
Saxon User Documentation

Version 9.4

Saxon User Documentation: Version 9.4

iii

Table of Contents
1. About Saxon .. 1

Introduction ... 1
Getting Started ... 1

Getting started with Saxon on the Java platform ... 2
Getting started with Saxon on the .NET platform .. 3

What is Saxon? .. 4
Choosing a software package .. 4
Installation: Java platform .. 5

Prerequisites ... 5
Obtaining a license key .. 6
Troubleshooting license key problems .. 7
Installing the software .. 8
JAR files included in the product ... 8

Installation: .NET platform .. 10
Historical Note ... 11
Technical Support ... 12

Lists and forums for getting help ... 12
Bugs and patches .. 12

Related Products ... 13
2. Changes in this Release .. 15

Version 9.4 (2011-12-09) .. 15
Bytecode generation .. 15
Reading source documents .. 15
XPath 3.0 changes ... 16
XSLT changes .. 16
XSLT Packaged Stylesheets .. 17
XQuery 3.0 changes .. 18
Changes to XSD support .. 18
Changes to Functions and Operators ... 19
Changes to Saxon extensions and extensibility mechanisms 19
Changes to application programming interfaces ... 19
Changes to system programming interfaces .. 20

Version 9.3 (2010-10-30) .. 21
Highlights .. 22
Installation on .NET ... 22
Command line and configuration changes .. 22
Extensibility changes ... 23
Extensions .. 23
XSLT 3.0 changes ... 24
Streaming in XSLT ... 25
XPath 3.0 changes ... 25
XPath 2.0 and XQuery 1.0 changes .. 25
XQuery 3.0 and XQuery Update changes .. 26
Functions and Operators ... 26
XML Schema 1.0 changes .. 27
XML Schema 1.1 changes .. 27
Changes to the s9api API ... 28
Saxon on .NET changes .. 30
Serialization ... 30
Running Saxon from Ant .. 30
The SQL Extension ... 31
Internal changes .. 31

Version 9.2 (2009-08-05) .. 32
Highlights .. 33
Installation and Licensing ... 33

Saxon User Documentation

iv

S9API interface ... 36
Saxon on .NET ... 37
XSLT .. 38
XQuery 1.0 .. 39
XQuery Updates ... 41
XQuery 1.1 .. 41
XML Schema ... 42
Streaming .. 44
Functions and Operators ... 44
XML Parsing and Serialization .. 45
External Object Models .. 45
Extensibility ... 45
Extensions .. 46
Optimizations ... 47
Internals ... 49

Version 9.1 (2008-07-02) .. 49
Highlights .. 50
XQuery Updates ... 50
XML Schema 1.1 .. 51
XML Schema 1.0 .. 52
XSLT 2.0 .. 52
XQuery 1.0 .. 53
XQJ (XQuery API for Java) .. 54
S9API ... 55
JAXP .. 56
Extensibility ... 56
Extensions .. 57
Diagnostics and Tracing ... 58
Saxon on .NET ... 58
Internal APIs .. 60
Serialization ... 60
Optimization ... 60

Version 9.0 (2007-11-03) .. 61
Highlights .. 62
New Java API .. 62
Command line changes .. 63
XSLT changes .. 63
XPath changes .. 64
Extensions .. 65
Schema-related changes .. 65
Changes to existing APIs .. 68
Pull processing in Java ... 70
Serialization ... 70
Localization .. 71
Optimization ... 71
Diagnostics .. 73
NamePool changes .. 74
Expression tree changes .. 74

3. Licensing ... 76
Introduction .. 76
Contributors ... 78
Third Party Source Components ... 80
Redistributed Components .. 84
Published Algorithms and Specifications ... 86

4. Saxon Configuration .. 88
Introduction .. 88
Configuration interfaces .. 88

JAXP Factory Interfaces ... 89

Saxon User Documentation

v

Configuration using s9api ... 90
Configuration using the .NET API .. 90
Configuration from the command line ... 91
Configuration using XQJ .. 91
Configuration when running Ant .. 92

The Saxon configuration file ... 92
The <global> element .. 95
The <xslt> element .. 98
The <xquery> element ... 99
The <xsd> element .. 99
The <resources> element .. 100
The <collations> element .. 100
The <localizations> element .. 101

Configuration Features .. 102
5. Using XSLT 2.0 .. 103

Using XSLT 2.0 Stylesheets .. 103
Running XSLT from the Command Line ... 103
Compiling a Stylesheet ... 112
Packaged Stylesheets .. 112
Running Saxon XSLT Transformations from Ant .. 113
Invoking XSLT from an application .. 114

Using s9api for Transformations ... 115
Using JAXP for Transformations .. 115

Performance Analysis ... 116
XSLT 3.0 Support ... 116

6. Using XQuery ... 118
Introduction .. 118
Running XQuery from the Command Line ... 118
Running Queries from a Java Application .. 125

Using s9api for XQuery .. 125
Invoking XQuery using the XQJ API .. 126

Using XQuery Update .. 127
Calling XQuery Functions from Java .. 128
Result Format ... 128
Compiling Queries ... 129
Extensibility .. 129
Extensions .. 129
Use Cases .. 132

7. Handling Source Documents .. 133
Handling Source Documents .. 133
Source Documents on the Command Line .. 133
Collections ... 134
Building a Source Document from an application .. 135
Preloading shared reference documents .. 135
Using XML Catalogs ... 136
Writing input filters ... 137
XInclude processing ... 138
Controlling Parsing of Source Documents .. 138
Saxon and XML 1.1 .. 139
JAXP Source Types ... 140
Third-party Object Models: DOM, JDOM, XOM, and DOM4J 141
Choosing a Tree Model .. 142
The PTree File Format ... 143
Validation of Source Documents .. 144
Whitespace Stripping in Source Documents .. 144
Streaming of Large Documents .. 145

Burst-mode streaming ... 146
Processing the nodes returned by saxon:stream() ... 148

Saxon User Documentation

vi

Reading source documents partially .. 149
Streamable path expressions .. 149
How burst-mode streaming works ... 149
Using saxon:stream() with saxon:iterate ... 150
Streaming Templates .. 151

Document Projection .. 154
References to W3C DTDs ... 155

8. XML Schema Processing .. 160
Introduction .. 160
Running Validation from the Command Line .. 160
Controlling Validation from Java .. 163

Schema Processing using s9api .. 164
Schema Processing using JAXP ... 164

Running validation from Ant ... 166
Schema-Aware XSLT from the Command Line .. 167
Schema-Aware XSLT from Java .. 168
Schema-Aware XQuery from the Command Line .. 169
Schema-Aware XQuery from Java .. 170
XML Schema 1.1 .. 171

Assertions on Complex Types .. 171
Assertions on Simple Types .. 172
Conditional Type Assignment .. 173
All Model Groups .. 173
Open Content .. 173
Miscellaneous XSD 1.1 Features .. 174

Importing and Exporting Schema Component Models .. 174
Handling minOccurs and maxOccurs ... 175
Saxon extensions to XML Schema 1.1 .. 175

Messages associated with assertions and other facets .. 176
The saxon:preprocess facet .. 176
Saxon extensions to XSD uniqueness and referential constraints 178

9. XPath API for Java .. 179
Introduction .. 179
Evaluating XPath Expressions using s9api .. 179
The JAXP XPath API .. 180

Selecting the XPath implementation .. 181
Setting the context item .. 182
Return types ... 182
Additional Saxon methods ... 183
Calling JAXP XPath extension functions ... 183

The NodeInfo interface ... 183
10. Saxon on .NET .. 185

Introduction .. 185
Saxon API for .NET ... 185
XML Parsing in .NET .. 187

11. Extensibility .. 189
Introduction .. 189
Integrated extension functions .. 189

Java extension functions: simple interface .. 190
Java extension functions: full interface .. 191
.NET extension functions .. 195

Writing reflexive extension functions in Java .. 196
Choosing among overloaded methods .. 198
Calling Static Methods in a Java Class .. 200
Calling Java Constructors .. 201
Calling Java Instance-Level Methods .. 201

Converting Arguments to Java Extension Functions ... 202
Converting Method Arguments - General Rules .. 202

Saxon User Documentation

vii

Converting Atomic Values .. 203
Converting Nodes .. 204
Converting Wrapped Java Objects .. 204

Converting the Result of a Java Extension Function ... 205
Writing reflexive extension functions for .NET ... 206

Calling Static Methods in a .NET Class ... 208
Calling .NET Constructors ... 209
Calling .NET Instance-Level Methods ... 210

Converting Arguments to .NET Extension Functions .. 210
Converting Atomic Values and Sequences .. 211
Converting Nodes and Sequences of Nodes .. 212
Converting Wrapped .NET Objects ... 212

