-page; and when a sub-page is selected in
any other way (for example by following alink or performing a search), the relevant hashbang URI
is constructed and displayed in the address bar.

The fragment identifiers used for the Saxon documentation are hierarchic; an exampleis
* #lschema-processing/validation-api/schema-jaxp

The first component is the name of the chapter, and corresponds to the name of one of the XML files
on the server, inthiscaseschena- pr ocessi ng. xm . The subsequent components are the values
of i d attributes of nested XHTML 5 <sect i on> elements within that XML file. Parsing the URI
and finding the relevant subsection is therefore a simple task for the stylesheet.

The Table of Contents

Thetable of contents shown in theleft-hand column of the browser screenisconstructed automatically,
and the currently displayed section is automatically expanded and contracted to show its subsections.
Clicking on an entry in the table of contents causes the relevant content to appear in the right-hand
section of the displayed page, and also causes the subsections of that section (if any) to appear in the
table of contents. Further side-effects are that the URI displayed in the address bar changes, and the
list of breadcrumbsis updated.

Some of thislogic can be seen in the following template rule:

<xsl:tenplate match="*" node="handl e-itentlick">
<xsl :variabl e nane="ids"
sel ect="(., ancestor::li)/@d"
as="xs:string*"/>
<xsl :vari abl e name="new hash"
sel ect="string-join($ids, '/')"/>
<xsl :vari abl e nane="i sSpan"
select="@lass eq 'item"
as="xs: bool ean"/ >
<xsl :for-each select="if ($isSpan) then .. else .">
<xsl : choose>
<xsl : when test="@l ass eq 'open' and not ($i sSpan) ">
<i xsl:set-attribute nane="cl ass" select=""'closed "/>
</ xsl : when>
<xsl : ot herw se>
<xsl : sequence sel ect="js:disableScroll()"/>
<xsl : choose>
<xsl : when test="f:get-hash() eq $new hash">
<xsl :vari abl e name="new- cl ass"
sel ect ="f: get-open-cl ass(@l ass) "/ >
<i xsl:set-attribute nane="cl ass"
sel ect =" $new-cl ass"/ >
<xsl:if test="enpty(ul)">
<xsl:call-tenpl ate nanme="process- hashchange"/ >
</xsl:if>
</ xsl : when>
<xsl : ot herw se>
<xsl : sequence sel ect ="f: set-hash($new hash)"/>
</ xsl : ot her wi se>

Multi-user interaction
using client-side XSLT

</ xsl : choose>
</ xsl : ot herw se>
</ xsl : choose>
</ xsl :for-each>
</ xsl : tenpl at e>

Most of this code is standard XSLT 2.0. A feature particular to Saxon-CE is the i xsl : set -
at t ri but e instruction, which modifiesthe value of an attributeinthe HTML DOM. To preservethe
functional nature of the XSLT language, this works in the same way as the XQuery Update Facility:
changes are written to a pending update list, and updates on thislist are applied to the HTML DOM at
the end of atransformation phase. Each transformation phasethereforeremains, to adegree, side-effect
free. Likethe xsl : resul t - docunent instruction, however, i xsl : set-attri but e delivers
no result and is executed only for its external effects; it therefore needs some special attention by the
optimizer. Inthisexample, whichisnot untypical, theinstructionisused to changethecl ass attribute
of an element in the HTML DOM, which has the effect of changing its appearance on the screen.

The code invokes afunction f : set - hash which looks like this:

<xsl:function nanme="f:set-hash">

<xsl : par am nanme="hash"/ >

<i xsl : set-property nane="l| ocati on. hash" sel ect="concat('!"', $hash)"/>
</ xsl : function>

This has the side-effect of changing the contents of thel ocat i on. hash property of the browser
window, that is, the fragment identifier of the displayed URI. Changing this property also causes the
browser to automatically update the browsing history, which means that the back and forward buttons
in the browser do the right thing without any specia effort by the application.

