

Keynote

XML Five Years On: A Review of the Achievements
So Far and the Challenges Ahead

 Michael H. Kay
Software AG

Michael.Kay@softwareag.com

ABSTRACT
This is an extended abstract of the talk given by Michael Kay in
the keynote address of the DocEng2003 symposium

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Preparation –
format and notation, languages and systems, markup languages,
standards. I.7.1 [Doument and Text Processing]: Document and
Text Editing – document management. H2.3 [Database
Management]: Languages – data description languages, query
languages.

General Terms
Management, Design, Standardization, Languages.

Keywords
XML, XSLT, XQuery.

1. INTRODUCTION
XML was launched on the world in 1998, and it seems to be a
good time to take stock of what it has achieved, and what it has
not yet achieved. It's important that we understand the factors that
made it successful and let to its adoption, so that we can learn
from the experience and try to reproduce these conditions as we
move forward. It's also important that we understand that there are
things that XML was simply never designed to do..

2. THE ORIGINAL GOALS
The XML 1.0 specification [1] is unusual in that it starts off, right
at the beginning, with a statement of the design goals. This is an
excellent list of design principles, for example:

• XML documents should be human-legible and
reasonably clear

• The design of XML shall be formal and concise

No doubt these design principles contributed a great deal to
XML's success. What they don't tell us, however, is what purpose
XML was intended to serve: they don't constitute a statement of
requirements in that sense. Perhaps this indicates that the
requirements were obvious to everyone, which might be another
factor behind XML's success.

The primary motivation behind the development of XML was the
recognition that maintaining content for the web in HTML was a
really bad idea, because it failed to separate content from
presentation, and because HTML browsers were full of
proprietary features that inhibited interoperability. There were any
number of products that attempted to solve these problems, but
because they weren't standardized, they only added to the chaos.

The people who developed XML knew that SGML offered a way
forward but they also knew that SGML was far too complicated
and expensive. The decision that XML should be a subset of
SGML was made partly, I suspect, to gain acceptability, and
partly because some people believed this would lead to quicker
availability of XML software. In fact the main benefit of the
decision was that it reduced the space of design possibilities and
thus led to a quicker and smaller spec. Although SGML features
were savagely removed, it is clear in retrospect that more could
have gone without being seriously missed. Probably the biggest
technical mistake was the retention of DTDs: these have always
been the most difficult part of XML to learn and use effectively,
and if they had been left out from the first version we would
probably today have a much better schema language than we now
have.

3. WHO IS USING XML?
It's easy if you are using XML to look around you and imagine
that everyone else is using it too, for everything. We often make
the mistake of imagining that the communities we work in are
typical of the rest of the world, and very often we are wrong.
XML has made a serious impact on web publishing, without any
doubt. It hasn't displaced direct authoring in HTML, and it hasn't
displaced all proprietary tools, but it has made a serious impact.
This was the field that XML was designed for, and I think we can
rate it as a success in that area. XML is proving particularly
important, I think, for the many sites that rely on content
syndication. This is where the real value of separating content
from presentation starts to become apparent.
In the wider publishing world, the impact is less marked. My
current book is being produced using Microsoft Word and Quark
Express. XML is starting to appear around the edges of these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’03, November 20–22, 2003, Grenoble, France.
Copyright 2003 ACM 1-58113-724-9/03/0011…$5.00.

toolsets, but it isn't yet mainstream. Where XML is being used in
conventional publishing, it is usually because there is a strong
requirement for re-purposing (publishing the same information in
more than one form, typically in print and online), or because the
publications are highly structured and benefit from XML's ability
to manipulate the information by sorting and selection before it is
committed to paper.
The other area where XML has made its mark is in data
interchange between applications. This is perhaps a little
surprising, since I can see little evidence that it was consciously
intended for this purpose. But it reflects the fact that there was a
pent-up demand for better solutions in this area. Before XML
came along, there seemed to be four main approaches to the
problem:

• EDI standards. These were generally regarded as
extremely complicated and therefore extremely
expensive to deploy. EDI required a serious investment
decision, and even then the standards were seen as
inflexible.

• ASN.1. This specification came out of the networking
community and was quite widely used in specifying
technical protocols. It never really caught on at the
application level, mainly for the same kind of reasons as
much of the OSI initiative failed: it was too complex for
the average commercial programmer, and the tools were
marketed at silly prices, meaning that the decision to use
it had to be made at a level of management where the
benefits were far from obvious.

• Application-specific interchange formats. Some
industries or application domains established their own
interchange formats, sometimes based around the
products of a single vendor, sometimes around a true
"industry standard". Many initiatives to create such
standards failed, often because they got bogged down in
the details of syntax and character encoding, rather than
concentrating their efforts on creating the data model for
the industry at a semantic level.

• Ad-hoc hackery. Any number of practical working data
interchange solutions were knocked up by programmers
using variations of file formats such as comma-
separated values. Sometimes they worked well, but
usually were not engineered with sufficient robustness
to be extensible beyond the very narrow area for which
they were originally designed.