Converting the Result of a .NET Extension Function .. 212
Writing XSLT extension instructions ... 213
Customizing Serialization .. 216
Implementing a collating sequence ... 217
Localizing numbers and dates .. 221
Writing a URI Resolver for Input Files .. 222
Writing a URI Resolver for Output Files ... 222

12. Saxon Extensions ... 224
Introduction .. 224
EXSLT Extensions .. 224
Extension attributes (XSLT only) ... 225

saxon:assignable .. 226
saxon:explain .. 226
saxon:memo-function ... 226
saxon:read-once ... 227
saxon:threads .. 227

Additional serialization parameters ... 227
The method attribute .. 229
The saxon:base64Binary serialization method ... 230
The saxon:hexBinary serialization method .. 230
The saxon:ptree serialization method ... 231
The saxon:character-representation attribute .. 231
The saxon:double-space attribute .. 232
The saxon:indent-spaces attribute ... 232
The saxon:line-length attribute ... 232
The saxon:next-in-chain attribute .. 232
The saxon:recognize-binary attribute ... 233
The saxon:require-well-formed attribute ... 233
The saxon:supply-source-locator attribute ... 233
The saxon:suppress-indentation attribute .. 234
The saxon:xquery serialization method .. 234
User-defined serialization attributes ... 234

Extension functions .. 234
saxon:adjust-to-civil-time() .. 236
saxon:analyze-string() ... 237
saxon:base64Binary-to-octets() ... 238
saxon:base64Binary-to-string() ... 238
saxon:call() ... 238
saxon:column-number(node) .. 238
saxon:compile-query() .. 239
saxon:compile-stylesheet() ... 239
saxon:current-mode-name() .. 239
saxon:decimal-divide() .. 239
saxon:deep-equal() ... 239
saxon:discard-document() .. 240
saxon:eval() .. 241

Saxon User Documentation

viii

saxon:evaluate() ... 241
saxon:evaluate-node() ... 241
saxon:expression() ... 242
saxon:find() .. 243
saxon:for-each-group() .. 243
saxon:format-dateTime() ... 244
saxon:format-number() .. 245
saxon:function() ... 245
saxon:generate-id() ... 247
saxon:get-pseudo-attribute() ... 247
saxon:has-same-nodes() .. 247
saxon:hexBinary-to-octets() ... 247
saxon:hexBinary-to-string() ... 247
saxon:highest() .. 247
saxon:index() .. 248
saxon:in-summer-time() .. 249
saxon:is-whole-number() ... 249
saxon:item-at() .. 249
saxon:last-modified() .. 249
saxon:leading() .. 250
saxon:line-number(node) ... 250
saxon:lowest() ... 251
saxon:namespace-node() .. 251
saxon:stream() ... 252
saxon:octets-to-base64Binary() ... 252
saxon:octets-to-hexBinary() ... 252
saxon:parse() ... 252
saxon:parse-html() ... 252
saxon:path() .. 253
saxon:print-stack() ... 253
saxon:query() .. 253
saxon:result-document() .. 254
saxon:serialize() ... 255
saxon:sort() ... 255
saxon:string-to-base64Binary() ... 256
saxon:string-to-hexBinary() ... 256
saxon:string-to-utf8() .. 256
saxon:system-id() ... 256
saxon:transform() ... 256
saxon:try() .. 257
saxon:type-annotation() ... 258
saxon:unparsed-entities() ... 258

The Map Extension .. 258
Extension instructions ... 259

saxon:assign .. 260
saxon:break .. 261
saxon:call-template ... 261
saxon:catch ... 261
saxon:collation .. 262
saxon:continue .. 265
saxon:doctype ... 265
saxon:entity-ref ... 267
saxon:finally ... 267
saxon:import-query .. 267
saxon:iterate .. 268
saxon:mode .. 269
saxon:script .. 269
saxon:try .. 270

Saxon User Documentation

ix

saxon:while .. 270
13. Sample Saxon Applications .. 272

Introduction .. 272
Knight's Tour .. 272
JAXP Transformation Examples ... 272
SaxonServlet ... 273
The Book List Stylesheet .. 273
Shakespeare Example ... 274
The Bible ... 274
JDOM Example .. 275
Example applications for .NET ... 275

14. The Saxon SQL Extension ... 276
Introduction .. 276
sql:connect ... 276
sql:query .. 277
sql:insert and sql:column ... 277
sql:update and sql:column ... 278
sql:delete .. 278
sql:close ... 279
sql:execute .. 279
Example ... 279
A Warning about Side-Effects ... 281
A Warning about Security (SQL injection) ... 282

15. XSLT Elements ... 283
Introduction .. 283
xsl:analyze-string ... 283
xsl:apply-imports ... 283
xsl:apply-templates .. 284
xsl:attribute ... 285
xsl:attribute-set .. 286
xsl:break .. 286
xsl:call-template .. 286
xsl:character-map ... 287
xsl:choose .. 287
xsl:comment ... 288
xsl:copy ... 288
xsl:copy-of ... 288
xsl:decimal-format ... 289
xsl:document ... 289
xsl:element ... 289
xsl:evaluate ... 290
xsl:fallback ... 291
xsl:for-each ... 291
xsl:for-each-group .. 292
xsl:function ... 292
xsl:if .. 293
xsl:include .. 293
xsl:import ... 293
xsl:import-schema .. 294
xsl:iterate ... 294
xsl:key ... 295
xsl:matching-substring .. 295
xsl:merge ... 295
xsl:merge-action .. 296
xsl:merge-input ... 296
xsl:merge-source .. 296
xsl:message .. 296
xsl:mode .. 297

Saxon User Documentation

x

xsl:namespace ... 297
xsl:namespace-alias .. 298
xsl:next-iteration .. 298
xsl:next-match ... 298
xsl:non-matching-substring .. 298
xsl:number .. 298
xsl:on-completion .. 300
xsl:otherwise ... 301
xsl:output ... 301
xsl:output-character .. 303
xsl:param ... 303
xsl:perform-sort ... 303
xsl:preserve-space .. 304
xsl:processing-instruction .. 304
xsl:result-document .. 304
xsl:sequence .. 305
xsl:sort ... 306
xsl:strip-space ... 307
xsl:stylesheet ... 307
xsl:template .. 307
xsl:text ... 308
xsl:try .. 309
xsl:value-of ... 309
xsl:variable ... 310
xsl:when .. 311
xsl:with-param .. 311
Literal Result Elements ... 311
XSLT Patterns .. 312

Examples of XSLT 2.0 Patterns ... 312
Pattern syntax ... 313
Patterns in XSLT 3.0 ... 314

16. XPath 2.0 Expression Syntax .. 315
Introduction .. 315
Constants ... 315
Variable References ... 316
Function Calls ... 316
Axis steps .. 317
Parentheses and operator precedence ... 318
Filter expressions ... 319
Path expressions .. 319
Cast as, Treat as .. 319
Set difference and intersection ... 320
Union .. 320
Arithmetic expressions .. 320

Unary plus and minus .. 320
Multiplication and division .. 320
Addition and subtraction ... 321

Range expressions ... 321
Comparisons ... 321
Instance of and Castable as ... 321
Conditional Expressions .. 322
Quantified Expressions ... 322
For Expressions ... 322
Boolean expressions: AND and OR .. 322
Sequence expressions ... 322
New features in XPath 3.0 .. 322
Maps in XPath 3.0 ... 323

17. XSLT 2.0 and XPath 2.0 Functions ... 325

Saxon User Documentation

xi

Index of Functions ... 325
abs .. 325
acos ... 326
adjust-dateTime-to-timezone .. 326
adjust-date-to-timezone ... 327
adjust-time-to-timezone ... 328
analyze-string .. 328
asin ... 329
atan ... 330
available-environment-variables .. 330
avg .. 330
base-uri .. 331
boolean .. 332
ceiling ... 332
codepoint-equal ... 333
codepoints-to-string .. 333
collection ... 334
compare ... 334
concat .. 335
contains ... 336
cos .. 337
count ... 337
current ... 337
current-date .. 338
current-dateTime ... 338
current-group .. 339
current-grouping-key .. 339
current-time .. 340
data ... 340
dateTime .. 341
day-from-date .. 341
day-from-dateTime ... 342
days-from-duration ... 342
deep-equal .. 343
default-collation ... 343
distinct-values ... 344
doc .. 345
doc-available ... 345
document ... 346
document-uri ... 347
element-available ... 347
element-with-id ... 348
empty .. 348
encode-for-uri ... 349
ends-with ... 349
environment-variable .. 350
error .. 351
escape-html-uri .. 352
exactly-one ... 352
exists ... 353
exp .. 353
exp10 .. 353
false .. 354
filter .. 354
floor .. 355
fold-left .. 355
fold-right .. 356
format-date ... 356