The Search Box

The search box provides a simple facility to search the entire documentation for keywords.
Linguistically it iscrude (thereisno intelligent stemming or searching for synonymsor related terms),
but nevertheless it can be highly effective. Again thisisimplemented entirely in client-side XSLT.

Theinitia event handling for a search request is performed by the following XSLT template rules:

<xsl:tenplate match="p[@l ass eq 'search']" node="ixsl :onclick">
<xsl:if test="$usesclick">
<xsl:call-tenpl ate nane="run-search"/>
</xsl:if>
</ xsl : tenpl at e>

<xsl:tenplate match="p[@l ass eq 'search']" node="i xsl : ont ouchend" >
<xsl:call-tenpl ate nane="run-search"/>
</ xsl : tenpl at e>

<xsl:tenpl ate nanme="run-search">
<xsl :vari abl e name="text"
sel ect="normal i ze- space(i xsl: get($navlist/div/input, 'value')
<xsl:if test="string-length($text) gt 0">
<xsl:for-each select="$navlist/../div[@lass eq 'found]">
<i xsl:set-attribute nane="styl e: display" select=""block'"/>
</ xsl: for-each>
<xsl:result-docunent href="#findstatus" nmethod="repl ace-content">
sear ching. .
</ xsl:result-docunment >
<i xsl: schedul e-action wait="16">
<xsl:call-tenpl ate nane="check-text"/>

Multi-user interaction
using client-side XSLT

</i xsl : schedul e-acti on>
</xsl:if>
</ xsl : tenpl at e>

The existence of two templaterules, onerespondingtoanoncl i ck event, and onetoont ouchend,
is due to differences between browsers and devices; the Javascript event model, which Saxon-CE
inherits, does not always abstract away all the details, and this is becoming particularly true as the
variety of mobile devicesincreases.

Theuseof i xsl : schedul e- acti on hereisnot so much to force adelay, asto cause the search
to proceed asynchronously. This ensures that the browser remains responsive to user input while the
search isin progress.

Thetemplate check- t ext , which is called from this code, performs various actions, one of which
is to initiate the actual search. Thisis done by means of a recursive template, shown below, which
returns alist of paths to locations containing the search term:

<xsl:tenplate match="section|article" node="check-text">
<xsl : par am nanme="search"/ >
<xsl : param nanme="pat h" as="xs:string" select=""""/>
<xsl : vari abl e nanme="newpat h" sel ect ="concat ($path, '/', @d)"/>
<xsl:variable name="text" sel ect="1ower-case(
string-join(*[not(local-name() = ('section',"article'))],"'!"))"/>
<xsl : sequence select="if (contains($text, $search))
t hen substring($newpat h, 2)
else ()"/>
<xsl : appl y-tenpl at es node="check-text" sel ect="section|article">
<xsl : wi t h- param nanme="search" sel ect ="$search"/>
<xsl : wi t h- param nane="pat h" sel ect =" $newpat h"/ >
</ xsl : appl y-t enpl at es>
</ xsl : tenpl at e>

Thislist of pathsisthen used in variousways: the sections containing selected termsare highlighted in
the table of contents, and abrowsablelist of hitsisavailable, allowing the user to scroll through all the
hits. Within the pagetext, search termsare highlighted, and the page scrolls automatically to aposition
wherethe hitsarevisible (this part of thelogicis performed with the aid of small Javascript functions).

Breadcrumbs

In a horizontal bar above the table of contents and the current page display, the application displays
alist of "breadcrumbs’, representing the titles of the chapters/sectionsin the hierarchy of the current
page. (The name derives from the story told by Jerome K. Jerome of how the Three Men in a Boat
laid atrail of breadcrumbs to avoid getting lost in the Hampton Court maze; the idea is to help the
user know how to get back to a known place.)

Maintaining this list is a very simple task for the stylesheet; whenever a new page is displayed, the
list can be reconstructed by searching the ancestor sections and displaying their titles. Each entry in
the breadcrumb list is a clickable link, which although it is displayed differently from other links, is
processed in exactly the same way when a click event occurs.