The real reason for XML's success in this area is its accessibility.
It is accessible to the ordinary commercial programmer (a
character often referred to among the XML cognoscenti as the
Desperate Perl Hacker, or DPH) for two reasons. Firstly, the specs
are simple to read and understand (if you ignore DTDs, which you
can). Secondly, the tools are readily available. You can download
them and play with them without first producing a business case
for investment. (How many technologies have failed because the
programmer who needed them didn't know enough about them to
be able to produce the business case needed to get hold of them?)
In addition, the XML tools went beyond mere parsing, and
extended to transformation. None of the other approaches to data
interchange has offered a high-level transformation language
comparable to XSLT. This is critical, because it is a great mistake

to imagine that data interchange would work successfully if only
the whole world agreed on a single schema. For data interchange
to work successfully, you need flexibility, the ability to create
local variations and enhanced versions, so that the standard does
not inhibit the ability of two parties to communicate what they
need to communicate. And as soon as you have versions and
variants, you need transformation capability.

4. WHERE ARE WE NOW?
At present we seem to be at a stage where the XML standards
family is acquiring layers of complexity: a schema language
whose specification is impenetrable to mere mortals, a query
language whose specification is split into seven separate
documents, a vast repertoire of supposedly general-purpose
features such as XML Include, XML Base, XML Pointer, and
XML Link whose importance it is difficult for users to assess,
version 1.1 specifications for XML and XML Namespaces that
create incompatibilities without offering any new features that the
average user will recognize as something they need, and a layer of
"semantic web" specifications that seem at times to live in the
world of metaphysics rather than information technology.
Sadly, this is the price we pay for success. When a simple
technology like XML becomes widely adopted, lots of people
jump on the bandwagon, and decide to use it as a vehicle for their
extensive technological ambitious; and the more people who are
involved, the more complex the specifications become. Not all of
the new raft of specifications will succeed, but I don't claim to be
able to predict which will flourish and which will wither.
In terms of exploitation of XML, there are two key areas that until
now have hardly been touched by XML, namely the traditional
"corporate database" and the office desktop. These appear to be
locked into a time-warp: the 1970s relational database with its
rigid rows and columns, and the 1980s era of personal (that is,
undisciplined) computing. Most of the information held by the
average enterprise is either locked into a rigid structure modelled
on 19th century ledger books, or it is held in ad-hoc whimsical
documents and spreadsheets understood only by the person who
created them.
We need to ask whether the new layers of standards actually have
anything to contribute to solving this problem.
This is a big question, and I will concentrate on just one part of it:
the question of the XML database, which happens to be a rather
central part of my own company's product line.

5. THE XML DATABASE
One of the things I find fascinating about XML is the fact that it
spans the spectrum from highly-structured information to
information with no structure at all, and it is the first technology
that attempts to do so. Before XML, document technology and
data technology were different worlds. The need to integrate them
became apparent with the web: if you are trying to sell holidays,
or books, or hotels, or pensions, then the web acts both as your
product catalogue and as your transaction processing system, and
they cannot be kept apart.
The requirement for a database technology that can handle this
full spectrum is therefore fairly obvious, but the goal remains
elusive. With XML Schema [2] as a data description language
(and despite its faults, people are using it successfully) and

XQuery [3] as a query language, the basic technology components
are coming into place. There is a furious spat, of course, between
vendors like Oracle and Microsoft who will tell you that you need
a relational database with XML extensions, and vendors like
Software AG who will tell you that you need a native XML
database engineered to handle XML from the ground up, but that
quarrel is really just a sideshow. While the vendors are exploring
the best way to build a database that holds XML, the real
challenge for the industry is to learn how to use the technology
when it becomes available. The answers aren't obvious.
Really there are two competing approaches. One is to treat an
XML database as a filing cabinet in which you store XML
documents. The documents are designed as just that: messages
exchanged between people or applications designed to convey
information from the sender to the recipient. Storing the document
is a way of getting a historical archive, a way of enabling the
XML documents to be found easily, and a way of getting
aggregate and summary information by analysing the documents.
The second approach is to design the database as a store of
information, not just a store of documents. Here you start with the
traditional information management discipline of data modelling,
asking yourself what entities, attributes, and relationships exist in
the space that you want to hold information about, and then
designing representations of this information appropriate to an
XML solution.
Looking at it from the viewpoint of the data user, the second
approach has much to commend it. The user wants to ask
questions about the state of the world (How many tons of

tomatoes were exported last year from Uruguay?) not questions
about the messages exchanged between people or applications
that might have a bearing on the subject (Find me all the bills of
lading for ships leaving Uruguay with a cargo of tomatoes). But
the practical difficulties are immense. The point about XML is
that it covers the spectrum from highly-structured to highly-
unstructured information. Unstructured information has a great
deal of value, and if you try to model everything, you are
imposing structure, and thereby losing the ability to hold
information that doesn't fit the model.
So I think that XML databases really have a very exciting future
in the next five years of XML exploitation; I think they have real
potential to combine the benefits and remove the limitations of the
current rigid relational database and uncontrolled desktop
applications, which today inhabit different worlds. But we are
only at the beginning of the road in terms of learning how to
exploit this potential.

6. REFERENCES
[1] Extensible Markup Language (XML) 1.0:

http://www.w3.org/TR/1998/REC-xml-19980210

[2] XML Schema Part 1: Structures:
http://www.w3.org/TR/xmlschema-1/

[3] XQuery 1.0: An XML Query Language:
http://www.w3.org/TR/xquery/