Saxon User Documentation

xii

format-dateTime .. 357
format-integer ... 359
format-number .. 360
format-time ... 361
function-arity .. 362
function-available .. 362
function-lookup ... 363
function-name ... 364
generate-id .. 364
has-children .. 365
head .. 365
hours-from-dateTime .. 366
hours-from-duration ... 366
hours-from-time ... 367
id .. 367
idref .. 368
implicit-timezone ... 368
index-of ... 369
innermost ... 370
in-scope-prefixes ... 370
insert-before .. 371
iri-to-uri ... 371
lang ... 372
last .. 372
local-name .. 373
local-name-from-QName ... 373
log .. 374
log10 ... 374
lower-case .. 375
map ... 375
map-pairs ... 376
matches .. 376
max ... 377
min ... 378
minutes-from-dateTime ... 379
minutes-from-duration .. 379
minutes-from-time ... 380
month-from-date .. 380
month-from-dateTime ... 380
months-from-duration ... 381
name ... 381
namespace-uri ... 382
namespace-uri-for-prefix ... 383
namespace-uri-from-QName .. 383
nilled ... 384
node-name .. 384
normalize-space ... 385
normalize-unicode .. 386
not .. 386
number .. 387
one-or-more .. 387
outermost ... 388
parse-json ... 388
parse-xml ... 389
path ... 390
pi .. 390
position .. 391
pow ... 391

Saxon User Documentation

xiii

prefix-from-QName .. 392
put .. 392
QName .. 393
regex-group .. 393
remove ... 394
replace ... 394
resolve-QName ... 395
resolve-uri .. 396
reverse ... 397
root ... 397
round ... 398
round-half-to-even ... 399
seconds-from-dateTime ... 399
seconds-from-duration .. 400
seconds-from-time ... 400
serialize ... 401
serialize-json ... 402
sin ... 402
sqrt ... 403
starts-with .. 403
static-base-uri .. 404
string ... 404
string-join ... 405
string-length .. 406
string-to-codepoints .. 406
subsequence .. 407
substring .. 408
substring-after ... 409
substring-before ... 410
sum ... 410
system-property ... 411
tail .. 412
tan .. 412
timezone-from-date .. 413
timezone-from-dateTime ... 413
timezone-from-time .. 414
tokenize ... 414
trace .. 415
translate ... 416
true ... 416
type-available .. 417
unordered ... 417
unparsed-entity-public-id ... 418
unparsed-entity-uri ... 418
unparsed-text .. 419
unparsed-text-available ... 419
unparsed-text-lines ... 420
upper-case .. 421
uri-collection ... 421
year-from-date ... 422
year-from-dateTime .. 422
years-from-duration .. 423
zero-or-one ... 423

18. Standards Conformance ... 425
Introduction .. 425
XSLT 2.0 conformance .. 425
XSLT 3.0 conformance .. 429
XPath 2.0 conformance .. 430

Saxon User Documentation

xiv

XPath 3.0 Conformance .. 432
XQuery 1.0 Conformance ... 432
XQuery 3.0 Conformance ... 436
XML Schema 1.0 Conformance ... 436
XML Schema 1.1 Conformance ... 437
Serialization .. 439
XQuery Update 1.0 .. 440
Conformance with other specifications .. 440
Character Encodings Supported .. 441
JAXP Conformance ... 441
XQJ Conformance ... 442

19. Alphabetical Index .. 444
Introduction .. 444
- ... 444
. .. 444
1 ... 445
2 ... 445
3 ... 446
9 ... 447
A .. 447
B .. 470
C .. 473
D .. 484
E .. 492
F ... 498
G .. 504
H .. 505
I ... 507
J ... 522
K .. 524
L .. 524
M ... 533
N .. 537
O .. 547
P ... 550
Q .. 556
R .. 557
S ... 561
T .. 593
U .. 598
V .. 601
W ... 602
X .. 608
Y .. 628
Z .. 629

Θ .. 629

xv

List of Tables
1.1. ... 8
1.2. ... 9
1.3. ... 10
3.1. ... 78
3.2. ... 80
3.3. ... 81
3.4. ... 81
3.5. ... 82
3.6. ... 83
3.7. ... 86
4.1. ... 95
4.2. ... 98
4.3. ... 98
4.4. ... 99
4.5. ... 99
4.6. ... 100
4.7. ... 100
4.8. ... 101
5.1. ... 103
6.1. ... 118
7.1. ... 134
7.2. ... 136
7.3. ... 156
8.1. ... 160
8.2. ... 167
8.3. ... 176
9.1. ... 181
9.2. ... 184
10.1. .. 187
11.1. .. 189
11.2. .. 192
11.3. .. 194
11.4. .. 199
11.5. .. 203
11.6. .. 206
11.7. .. 211
11.8. .. 215
11.9. .. 218
11.10. .. 221
11.11. .. 221
12.1. .. 229
12.2. .. 240
12.3. .. 261
12.4. .. 263
12.5. .. 265
14.1. .. 277
14.2. .. 278
14.3. .. 278
15.1. .. 284
15.2. .. 299
15.3. .. 299
15.4. .. 300
15.5. .. 301
15.6. .. 307
15.7. .. 307

Saxon User Documentation

xvi

15.8. .. 310
15.9. .. 312
15.10. .. 313
16.1. .. 317
16.2. .. 318
17.1. .. 325
17.2. .. 325
17.3. .. 326
17.4. .. 326
17.5. .. 326
17.6. .. 327
17.7. .. 327
17.8. .. 328
17.9. .. 328
17.10. .. 329
17.11. .. 329
17.12. .. 329
17.13. .. 330
17.14. .. 330
17.15. .. 331
17.16. .. 331
17.17. .. 331
17.18. .. 332
17.19. .. 332
17.20. .. 333
17.21. .. 333
17.22. .. 334
17.23. .. 334
17.24. .. 335
17.25. .. 335
17.26. .. 335
17.27. .. 336
17.28. .. 336
17.29. .. 337
17.30. .. 337
17.31. .. 338
17.32. .. 338
17.33. .. 338
17.34. .. 339
17.35. .. 339
17.36. .. 340
17.37. .. 340
17.38. .. 340
17.39. .. 341
17.40. .. 341
17.41. .. 342
17.42. .. 342
17.43. .. 343
17.44. .. 343
17.45. .. 343
17.46. .. 344
17.47. .. 344
17.48. .. 345
17.49. .. 345
17.50. .. 346
17.51. .. 346
17.52. .. 347
17.53. .. 347

Saxon User Documentation

xvii

17.54. .. 347
17.55. .. 348
17.56. .. 348
17.57. .. 348
17.58. .. 349
17.59. .. 349
17.60. .. 350
17.61. .. 350
17.62. .. 351
17.63. .. 351
17.64. .. 351
17.65. .. 351
17.66. .. 352
17.67. .. 352
17.68. .. 353
17.69. .. 353
17.70. .. 353
17.71. .. 354
17.72. .. 354
17.73. .. 355
17.74. .. 355
17.75. .. 356
17.76. .. 356
17.77. .. 357
17.78. .. 357
17.79. .. 358
17.80. .. 359
17.81. .. 359
17.82. .. 360
17.83. .. 360
17.84. .. 361
17.85. .. 361
17.86. .. 362
17.87. .. 362
17.88. .. 362
17.89. .. 363
17.90. .. 364
17.91. .. 364
17.92. .. 364
17.93. .. 365
17.94. .. 365
17.95. .. 365
17.96. .. 366
17.97. .. 366
17.98. .. 367
17.99. .. 367
17.100. .. 367
17.101. .. 368
17.102. .. 368
17.103. .. 369
17.104. .. 369
17.105. .. 369
17.106. .. 370
17.107. .. 370
17.108. .. 371
17.109. .. 371
17.110. .. 372
17.111. .. 372

Saxon User Documentation

xviii

17.112. .. 373
17.113. .. 373
17.114. .. 373
17.115. .. 374
17.116. .. 374
17.117. .. 374
17.118. .. 375
17.119. .. 375
17.120. .. 376
17.121. .. 376
17.122. .. 377
17.123. .. 377
17.124. .. 377
17.125. .. 378
17.126. .. 378
17.127. .. 379
17.128. .. 379
17.129. .. 380
17.130. .. 380
17.131. .. 381
17.132. .. 381
17.133. .. 382
17.134. .. 382
17.135. .. 382
17.136. .. 382
17.137. .. 383
17.138. .. 383
17.139. .. 384
17.140. .. 384
17.141. .. 385
17.142. .. 385
17.143. .. 385
17.144. .. 386
17.145. .. 386
17.146. .. 386
17.147. .. 387
17.148. .. 387
17.149. .. 387
17.150. .. 388
17.151. .. 388
17.152. .. 389
17.153. .. 389
17.154. .. 389
17.155. .. 390
17.156. .. 390
17.157. .. 391
17.158. .. 391
17.159. .. 391
17.160. .. 392
17.161. .. 392
17.162. .. 393
17.163. .. 393
17.164. .. 394
17.165. .. 394
17.166. .. 395
17.167. .. 395
17.168. .. 396
17.169. .. 396