Javadoc Definitions
As mentioned earlier, the Javadoc content is handled alittle differently from the rest of the site.

This section actually accounts for the largest part of the content: some 11Mb, compared with under
2Mb for the narrative text. It is organized on the server as one XML document per Java package;
within the package the XML vocabulary reflects the contents of a package in terms of classes, which
contains constructors and methods, which in turn contain multiple arguments. The XML vocabulary
reflectsthislogical structure rather than being pre-rendered into HTML. The conversionto HTML is
all handled by one of the Saxon-CE stylesheet modules.

Multi-user interaction
using client-side XSLT

Links to Java classes from the narrative part of the documentation are marked
up with a speciad class attribute, for example <a cl ass="j aval i nk"
href =" net. sf. saxon. Confi gurati on">Confi gurati on</ a>. A specia template rule
detectstheoncl i ck event for such links, and constructsthe appropriate hashbang fragment identifier
fromitsknowledge of the content hierarchy; the display of the content then largely usesthe samelogic
asthe display of any other page.

Links between Sub-Pages in the Documentation

Within the XML content representing narrative text, links are represented using conventional
relative URIs in the form <a cl ass="bodylink" href="../../extensionsll/
saxon. nessage" >saxon: message</ a>. This "relative URI" applies, of course, to the
hierarchic identifiers used in the hashbang fragment identifier used to identify the subpages within the
site, and the click events for these links are therefore handled by the Saxon-CE application.

The Saxon-CE stylesheet contains a built-in link checker. Thereis avariant of the HTML page used
to gain access to the site for use by site administrators; this displays a button which activates a check
that all internal links have a defined target. The check runs in about 30 seconds, and displays a list
of all dangling references.

The Up/Down buttons

These two buttons allow sequential reading of the narrative text: clicking the down arrow navigates
to the next page in sequence, regardless of the hierarchic structure, while the up button navigates to
the previous page.

Ignoring complications caused when navigating in the sections of the site that handle functions and
Javadoc specifications, the logic for these buttons is:

<xsl : tenpl at e name="navpage" >
<xsl : param name="cl ass" as="xs:string"/>
<xsl:variabl e name="ids" sel ect ="t okeni ze(f:get-hash(),'/")"/>
<xsl:variabl e name="c" as="node()"
select="f:get-item $ids, f:get-first-item$ids[1]), 1)"/>
<xsl :vari abl e name="new1i"
select="if ($class eq '"arrowp') then
($c/ preceding::l1i[1] union

$c/parent::ul/parent::li)[last()]
else ($c/ul/li union $c/following::1i)[1]"/>
<xsl :vari abl e name="push" sel ect="string-join(($newli/ancestor::li union

$newli)/@d,'/"'")"/>
<xsl : sequence sel ect="f: set-hash($push)"/>
</ xsl :tenpl at e>

Here, the first step is to tokenize the path contained in the fragment identifier of the current URL
(variable $i ds). Then the variable $c is computed, as the relevant entry in the table of contents,
which is structured as anested hierarchy of ul and| i elements. Thevariable $new- | i isset tothe
previous or following | i element in the table of contents, depending on which button was pressed,
and $push is set to a path containing the identifier of this item concatenated with the identifiers of
itsancestors. Finally f : set - hash() iscalled to reset the browser URL to select the subpage with
this fragment identifier.

Chess Application

In this section we discuss the second of the two Saxon-CE applications. namely the multi-player chess
game, which has been written primarily in XSLT and makes use of a proxy server to communicate
via Twitter. There are three interesting and reasonable self-contained parts to the application, which
we will examine in turn: the communication mechanism, the interactive user interface, and the chess
game logic. But we will start by describing the overall application architecture.

Multi-user interaction
using client-side XSLT

Architecture

The multi-player game over Twitter consists of two components as shown in Figure 2: The server-
side component containing tooling to handle Twitter communication and a client-side component
containing the Saxon-CE application.