Saxon User Documentation

xix

17.170. .. 397
17.171. .. 397
17.172. .. 397
17.173. .. 398
17.174. .. 398
17.175. .. 399
17.176. .. 399
17.177. .. 399
17.178. .. 400
17.179. .. 400
17.180. .. 401
17.181. .. 401
17.182. .. 402
17.183. .. 402
17.184. .. 402
17.185. .. 403
17.186. .. 403
17.187. .. 403
17.188. .. 404
17.189. .. 404
17.190. .. 405
17.191. .. 405
17.192. .. 405
17.193. .. 406
17.194. .. 406
17.195. .. 406
17.196. .. 407
17.197. .. 407
17.198. .. 408
17.199. .. 408
17.200. .. 409
17.201. .. 409
17.202. .. 410
17.203. .. 410
17.204. .. 411
17.205. .. 411
17.206. .. 411
17.207. .. 412
17.208. .. 412
17.209. .. 413
17.210. .. 413
17.211. .. 414
17.212. .. 414
17.213. .. 414
17.214. .. 415
17.215. .. 416
17.216. .. 416
17.217. .. 417
17.218. .. 417
17.219. .. 418
17.220. .. 418
17.221. .. 419
17.222. .. 419
17.223. .. 419
17.224. .. 420
17.225. .. 420
17.226. .. 420
17.227. .. 421

Saxon User Documentation

xx

17.228. .. 421
17.229. .. 421
17.230. .. 422
17.231. .. 422
17.232. .. 423
17.233. .. 423
18.1. .. 428
18.2. .. 434
18.3. .. 435
18.4. .. 442

1

Chapter 1. About Saxon
Introduction

To help you find your way around this documentation, there is a full table of contents [../contents.html]
and also an alphabetical index.

The most significant new feature in Saxon 9.4 is the introduction of bytecode generation (in Saxon-
EE only). Other new developments are comprehensively listed in Changes in Saxon 9.4.

Saxon implements the latest working drafts of XSLT 3.0, XQuery 3.0. XPath 3.0, and XSD 1.1.

In addition Saxon continues to offer highly conformant implementations of XSLT 2.0. XPath 2.0,
XQuery 1.0, and XSD 1.0. To avoid compromising this conformance, features from the newer versions
of the standards are enabled only if explicitly requested. The conformance to these specifications
has been upgraded to implement the latest published errata, as consolidated in the proposed Second
Editions of the specifications.

A significant change in the 9.2 release was a repackaging of the functionality, and this is retained in
9.3 and 9.4: instead of the two products Saxon-B (open source) and Saxon-SA (commercial), there are
now three editions: home, professional, and enterprise (HE, PE, and EE). The Home Edition remains
open source, under the same very liberal licensing rules, but some of the more advanced features that
were present in Saxon-B have not been retained in Saxon-HE, and are instead available only in the
commercial packages Saxon-PE and Saxon-EE.

Much of the new functionality in this release is available only in the commercial offerings.

Like previous releases, this version is shipped simultaneously for the Java and .NET platforms.

This documentation covers all versions of the product, with differences noted where applicable. For
a summary of the differences, see Product Packages.

This documentation (including full API documentation for both the Java and .NET
platforms) is provided on the Saxonica [http://www.saxonica.com/] web site and is
also available for download either from SourceForge [http://sourceforge.net/project/
showfiles.php?group_id=29872] or from Saxonica [http://www.saxonica.com/download/
download_page_fs.html]. The download file is named saxon-resources9-n.zip, and is
separate from the software download. It includes documentation for all editions (Saxon-HE, -
PE, and -EE), on both platforms. The file also includes sample applications. Saxon-HE source
code for the latest release is also available for download from the SourceForge project page.

JavaDoc API specifications [../javadoc/index.html] and .NET API specifications [../dotnetdoc/
index.html] are also available.

A full change log is provided.

If you are looking for an XSLT 1.0 or XPath 1.0 processor, Saxon 6.5.5 [http://saxon.sourceforge.net/
saxon6.5.5/] remains available. However, Saxon 9.4 is capable of executing XSLT 1.0 stylesheets
with identical results in the vast majority of cases, often with much better performance, so you may
prefer to use the latest release.

Getting Started
If you are new to Saxon, or to Java, or to XML, XSLT, and XQuery, this section provides a quick
checklist of the things you need to do before you can run your first application.

../contents.html
../contents.html
http://www.saxonica.com/
http://www.saxonica.com/
http://sourceforge.net/project/showfiles.php?group_id=29872
http://sourceforge.net/project/showfiles.php?group_id=29872
http://sourceforge.net/project/showfiles.php?group_id=29872
http://www.saxonica.com/download/download_page_fs.html
http://www.saxonica.com/download/download_page_fs.html
http://www.saxonica.com/download/download_page_fs.html
../javadoc/index.html
../javadoc/index.html
../dotnetdoc/index.html
../dotnetdoc/index.html
../dotnetdoc/index.html
http://saxon.sourceforge.net/saxon6.5.5/
http://saxon.sourceforge.net/saxon6.5.5/
http://saxon.sourceforge.net/saxon6.5.5/

About Saxon

2

First decide which platform you want to use. If you already use either the Java or .NET platform,
it's simplest to use the platform you are familiar with. If you don't use either of these platforms, we
recommend starting with Java, as Saxon has been available on Java for longer and this version is
therefore better integrated and better documented. If you currently use both, then the choice largely
depends on what language you want to use to write your own applications.

• Getting started with Saxon on the Java platform

• Getting started with Saxon on the .NET platform

Getting started with Saxon on the Java platform
Saxon doesn't come with a graphical user interface: it's designed to be integrated into other tools
and applications. You will therefore start by using it from the operating system command line. On
Windows, you may want to install a text editor such as jEdit that offers a more friendly command
line than the standard DOS console provided by Microsoft. However, if you're not comfortable
running applications from the command line, you might like to try the open-source Kernow [http://
kernowforsaxon.sourceforge.net/] product from Andrew Welch. This installs Saxon for you.

1. Ensure that Java is installed. This must be Java JDK 1.5 (also known as J2SE 5.0) or later. Since
version 9.2, Saxon will no longer run with JDK 1.4 or earlier releases. To check that Java is installed,
try typing java -version at the command prompt. If it is not installed, or if you have an older
version, you can get the software from Oracle [http://www.oracle.com/technetwork/java/javase/
downloads/index.html].

2. Download the Saxon software (you will typically start with the open-source version) from
SourceForge [http://sourceforge.net/project/showfiles.php?group_id=29872].

3. The software comes as a zip file. Unzip it into a suitable directory, for example c:\saxon.

4. To check that the software is working, try running a simple query from the command line, as
follows. The filename after the "-cp" flag should match the location where you installed the
software. The file will be called saxon9he.jar for Saxon Home Edition, saxon9pe.jar for
the Professional Edition, or saxon9ee.jar for the Enterprise Edition:

Here tells the operating system to run the Java virtual machine; the filename after is known as the
classpath, and tells Java where to find the Saxon application software; is the Saxon entry point
for the XQuery processor; the option tells Saxon to report what it is doing on the console; and the
option tells Saxon to run the simple query current-date(), which returns the current date and
displays the result on the console.

If this doesn't work, there are three possible reasons: the operating system can't find the Java
software; Java can't find the Saxon software; or Saxon has been invoked, but has failed to run your
query. The error message should give you a clue which of these is the case.

5. As a first-time user, you will probably want to install the sample applications. These are packaged
together with a copy of this documentation and Saxon-B source code in the file saxon-
resources9-n.zip. This can be downloaded from either the SourceForge or Saxonica sites.
(It is the same file in both cases). Unzip the contents of this file into the same directory as the Saxon
software. When you run a program that uses Saxon, this program as well as Saxon itself will need
to be on the classpath. For more details of the classpath, see Installing (Java).

6. If you are using features specific to Saxon-PE or Saxon-EE, the commercial editions of Saxon, you
will need to obtain a file containing a licence key. You can apply for a free 30-day license key by
going to www.saxonica.com [http://www.saxonica.com/] and clicking on "Evaluation Copy". The
license key file will be sent by email within 24 hours. This file, called saxon-license.lic,
should be placed in the same directory where the file saxon9pe.jar or saxon9ee.jar is
found.

http://kernowforsaxon.sourceforge.net/
http://kernowforsaxon.sourceforge.net/
http://kernowforsaxon.sourceforge.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sourceforge.net/project/showfiles.php?group_id=29872
http://sourceforge.net/project/showfiles.php?group_id=29872
http://www.saxonica.com/
http://www.saxonica.com/

About Saxon

3

You can now run one of the sample stylesheets or queries that comes with in the saxon-resources
download. Assuming you installed Saxon-HE into c:\saxon, make this your current directory, and
type:

java -cp saxon9he.jar net.sf.saxon.Transform -t -s:samples\data\books.xml
 -xsl:samples\styles\books.xsl -o:c:\temp.html

java -cp saxon9he.jar net.sf.saxon.Query -t
 -s:samples\data\books.xml -q:samples\query\books-to-html.xq >c:\temp.html

Now open c:\temp.html in your browser to check that it worked.

For more details on installing Saxon on the Java platform, see Installing (Java)

Getting started with Saxon on the .NET platform
1. Download the software (you will typically start with the open-source version) from

SourceForge [http://sourceforge.net/project/showfiles.php?group_id=29872]. It is designed to be
used with .NET version 3.5 from Microsoft and has also been used successfully with other versions.
It has not been run successfully with the Mono platform, though it has not been thoroughly tested
on other platforms, and there may be undocumented restrictions.

2. The software comes as a .exe installer SaxonHEn-n-n-nNsetup.exe. Double-click it to run
the installer. It installs the executable files into a user-selected directory, sets a registry entry to
point to this location, and registers the relevant DLLs in the Global Assembly Cache.

3. As a first-time user, you will probably want to install the sample applications. These are packaged
together with a copy of this documentation and Saxon-B source code in the file saxon-
resources9-n.zip. This can be downloaded from either the SourceForge or Saxonica sites.
(It is the same file in both cases). Unzip the contents of this file into the same directory.

4. Make sure that .NET version 2.0 or higher is installed on your machine. This is available as a free
download from Microsoft.

5. If you are using a commercial edition of Saxon (that is, Saxon-PE or Saxon-EE), you will need to
obtain a file containing a licence key.

a. Apply for a free 30-day license key by going to www.saxonica.com [http://www.saxonica.com/]
and clicking on "Evaluation Copy". Be sure to specify that you want a license key for the .NET
platform.

b. The license key file will be sent by email within 24 hours. This file, called saxon-
license.lic, should be placed in the directory containing the Saxon .dll files: for example
c:/Program Files/Saxonica/SaxonHE9.3N/bin

6. Saxon doesn't come with a graphical user interface: it's designed to be integrated into other tools
and applications. You will therefore start by using it from the operating system command line. On
Windows, you may want to install a text editor such as UltraEdit [http://www.ultraedit.com/] that
offers a more friendly command line than the standard DOS console provided by Microsoft.

You can now run one of the sample stylesheets or queries that comes with the saxon-resources
download. Assuming you installed into c:\saxon, make this your current directory, and type:

bin\Transform -t -s:samples\data\books.xml
 -xsl:samples\styles\books.xsl -o:c:\temp.html

bin\Query -t -s:samples\data\books.xml

http://sourceforge.net/project/showfiles.php?group_id=29872
http://sourceforge.net/project/showfiles.php?group_id=29872
http://www.saxonica.com/
http://www.saxonica.com/
http://www.ultraedit.com/
http://www.ultraedit.com/

About Saxon

4

 -q:samples\query\books-to-html.xq -o:c:\temp.html

Now open c:\temp.html in your browser to check that it worked.

For more complete details on installing Saxon on the .NET platform, see Installing (.NET)

What is Saxon?
The Saxon package is a collection of tools for processing XML documents. The main components are:

• An XSLT 2.0 processor, which can be used from the command line, or invoked from an application,
using a supplied API. This can also be used to run XSLT 1.0 stylesheets.

• An XPath 2.0 processor accessible to applications via a supplied API.

• An XQuery 1.0 processor that can be used from the command line, or invoked from an application
by use of a supplied API. This includes support for XQuery Updates 1.0 which is now a W3C
Recommendation.

• An XML Schema 1.0 processor. This can be used on its own to validate a schema for correctness,
or to validate a source document against the definitions in a schema. It is also used to support the
schema-aware functionality of the XSLT and XQuery processors. Like the other tools, it can be run
from the command line, or invoked from an application.

• As well as providing full implementations of the stable specifications listed above, Saxon also
has a track record of early implementation of forthcoming standards. Saxon 9.4 offers a complete
implementation of XML Schema 1.1, which is now in the final stages of standardization. It also
implements many features from the forthcoming XSLT 3.0, XQuery 3.0, and XPath 3.0 working
drafts which are still at an earlier stage of development.

• On the Java platform, when using XSLT, XPath, or XML schema validation, Saxon offers a choice
of APIs. If you need portability across different vendor's tools, you can use the JAXP API for XSLT,
XPath, and XML Schema processing, and the XQJ interface for XQuery. On the other hand, if you
want a more integrated and complete API offering access to all Saxon's facilities, the s9api interface
is recommended. You can also dive down deeper into the Saxon internals if you need to: there has
been no particular attempt to make interfaces private, and all public interfaces are documented in the
JavaDoc. Clearly, the deeper you go, the greater the risk of interfaces changing in future releases.

• On the .NET platform, Saxon offers an API that enables close integration with other services
available from .NET, notably the XML-related classes in the System.Xml namespace. It isn't
possible to use Saxon as a transparent plug-in replacement for the System.Xml.Xsl processor,
because the API for the Microsoft engine using concrete classes rather than abstract interfaces.
However, it is possible to use it as a functional replacement with minor changes to your application
code.

Full details of Saxon's conformance to the specifications are provided in the Conformance section.

In addition, Saxon provides an extensive library of extensions, all implemented in conformance with
the XSLT and XQuery Recommendations to ensure that portable stylesheets and queries can be
written. These include the EXSLT [http://www.exslt.org/] extension libraries , , , and . Many of these
extensions were pioneered in Saxon and have since become available in other products.

These extension functions are in general accessible from XQuery and XPath as well as XSLT, except
where they depend on stylesheet information. Many extensions are available in Saxon-PE only, and
some only in Saxon-EE.

Choosing a software package
Saxon is distributed in three packages: Saxon-HE, Saxon-PE, and Saxon-EE, each of which is
available for both the Java and .NET platforms. Saxon-HE is available under an open-source license

http://www.exslt.org/
http://www.exslt.org/

About Saxon

5

(specifically, the Mozilla Public License), and all its features are available to all users. Saxon-PE and
Saxon-EE are commercial products and require activation by a license key.

There are also restricted licenses that work with Saxon-EE but restrict its capability:

• The EET license provides schema validation and schema-aware XSLT transformation only (no
XQuery)

• The EEQ license provides schema validation and schema-aware XQuery only (no XSLT)

• The EEV license provides schema validation only (no XQuery or XSLT)

For a full table showing the features available in each edition and licensing variant, see the feature
matrix [http://www.saxonica.com/feature-matrix.xml]

For commercial information including prices, terms and conditions, maintenance and upgrade
offerings, site licensing, and redistribution licensing, see the online store [http://www.saxonica.com/
shop/index.html].

Installation: Java platform
This section explains in more detail how to install Saxon on the Java platform.

• Prerequisites

• Obtaining a license key

• Troubleshooting license key problems

• Installing the software

• JAR files included in the product

Prerequisites
The following software must be installed separately, it is not included with the Saxon download.

• To run Saxon you need at least a Java VM, and preferably a Java development environment. Saxon
9.3 requires JDK 1.5 (properly the Java 2 Platform, Standard Edition 5.0) or later (it also runs under
JDK 1.6). If for some reason you need to run under JDK 1.4, you will need to stick with Saxon
9.1 or an earlier release.

• If you use the XQJ XQuery API in Saxon, then you will need the StAX parser interfaces to be
present on your classpath. These are available as standard in JDK 1.6. With JDK 1.5, however, you
will need to install them separately. They can be obtained in the file jsr173_1.0_api.jar
obtainable from https://sjsxp.dev.java.net/.

• Saxon will also accept input from a StAXSource. This is a new class introduced in JAXP 1.4.
It is available as standard in JDK 1.6, but to use it with JDK 1.5, you will need to install it
separately: it can be found in the JAR file jaxp-api.jar which can be downloaded from https://
jaxp.dev.java.net/.