Figure 2. Architecture of Chess Game application

| Server I Client |

|
Servlex

l | I Saxon-CE l

| (Twitterd) in Saxon extension functions) |
| |

| |
| |

A

| Tcocfess | gl XSLT is l
| stylesheet

| o |

Eoos ws pu ek po es s s e es e et ms s |

Twitter

The architecture of the chess game application on Saxon-CE

Client-side Component

The client-side component is core. It consists of the Saxon-CE XSLT 2.0 processor for the browser, a
single HTML file, two stylesheets and a Javascript file. The HTML file contains a skeleton webpage;
the invariant parts of the display are recorded directly in HTML markup, and the variable parts are
marked by empty <div> elements whose content is controlled from the XSLT stylesheets. The first
stylesheet handles the rendering of the chess board, response to user input, and calls to the Javascript
to perform Twitter support. The second stylesheet handles the chess game validation and general game
play moves. Development with Saxon-CE often eliminates the need for Javascript, but at the same
timeit happily can be mixed with callsfrom XSLT. Inthis case wefind it useful to abstract the Twitter
http GET requests to a Javascript layer.

Server-side Component

The purpose of the server-side component is to proxy communication with Twitter both to receive
and send tweets. The original aim of this project wasto develop an application where all functionality
including Twitter communication was done client-side. However there are security and configuration
concernswith sending tweetsdirectly fromthe client-side. Asdiscussed by [7], Javascript isapowerful
language with good browser support, but the fundamental problem with using Javascript is that
the source code is viewable. This means the consumer keys required in the Twitter authentication
mechanism (OAuth) are exposed, which would compromise the application; and hence a server-side
approach is appropriate.

We use Twitter's OAuth protocol [10] in favour of the Basic Auth facility, which is now deprecated
and not supported. The OAuth authentication protocol allows a user to approve an application to act
on their behalf without disclosing password credentials; security involves the use of consumer keys
held by the application.

The API callsof OAuth are achieved using the Twitter4J API [8]. Twitter4Jisan unoffical Javalibrary
for the Twitter API, which we integretein the Servliex webapp [9] as Saxon extension functions called
from within XSL. Servlex provides a way to write web applications directly in XSLT, XQuery and/
or XProc. The request URIs are mapped to XSLT functions alongside variables which allow passing
of data between the server and the client.

Multi-user interaction
using client-side XSLT

It should be emphasized that the server-side components are used only to proxy communication
between the client and Twitter. The only data retained on the server is the Twitter authentication
credentials. It is therefore not necessary for the two players to use the same server. Indeed, since the
protocol for exchanging movesin Twitter messagesisvery simple, thereisnoreal need for both players
to be using the same client-side application. One could even envisage one of the players entering
moves (as tweets) directly from the keyboard.

GUI interaction and Twitter Communication

Figure 3. Chessboard application in browser

| | Saxon-CE Chess t

& =» C |[)192.168.0.107/ce-te essgame2/che e =

Multi-user interaction using Saxon-CE

Black's next move (i.e. a2-b3)? |c2-c3 | Submit

Twitter Players

& White:
|sxnchess1
¥ Black:
|sxnchess2 ~ W self
Request Move Restore
End Game . .. Reset Board |

Move History
White Black
h2-h3 b7-b6
b2-b3 b&-ch
g2-g4 h7-hé
c2-c3

B rafe| 3

Screen-shot of the chess board application in a browser.

The chess game application in multi-player mode can played over the internet in the browser. The
appearance of the graphical user interface (GUI) illustrated in Figure 3. The main components are;

» Thedisplay of the current state of the board
» Thedisplay of the history of the game

* Input fieldsand buttons allowing movesto be made (or other actions, such asresigning). The normal
way of making a move is by drag-and-drop in the intuitive way. Support for this varies a little bit
by platform, and on some devices; users may find it easier to enter moves from the keyboard in
traditional chess notation.

When a user has made a move, we rely on the user to wait or watch for the opponent's reply (which
might be after a few seconds or after a day or more, depending on the style of play). We don't poll
for the move within the browser, or "push” the move from the server to the browser when it arrives.
Instead, users have many tools available to a ert them to tweets from their opponent, and when atweet

10

Multi-user interaction
using client-side XSLT

arrivesthey can click the"Request Move" button to accept their opponent'sreply. Alternatively, if they
have closed the browser in the meantime, they can reopen the application by loading the HTML page,
and clicking "Restore", which restores the current state of play by reference to the Twitter timeline.

Figure 4 shows a flow diagram of the states and actions in the chess game application. The diagram
is split into four four main sections: user interactions; Client which controls the user actions and
interfaces with the server-side; Server which interfaces client actions with Twitter using published
APIs; and the final section is Twitter itself.

Figure 4. Data flow diagram of the Chess game application

o] request s - : : Enter move s :
Interactions Resldiegaine i i opponent move display ¢ (click/ drag and drop) | i display/enter-pin
User i i : R ; U
e %] 4 AN
K
Client Make-move
fetch-move Game-Validation authorizeUser

Saxon-CE /

Serialize-board

Server getTimeline(user) I

Serviex

updateStatus{user, status)
(Extension
function

Twitterd)

Twitter 2 2 ¥ N |

updateStatus | OAuthRequestToken

updatesStatus{user, status)

authorizeUser{user, pin} |

Access
Token
StoreAccessToken

OAuthAccessToken

I

v

authorizationURL

getTimeline

Diagram shows the interaction between user, client, server and Twitter.

The server is required to communicate data between the chess game (on the client) and on Twitter.
Servlex works as a dispatching and routing mechanism to components (implemented as XSLT
stylesheets), applying a configuration-based mapping between the request URI and the component
used to process that URI. The container communicates with the components by means of an XML
representation of the HT TP request, and receivesin turn an XML representation of the HT TP response
to send back to the client. There are three XSLT functions to handle the Twitter operations: update
Status, get timeline and authenticate user. These functions are written in Java using the Twitter4J
library and made available as Saxon extension functions called from the XSLT.

1. updateStatus: At the start of a new game we assume the user is already authenicated. The player
attempts a move on their chess board, which activates a Twitter submission. A request is made to
servlex with the following URI pattern:

http://192.168.0.2:8080/servl ex/chess/updateStatus?user=johnWhite& status=@maryBlack
%20RNBQK BNRPPPPPPPP p pPPP_ppprnbgkbnrée20e2-
e4%20p:1

We observe the URI pattern updateStatus and the parameter data after ? is used to route the XSLT
function and to supply the values required in the function. There are two parameters: the name
of the user (in this case the user making the move), and the message to be sent. The message in
this case includes the name of the other player, the current state of the board (represented as a
simple string of 64 characters), and the move itself in algebraic chess notation (e2-e4 indicating an
advance of the Kings Pawn by two squares). The message also includes the ply number (in chess

11

http://192.168.0.2:8080/servlex/chess/updateStatus?user=johnWhite&status=@maryBlack%20RNBQKBNRPPPPPPPP____________________p___________pppp_ppprnbqkbnr%20e2-e4%20p:1
http://192.168.0.2:8080/servlex/chess/updateStatus?user=johnWhite&status=@maryBlack%20RNBQKBNRPPPPPPPP____________________p___________pppp_ppprnbqkbnr%20e2-e4%20p:1
http://192.168.0.2:8080/servlex/chess/updateStatus?user=johnWhite&status=@maryBlack%20RNBQKBNRPPPPPPPP____________________p___________pppp_ppprnbqkbnr%20e2-e4%20p:1

Multi-user interaction
using client-side XSLT

terminology, a move consists of a ply by white followed by a ply by black). This we consider as
the move number or incremented count in the current session.

When an updateStatus request is processed there are two possible outcomes. success or failure.
Success means the player's Twitter timeline status has been updated as a result of successful
verification of the user's access token, in which case the client receives a"Ok" response, and the
tweet is sent, hopefully reaching the other player.