• Saxon has options to work with source trees constructed using DOM, JDOM, JDOM2, XOM, or
DOM4J:

• To use Saxon with DOM, you do not need any extra code on your classpath. (The relevant
code has been integrated into the main JAR file; this has become possible because JDK 1.4
is no longer supported.) The DOM implementation should support DOM Level-3 interfaces.
Saxon retains some legacy code designed to handle level-2 DOM implementations, which

http://www.saxonica.com/feature-matrix.xml
http://www.saxonica.com/feature-matrix.xml
http://www.saxonica.com/feature-matrix.xml
http://www.saxonica.com/shop/index.html
http://www.saxonica.com/shop/index.html
http://www.saxonica.com/shop/index.html
https://sjsxp.dev.java.net/
https://jaxp.dev.java.net/
https://jaxp.dev.java.net/

About Saxon

6

can be activated by calling the method configuration.setDOMLevel(2) on class
net.sf.saxon.Configuration, but this code is now untested and unsupported. Saxon
is validated using the DOM implementation by the Apache Xerces parser, and the DOM that is
packaged with the Sun JDK. It should work with other DOM implementations, but this can never
be 100% guaranteed without testing. Many DOM implementations, especially non-productized
implementations, deviate in minor but significant ways from the specifications.

• For the other object models, JDOM, JDOM2, XOM, and DOM4J, the supporting Saxon adapter
code is integrated into the JAR files for Saxon-PE and Saxon-EE, but is available only as
source code for Saxon-HE. To exploit this code with the open source Home Edition, you will
need to compile the source code from the relevant subpackage of net.sf.saxon.option.
Whichever edition you are using, the external object model is available for use only
if you register it using the method registerExternalObjectModel [Javadoc:
net.sf.saxon.Configuration#registerExternalObjectModel] on the
Configuration [Javadoc: net.sf.saxon.Configuration] object, or via the
configuration file. Saxon no longer searches the classpath to see which object models are present,
because classpath searches are expensive and make the application over-sensitive to details of
the way it is run.

•

• Saxon has been validated with JDOM 1.0, JDOM 1.1.1, XOM 1.1, XOM 1.2.1, XOM 1.2.6, and
DOM4J 1.6.1. Saxon has been tested with the alpha release of DOM4J 2.0.0 (which at the time
of writing has been at alpha status for 18 months). Preliminary testing has been carried out with
JDOM 2, but this interface is not released with Saxon 9.4 because JDOM 2 is not yet sufficiently
stable.

By default Saxon uses an XML parser that supports the SAX2 interface. Saxon has been tested
successfully in the past with a wide variety of such parsers including Ælfred, Xerces, Lark, SUN
Project X, Crimson, Piccolo, Oracle XML, xerces, xml4j, and xp. By default, however, it uses the
parser that comes with the Java platform (a version of Xerces in the case of JDK 1.5). The parser must
be SAX2-compliant. All the relevant JAR files must be installed on your Java CLASSPATH.

Saxon will also work with a StAX parser. Generally speaking, StAX parsers are currently less mature
than SAX parsers, and any performance advantage is likely to be very minor. However, the support
for StAX provides the ability to supply input via a customized pull pipeline. Saxon is tested with
Woodstox 3.0.0. Saxon's schema validation is available only with a SAX2 parser.

Obtaining a license key
The open-source Saxon-HE product does not require any license key. For Saxon-PE and Saxon-EE,
however, you need to obtain a license key from Saxonica. You can order a free license key for a 30-day
evaluation, or purchase an unrestricted license key, from the Saxonica [http://www.saxonica.com/]
web site.

Since Saxon 9.2, newly issued license keys are compatible across the Java and .NET platforms. The
older .NET license keys (named saxon-license.xml) are no longer accepted.

The license key will arrive in the form of a file named saxon-license.lic attached to an email
message. Saxon will search for the license key in the following locations:

1. The location specified using the configuration property
FeatureKeys.LICENSE_FILE_LOCATION [Javadoc:
net.sf.saxon.lib.FeatureKeys], as described below.

2. The directory containing the executable Saxon software, that is saxon9ee.jar or
saxon9pe.jar on the Java platform, and saxon9pe.dll or saxon9ee.dll on the .NET
platform. (On .NET, remember that the software may have been moved to the Global Assembly
Cache.).

http://www.saxonica.com/
http://www.saxonica.com/

About Saxon

7

3. On the Java platform only, the directories identified by the environment variable SAXON_HOME
and SAXON_HOME/bin.

4. On the .NET platform only, the installation directory - that is, the directory chosen for installing the
software when the installation wizard was run. This directory is identified in the Windows registry.

5. All directories on the Java class path. When running from the command line, you can set
the classpath using the -cp option on the java command, or via the environment variable
CLASSPATH. More complex environments might have other ways of building the classpath. In
Tomcat, for example, the license file should be treated in the same way as free-standing (unjarred)
classes, and placed in the WEB-INF/classes directory.

It is also possible to force Saxon to read the license file from a specific location by setting the
Configuration property FeatureKeys.LICENSE_FILE_LOCATION (a constant representing the
string "http://saxon.sf.net/feature/licenseFileLocation"). When this property
is set, the Configuration will immediately attempt to load the specified file, avoiding any
subsequent attempt to search for it on the classpath and elsewhere. This mechanism is useful in
environments that are otherwise difficult to control: for example configuration properties can be
specified as attributes to the factory element of Ant's <xslt> task.

On the Java platform it is generally simplest to copy the file to the directory in which saxon9ee.jar
is installed. On .NET it is generally simplest to copy the file to the directory in which saxon9ee.dll
is installed, and then set the environment variable SAXON_HOME to point to this location.

If you acquire Saxon-PE or Saxon-EE as a component of an application with which it has been
integrated, the application may activate the software automatically using an OEM license key. In this
case you do not need to acquire an individual license key of your own.

Troubleshooting license key problems
If you are having trouble running Saxon-PE or Saxon-EE for the first time, here is a list of the most
common problems:

• within 24 hours, it may be because it has been intercepted by your company's spam/virus checker.
This is surprisingly common. Send us an email and we will try to find a way through your company's
defences.

Another possible cause is that you provided an email address that doesn't work. Again, it's surprising
how many people do this.

And some less common problems:

• . Some mail systems, notably Yahoo, have been known to change the hyphen to an underscore in
transit.

• , please read the instructions above for where to install the license key once again.

• , this may mean that you are running Saxon-HE software, or that you have invoked Saxon using
a Saxon-HE entry point, or that Saxon has reverted to Saxon-HE functionality because it could
not find a valid license file (in the latter case it will have produced a message to this effect: but
depending on your application, you might not see the message).

• then it probably is. Very occasionally a license file gets corrupted in transit. Please ask for another
copy (or we might issue you a new license). Sometimes the corruptions can be traced to the use of
non-ASCII characters in license fields such as your name or Company (mail systems can be unkind
to such files). In the event of problems, try applying again restricting yourself to ASCII characters.

• this generally means you are using a 30-day evaluation license and the expiry date has been reached.
(Perhaps you have obtained a new license, key, and Saxon is still picking up the old one.) If it's

About Saxon

8

taking you longer to evaluate the software than you planned, please send us an email explaining the
circumstances before you apply for another license, otherwise the request may be refused.

• , this usually means that you purchased a standard license key which covers free upgrades for one
year, and that year has elapsed. You will need to purchase an upgrade, which can be done online.
Most paid-for licenses are permanent, but only in relation to software issued within one year of
the purchase.

Installing the software
An index of all currently-available open-source versions of Saxon is on the download page at
SourceForge [http://sourceforge.net/project/showfiles.php?group_id=29872]

For the commercial versions of Saxon, please follow the download links from http://
www.saxonica.com/

Please see the change log for details of all changes in this release.

Installation of Saxon on the Java platform simply involves unzipping the supplied download file into
a suitable directory. The procedure is the same for all editions (HE, PE, and EE). The JAR files are
differently named in each edition.

One of the files that will be created in this directory is the principal JAR file. This is , , or depending
on which Saxon edition you are using.

There are some additional JAR files to support optional features such as the SQL interface. When
running Saxon, the principal JAR file should be on the class path. The class path is normally
represented by an environment variable named CLASSPATH: see your Java documentation for
details. Note that the JAR file itself (not the directory that contains it) should be named on the class
path.

Some environments (for example Java IDEs such as Eclipse, and servlet containers such as tomcat)
build the classpath themselves: they might ask you to register the location of JAR files via a graphical
user interface or a text configuration file, or they might ask you to put the JAR files in a well known
place (for example WEB-INF/lib in the case of tomcat). Follow the instructions for the environment
you are using.

JAR files included in the product
The full list of JAR files in the Saxon distribution is as follows:

Table 1.1.

saxon9he.jar Saxon Home Edition. Contains all the software in
Saxon-HE.

saxon9pe.jar Saxon Professional Edition. Contains all the
software in Saxon-PE, with the exception of the
SQL extension.

saxon9ee.jar Saxon Enterprise Edition. Contains all the
software in Saxon-EE, with the exception of
the SQL extension and the code for compiling
XQuery to Java.

saxon9-sql.jar Supports XSLT extensions for accessing and
updating a relational database from within a

http://sourceforge.net/project/showfiles.php?group_id=29872
http://sourceforge.net/project/showfiles.php?group_id=29872
http://sourceforge.net/project/showfiles.php?group_id=29872
http://www.saxonica.com/
http://www.saxonica.com/

About Saxon

9

stylesheet. Provided with Saxon-PE and Saxon-
EE.

saxon9-unpack.jar Allows a "packaged stylesheet" to be executed.
The JAR file is provided with Saxon-HE, Saxon-
PE and Saxon-EE. Packaged stylesheets can only
be created using Saxon-PE or Saxon-EE; for
details see Packaged Stylesheets.

When running any Java application, Saxon included, all Java classes that are needed must be present
on the CLASSPATH. The classpath can be set in the form of an environment variable, or it can be
included in the java command that invokes the application.

The classpath is written as a list of filenames. These will either be the names of directories (folders)
that contain relevant classes, or the names of JAR files containing the classes. On Windows, the names
in the list are separated by semicolons; on Linux, a colon is used.

The table above lists the JAR files provided with Saxon that you may need to include on your classpath.
In addition, you may need to include some of the following resources:

Table 1.2.

saxon-license.lic License file. This is needed only for running
Saxon-EE/Saxon-PE. The license file is obtained
when you purchase the product or when you apply
for an evaluation license.

jaxp-api.jar This file implements parts of JAXP 1.4 that Saxon
uses. It is not needed when you run Saxon under
Java 6, as the required classes are then included in
the standard Java run-time. It is needed, however,
if you run Saxon under Java 5. This JAR file is
not included in the Saxon distribution because
of licensing restrictions. Instead, it must be
downloaded from https://jaxp.dev.java.net/. The
jaxp-api.jar file is needed when you use the
StAXSource class.

Source code and documentation are not included in the same download file as the executable code and
sample files. Instead, they are in a resources file that can be downloaded separately. The documentation
is also available online.

The source code for Saxon-HE (on both the Java and .NET platforms) is available in the package
saxon-resources-9.x from either the SourceForge or the Saxonica sites. Note that it is not
necessary to download or recompile the source code unless you need to make changes (and it is rarely
necessary to make changes, because Saxon provides extensive system programming hooks to enable
customization). The exception to this is that in Saxon-HE, adapters for external object models, and
localization code for non-English languages, are provided in source form only.

The modules included in the source code of Saxon-HE are also used, without modification, in Saxon-
PE and Saxon-EE. Source code for the additional components of the commercial editions is not
provided. The source code is the same between the Java and .NET platforms: both products are
generated from the same source, though there are some modules that apply only to one platform or the
other. There are no build scripts provided for rebuilding the product from source code, because most
users find it convenient to use their Java IDE for this purpose.

User documentation (this documentation, together with API specifications for the Java and .NET
products) is also available for download from the SourceForge site. The download package contains
exactly the same information as the documentation section of the Saxonica website. It also contains

https://jaxp.dev.java.net/

About Saxon

10

this documentation in its original XML form, together with the schemas and stylesheets used to publish
it. Note that online documentation is available only for a few recent Saxon versions; older versions
can be downloaded from SourceForge.

Installation: .NET platform
This section explains in more detail how to install Saxon on the .NET platform.

The source code of Saxon is written in Java. The version of the product that runs on the .NET
platform has been produced by cross-compiling the Java bytecode into CIL code, which is
then packaged as a .NET assembly. The cross-compiler is the open-source IKVMC [http://
www.ikvm.net/] product. The code of course makes many calls on classes provided by the Java
run-time library. On the .NET platform, most of these are provided by the OpenJDK product:
Saxon comes with a version of the OpenJDK library, itself cross-compiled as a .NET assembly.
Other run-time services are obtained from the .NET platform itself. These include XML parsing,
handling of URI resolution, and internationalized collation support.

For more information about Saxon on the .NET platform, see Saxon on .NET.

Prerequisites: .NET platform
The following software must be installed separately, it is not included with the Saxon download.

• To run Saxon you need to install the .NET platform, version 2.0 or later.

Because Saxon is run from the command line, you might find it useful (under Microsoft Windows) to
have a text editor with better command-line support than the standard DOS window. I use UltraEdit
[http://www.ultraedit.com].

Installing the software
The software is issued in the form of a .exe file containing an installation wizard: all you need to do
is to run it, answering simple prompts such as the directory in which you want it installed.

The main components are as follows:

Table 1.3.

saxon9he.dll, saxon9pe.dll or saxon9ee.dll The Saxon library for Home Edition, Professional
Edition, or Enterprise Edition

saxon9he-api.dll, saxon9pe-api.dll, saxon9ee-
api.dll

The classes implementing Saxon's .NET API. The
three DLLs are identical except that they contain
references to the appropriate version of the main
Saxon DLL.

Transform.exe Command line entry-point for XSLT
transformation

Query.exe Command line entry-point for XQuery evaluation

Validate.exe (Saxon-EE only) Command line entry-point for
XML Schema validation

IKVM.Runtime.dll Run-time library for the IKVM cross-compiler

IKVM.OpenJDK.XXXX.dll A number of DLL files containing parts of
the Java OpenJDK class library cross-compiled
to .NET

http://www.ikvm.net/
http://www.ikvm.net/
http://www.ikvm.net/
http://www.ultraedit.com
http://www.ultraedit.com

About Saxon

11

These files will typically be found in a folder with a name such as c:\Program Files\Saxonica
\SaxonHE9.3N\bin

You may find it useful to add this directory to the PATH environment variable. This enables you to use
the commands Transform, Query, and Validate without identifying their location explicitly.

Obtaining a license key
The open-source Saxon-HE product does not require any license key. For Saxon-PE and Saxon-EE,
however, you need to obtain a license key from Saxonica. You can order a free license key for a 30-
day evaluation, or purchase an unrestricted license key from the Saxonica [http://www.saxonica.com/]
web site.

Since Saxon 9.2 license keys have been compatible between the Java and .NET platforms.

The license key will arrive in the form of a file named saxon-license.lic attached to an
email message. Copy the file into the /bin directory containing the Saxon DLLs, for example c:
\Program Files\Saxonica\SaxonEE9.3N\bin

If you acquire Saxon-PE or Saxon-EE as a component of an application with which it has been
integrated, the application may activate the software automatically using an OEM license key. In this
case you do not need to acquire an individual license key of your own.

Sample applications
Saxon on .NET is distributed with a number of sample applications. These are issued (together with
Saxon-HE source code and documentation) in a separate download file saxon-resources9-
n.zip, available from both the SourceForge and Saxonica web sites. Once this is unzipped, the
sample applications can be found in the directory /samples. They are described here.

Many of the samples are equally applicable to the Java and .NET platforms. However, there are several
programs in the /samples/cs directory that are specifically designed to illustrate ways of using the
Saxon.Api interface. This interface is exclusive to the .NET product, and is described in more detail
in Saxon API for .NET. These sample applications are described in Example applications for .NET.

Historical Note
Saxon has been under development since 1998. Most of the code was written by one person, Michael
Kay, which has resulted in a high level of design integrity. More recently O'Neil Delpratt has joined
Saxonica's development team and has contributed extensively to the development of Saxon 9.4.

Saxon was originally written to support an internal project in ICL (now part of Fujitsu [http://
www.fujitsu.com]), and ICL continued to sponsor development of Saxon until Michael Kay left the
company in January 2001. ICL chose not to market it as a commercial product, but to make the code
available to the public under the Mozilla public license. From 2001 through 2003 Michael Kay worked
for Software AG [http://www.softwareag.com], who continued to sponsor the development of Saxon
as an open source product.

In March 2004 Michael Kay founded Saxonica Limited [http://www.saxonica.com/] to provide
ongoing development and support of Saxon as a commercial venture. Saxonica continues to develop
the basic (non-schema-aware) version of Saxon as an open source product, while at the same time
delivering professional services and additional software (Saxon-PE and Saxon-EE) as commercial
offerings. The commercial product incorporates the code of the open-source product in its entirety,
with the addition of schema-processing technology, and is produced in accordance with the provisions
defined by the Mozilla Public License.