If the updateStatus request fails it means the player has not been granted authorization to the
application. Inthis case werequirethe player to authenicate the application via Twitter. We achieve
Twitter authentication using the PIN-based OAuth flow. Using Twitter4J we request an access
token by requesting, from Twitter, aURL for the user to login and grant authorization. ThisURL is
returned back to the client. Upon receipt, the client application allows the user the option to launch
the URL in a new window. We discuss this further in step 2.

2. authenicateUser: To authenticate auser to play the chess gamethe client application asksthe player
to authenicate the application in Twitter. The client receives a URL from Twitter with a generated
PIN number. The user will see a PIN code, with instructions to return to the application and enter
this value in a form. The value is then sent back from the client as HTTP GET request in the
following pattern:

http://192.168.0.2:8080/servlex/chess/authenti cateUser 2user=johnWhite& pin=12345

Thisis submited to Twitter viathe servlex with consumer and user request tokens. If authorization
is successful, an access token is sent in a callback by Twitter to the servlex code, and the server
retains the details in persistent storage for future verification.

3. getTimeline: Thisfunctionisused to request an opponent'smove or restoreagamefromtwo players
Twitter feed. The URL pattern is as follows:

http://192.168.0.2:8080/servlex/chess/timeline?user=maryBlack

To start play, players are required to enter their own Twitter screen-name and that of the opponent
whom they will play. (Without this, the game is still playable in stand-alone mode without Twitter
functionality, but we will ignore this option). The user has three main forms of action:

1. Enter-move: When it's the player's turn to make a move, this is done by a simple drag and drop
or click on the piece you want to move and then click on the square you want to move it to. An
event is then triggered and fired by the browser. Saxon-CE handles this event and firesan XSLT
template rule for the <div> element representing the target square of the move. Thisisdonein the
ChessGame XSLT stylesheet. These template rules do basic checks on the syntax of the move and
generate an XML view of the board, which isthen passed through with the move data to the game-
validation template. The game validation we discuss later, but upon successful validation of the
move, the logic board is serialized and updated on the DOM view of the HTML page, which leads
toit being visually represented on the screen. If the player attemptsaninvalid move, thereissimilar
visual feedback, and the board state remains unaltered.

A player's move is communicated to the opponent via Twitter. This is achieved as follows. we
make an HTTP get request viaa Javascript method called from the client-side XSLT. On the server
the Servlex web application manages the HT TP requests.

2. Request opponent move: When an opponent has made their move, a Twitter message is sent which
appearson their Twitter timeline, it mentionsthe opposing player's screen-name allowing the player
to pick up the move when they press request-move.

3. Restore game: Sometimes playerswill interact in real time, but on other occasions they may prefer
to play a game slowly, with hours or days elapsing between moves. It is therefore not necessary
to keep the browser open between moves. The state of the game can be restored at any time by
reference to the Twitter timeline; it does not need to be retained in the client application, and it is
not retained in the server part of the application. Each tweet contains arepresentation of the state of

12

http://192.168.0.2:8080/servlex/chess/authenticateUser?user=johnWhite&pin=12345
http://192.168.0.2:8080/servlex/chess/timeline?user=maryBlack

Multi-user interaction
using client-side XSLT

the board, and if necessary (though we don't do it today) we could reconstruct the full game history
by searching back through the time-line.

Figure 5 shows the sequence of operations in the chess game from end-to end.

Figure 5. Sequence Diagram of the Chess game application

CONTROLLER MOVE-VALIDATOR VIEW SERVLEX TWITTER

—_—
change?

User

move valid?
(ol A
update DM >
request twitter functijon ”
twitter call

twitter response|

twitter responsg

Sequence Diagram which showsinteraction between aplayer and various processesin the application.

Chess game logic

The final part of the application is concerned with what programmers often call "business logic",
though in this case "game logic" would be more appropriate. The application, of course, does not
include any chess strategy (though we could envisage one of the players being replaced with arobot);
all it doesisto verify that moves are legal, and update the state of the game in response to each move.
This requires only enough look-ahead to ensure that a move does not leave a player in check, since
such amoveisillegal. In fact, our application does not currently have 100% coverage of all the laws
of chess; we don't handle all the subtleties of pawn promotion, en-passent captures, or the rules about
when castling isand is not permitted. Some of these rulesin fact require additional information about
the state of the game that cannot be inferred from knowing only the position of the pieces (castling
isonly alowed, for example, when the king has never moved in the history of the game; and a draw
may be claimed if the same position occurs three times in the history of the game or if no pawn move
or capture is made for 50 moves).

The XSLT logic of thispart of the application isnot especially noteworthy, and the same code could be
used for aconventional server-sideapplication. Keeping it compact, however, isimportant, becausethe
size of astylesheet hasamaterial influence on the perceived responsiveness of Saxon-CE applications.
Thelogic is encapsul ated as a set of template rules, one matching each kind of chess piece, taking the
state of the board and proposed move as parameters, and returning an indication of whether the move
isvalid. Hereisthe relevant rule for testing a knight's move:

<xsl:tenpl ate match="di v[@at a- pi ece="knight']"
node="i s-val i d- nove"
as="el enent (nobve-test)">
<xsl : param nane="noveFrom' as="xs:integer"/>
<xsl : param nane="noveTo" as="xs:integer"/>
<xsl : param nane="board" as="el enent (di v) +"/>
<xsl :vari abl e name="desti nati onAvai | abl e"
sel ect =" not ($boar d[$noveTo] / @lat a- col our = @lat a-col our)"/>

13

Multi-user interaction
using client-side XSLT

<xsl:variabl e name="rowDi st ance" as="xs:integer"
sel ect ="f:row($nmoveTo) - f:row($noveFrom "/ >
<xsl :variabl e name="col uimDi st ance" as="xs:integer"
sel ect ="f: col um($nmoveTo) - f:col um($noveFrom "/ >
<xsl :vari abl e name="is-valid" as="xs: bool ean"
sel ect =" $desti nati onAvail abl e and abs($rowDi st ance) *
abs($col umbDi stance) = 2"/>
<nmove-test is-valid="{if ($is-valid) then 'yes' else 'no'}"/>
</ xsl : tenpl at e>

It relies on the simple principle that a knight's move isvalid if and only if the product of the number
of rows moved and the number of columns moved is 2. It omits the general rule that the target square
must be either vacant or occupied by the opponent, because that rule is true for all pieces and can
therefore be factored out.

Asafirst approximation, we can think of thistemplate simply returning a boolean to indicate whether
the move is valid or not. In practice, we also want to say why it's invalid (for example, because the
target square is occupied), and for complex moves like castling or en-passent captures we also want
to return sufficient information for the calling code to actually make the requested move by applying
changesto the state of the board. So instead of asimple boolean, we return aconstructed XML element
containing thisinformation.

We are primarily using template rules here as a polymorphic despatch mechanism, so that different
rules apply to each kind of chess piece. The polymorphic templates are invoked using an <xsl:apply-
templates> call contained in the logic of a stylesheet function, which returns the success/failure result
to the caller, like this:

<xsl:function nane="f:isValidMve" as="el enent (pi ece-nove)">
<xsl : param nane="pi ece" as="elenent(div)"/>
<xsl : param nane="noveFrom' as="xs:integer"/>
<xsl : param nane="noveTo" as="xs:integer"/>
<xsl : param nane="board" as="el enent(div)*"/>

<pi ece- nove>
<xsl : choose>
<xsl : when test="$nmoveFrom = $noveTo" >
<xsl:attribute name="is-valid" select="'"no""/>
<xsl:attribute nane="description" select="'not noved "/>
</ xsl : when>
<xsl : when t est ="$boar d[$noveFronj[sel f::enpty] ">
<xsl:attribute name="is-valid" select="'"no""/>
<xsl:attribute nane="description"
sel ect=""no piece at start position "/>
</ xsl : when>
<xsl : when
t est =" not ($boar d[$roveTo] [di v/ @lat a- pi ece eq 'enpty' or
di v/ @lat a- col our != $pi ece/ @at a-col our])">
<xsl:attribute name="is-valid" select="'"no""/>
<xsl:attribute nane="description"
sel ect=""target sqare is occupied by your own colour'"/>
</ xsl : when>
<xsl : ot herwi se>
<xsl:variabl e nane="nove-test" as="el enent (nove-test)">
<xsl : appl y-tenpl ates sel ect =" $pi ece" node="is-valid-nmove">
<xsl :w t h- param nanme="noveFron' sel ect ="$noveFroni/>
<xsl :w t h- param name="noveTo" sel ect ="$noveTo"/ >
<xsl :w t h- param nanme="board" sel ect =" $board"/ >
</ xsl : appl y-t enpl at es>

14

Multi-user interaction
using client-side XSLT

</ xsl :vari abl e>
<xsl : copy- of sel ect="%$nove-test/@"/>
</ xsl : ot herw se>
</ xsl : choose>
</ pi ece- move>
</ xsl :function>

For some of the more complex moves, making the moveinvolves morethan simply vacating the square
where the piece started and occupying the square where it ends. Castling causes two pieces to move;
en-passent capture removes a piece that is on neither the starting square nor the ending square; pawn
promotion leaves a different kind of piece on the target square (and also involves user input, because
the laws allow a pawn to be promoted to something other than the usual queen).

Good design practice suggests a model -view-controller architecture in which the model (the state of
the board) is represented by a data structure independent of the view (the visualization of the board),
where the controller ensures that the model and the view remain in step with each other. In fact our
code holds the model implicitly as part of the HTML page (the view), which in some waysis a useful
short-cut, but also reduces flexibility. For example, it makes the logic for deciding whether a player
isin check more complicated, because special measures are needed to make trial moves without them
being visible on the screen.

The entirelogic for verifying and applying chess moves is 400 lines of XSLT coding.

Acknowledgement

Many thanks to Philip Fearon for his contribution in the development of the Saxon-CE project. In
particular, he wrote the browser based technical documentation and hel ped to devel op the Chess game
application, both driven by Saxon-CE.

References

[1] XSL Transformations (XSLT) Version 1.0. W3C Recommendation. 16 November 1999. James Clark. W3C.
http://www.w3.0rg/TR/xslt.

[2] XSL Transformations (XSLT) Version 2.0. W3C Recommendation. 23 January 2007. Michael Kay. W3C.
http://mww.w3.org/ TR/xslt20.

[3] Google Web Toolkit (GWT). Google. http://code.google.com/webtoolkit/.
[4] The Saxon XSLT and XQuery Processor. Michael Kay. Saxonica. http://www.saxonica.com/.

[5] CXAN: a case-study for Serviex, an XML web framework. Florent Georges. XML Prague. March, 2011. Prague,
Czech Republic. . http://archive.xmlprague.cz/2011/files/xml prague-2011-proceedings.pdf.

[6] Twitter. Twitter . https://twitter.com/.

[7] How-to: Secure OAuth in JavaScript. Derek Gathright. 21 October 2010. Y ahoo. http://derek.io/blog/2010/
how-to-secure-oauth-in-javascript/.

[8] Twitter4d. http://twitter4j.org.
[9] Serviex. Florent Georges. http://code.google.com/p/serviex/.
[10] Twitter OAuth. Twitter. https://dev.twitter.com/docs/auth/oauth.

[11] Hash URIs. Jeni Tennison. http://www.jenitennison.com/blog/node/154.

15

	Multi-user interaction using client-side XSLT
	Table of Contents
	Introduction
	Browsing and searching technical documentation
	XML on the Server
	Implementing the User Interface
	The URI and Fragment Identifier
	The Table of Contents
	The Search Box
	Breadcrumbs
	Javadoc Definitions
	Links between Sub-Pages in the Documentation
	The Up/Down buttons

	Chess Application
	Architecture
	Client-side Component
	Server-side Component

	GUI interaction and Twitter Communication
	Chess game logic

	Acknowledgement
	References