The port of Saxon to the .NET platform was pioneered by Pieter Siegers Kort and M. David Peterson,
without any involvement from Saxonica. Their work was absorbed into the Saxonica product line from

http://www.saxonica.com/
http://www.saxonica.com/
http://www.fujitsu.com
http://www.fujitsu.com
http://www.fujitsu.com
http://www.softwareag.com
http://www.softwareag.com
http://www.saxonica.com/
http://www.saxonica.com/

About Saxon

12

Saxon 8.7 onwards. The Saxonica product used the same approach as the previous Saxon.NET product
for cross-compiling the code into CIL assemblies. In addition, however, it provided a new .NET API
for use by C# and other .NET applications, and made much greater use of .NET services such as
collations and regular expression processing. This integration was done by Saxonica with generous
advice from M. David Peterson. The project would not have been possible without the IKVMC cross-
compilation technology developed by Jeroen Frijters, as well as the GNU Classpath developed by a
large team of individual enthusiasts. The use of GNU Classpath was subsequently discontinued and
replaced with OpenJDK.

The name Saxon was chosen because originally it was a layer on top of SAX. Also, it originally used
the Ælfred parser (among others); Ælfred of course was a Saxon king...

Technical Support

Please read the Conditions of Use.

The open-source Saxon-HE product comes with no warranty and no formal technical support service.

• Lists and forums for getting help

• Bugs and patches

Lists and forums for getting help
If you have a general question about XSLT or XPath programming, that is not specifically related
to Saxon, we recommend the xsl-list [http://www.mulberrytech.com/xsl/xsl-list/]: check first that the
query isn't already covered in the FAQ. The archives of the list can be searched at MarkMail [http://xsl-
list.markmail.org/]. Other useful sites for XSLT information are www.xslt.com [http://www.xslt.com/
] and www.jenitennison.com [http://www.jenitennison.com/].

Similarly, there are a number of help forums for XQuery: for details see the XQuery home page at
http://www.w3.org/XML/Query. The most active is talk at xquery.com [http://www.xquery.com/].

The StackOverflow [http://stackoverflow.com/] is another useful resource for asking about all manner
of XML-related (and other) topics.

If you have questions specific to Saxon you can usually get an answer by raising them on the
Saxon help list at http://lists.sourceforge.net/lists/listinfo/saxon-help [https://lists.sourceforge.net/
lists/listinfo/saxon-help]. You will need to register.

Alternatively, you can also use the saxon-help forum on the SourceForge project site. Saxonica
monitors both; however, if you want to get input from other Saxon users, the mailing list is usually
more effective. You can also use the support-requests tracker on SourceForge; unlike the forum, this
allows attachments to be uploaded.

Please do not ask for help via the bug tracker on SourceForge. We prefer to keep this for
confirmed bugs only. It's much easier to search it for known bugs if it isn't cluttered with support
requests that are not bugs at all.

Bugs and patches
If you hit something that looks like a bug, please check the known errors on the Saxon project pages
at SourceForge [http://sourceforge.net/projects/saxon]. Also check the list archives.

http://www.mulberrytech.com/xsl/xsl-list/
http://www.mulberrytech.com/xsl/xsl-list/
http://xsl-list.markmail.org/
http://xsl-list.markmail.org/
http://xsl-list.markmail.org/
http://www.xslt.com/
http://www.xslt.com/
http://www.jenitennison.com/
http://www.jenitennison.com/
http://www.w3.org/XML/Query
http://www.xquery.com/
http://www.xquery.com/
http://stackoverflow.com/
http://stackoverflow.com/
https://lists.sourceforge.net/lists/listinfo/saxon-help
https://lists.sourceforge.net/lists/listinfo/saxon-help
https://lists.sourceforge.net/lists/listinfo/saxon-help
http://sourceforge.net/projects/saxon
http://sourceforge.net/projects/saxon
http://sourceforge.net/projects/saxon

About Saxon

13

Please don't enter the problem into the bug register until it is confirmed as a bug: it's easier for
everyone to search for real bugs if the register isn't cluttered with problems that turned out not
to be bugs at all.

If you need to submit attachments, this is best done through the tracker on the SourceForge site.

Saxon-EE and Saxon-PE users are provided with an email address that allows bug reports to be sent
to Saxonica privately if preferred.

The open source code of Saxon-HE is maintained in a Subversion repository on the SourceForge
site. This exists solely to provide early access to source patches, it is not (currently) used to deliver
incremental releases of new functionality. Building the Jar files is reasonably easy for an experienced
Java programmer; an Ant script is provided to assist with this, but it is likely to require customization to
local requirements (for example, deleting the parts concerned only with Saxon-EE or Saxon on .NET).
Building the .NET product is considerably more complicated, and although scripts are provided, you
should only attempt it if you have a good knowledge of both platforms.

If you wish to contribute modifications to the open source code, you will need to be prepared to sign a
contributor agreement defining the terms under which the code is made available. This may need the
written agreement of your employer. You should also check with Saxonica in advance to discuss the
format of test material to be submitted along with code changes; proposed contributions have often
been rejected because they came without adequate tests.

Related Products
This section lists some Saxon add-ons and extensions produced by third parties. Saxonica Limited
takes no responsibility for the quality of these products. More information about third party products
is available on the Saxon wiki pages [https://sourceforge.net/apps/mediawiki/saxon/index.php?
title=Main_Page]

Open Source tools
Kernow [http://sourceforge.net/projects/kernowforsaxon/] is a graphical front-end for Saxon. This is
an open-source product developed by Andrew Welch. It provides an effective alternative to the Saxon
command line interface for users who prefer a GUI for running ad-hoc transformations.

On MAC OS/X, Todd Ditchendorf has produced XSLPalette [http://www.ditchnet.org/xslpalette/],
which is designed to integrate with your own choice of text editor to provide XSLT development and
debugging support.

Commercial Editors and Debuggers
A number of commercial XML IDEs provide support for XML, XSLT, and/or XQuery editing and
debugging, with the ability to configure Saxon as the chosen XSLT/XQuery processor. These include:

• Stylus Studio [http://www.stylusstudio.com/]: offers XSLT, XQuery, and XML Schema
development and debugging, all using Saxon. This is currently the only IDE that offers Saxon-EE
built-in.

• oXygen [http://www.oxygenxml.com/] offers XSLT and XML Schema development and
debugging for Saxon. Integrates Saxon-B, and works with Saxon-EE which you must purchase
separately.

• A budget XML Editor and Debugger for Saxon is EditiX [http://www.editix.com/], with prices
starting at $22.

https://sourceforge.net/apps/mediawiki/saxon/index.php?title=Main_Page
https://sourceforge.net/apps/mediawiki/saxon/index.php?title=Main_Page
https://sourceforge.net/apps/mediawiki/saxon/index.php?title=Main_Page
http://sourceforge.net/projects/kernowforsaxon/
http://sourceforge.net/projects/kernowforsaxon/
http://www.ditchnet.org/xslpalette/
http://www.ditchnet.org/xslpalette/
http://www.stylusstudio.com/
http://www.stylusstudio.com/
http://www.oxygenxml.com/
http://www.oxygenxml.com/
http://www.editix.com/
http://www.editix.com/

About Saxon

14

• XML Spy from Altova [http://www.altova.com/] allows you to configure Saxon as your XSLT
or XQuery processor, but does not provide Saxon debugging. There is also a third-party plug-in
[http://members.chello.at/spiffbase/spycomponents/ValidatorBuddy.htm] that allows Saxon-EE to
be used for schema validation.

XQuery Documentation
is a Javadoc-like documentation tool for XQuery. It works with Saxon, and is available either as a
free-standing tool from http://xqdoc.org/ or as part of Stylus Studio [http://www.stylusstudio.com/].

http://www.altova.com/
http://www.altova.com/
http://members.chello.at/spiffbase/spycomponents/ValidatorBuddy.htm
http://members.chello.at/spiffbase/spycomponents/ValidatorBuddy.htm
http://xqdoc.org/
http://www.stylusstudio.com/
http://www.stylusstudio.com/

15

Chapter 2. Changes in this Release
Version 9.4 (2011-12-09)

Details of changes in Saxon 9.4 are detailed on the following pages:

• Bytecode generation

• Reading source documents

• XPath 3.0 changes

• XSLT changes

• XSLT Packaged Stylesheets

• XQuery 3.0 changes

• Changes to XSD support

• Changes to Functions and Operators

• Changes to Saxon extensions and extensibility mechanisms

• Changes to application programming interfaces

• Changes to system programming interfaces

Bytecode generation
Saxon-EE 9.4 selectively compiles stylesheets and queries into Java bytecode before execution.

This change should be largely invisible to users, apart from the performance gain, which in typical
cases is around 25%.

Where Saxon decides that generating bytecode would be advantageous, the bytecode is generated
as the final stage in the query or stylesheet compilation process. The bytecode is held in memory
(never written out to disk) as part of the expression tree. Interpreted expressions can call compiled
expressions, and vice versa.

Bytecode generation is done using the ASM library, which is included as an integral part of the Saxon-
EE JAR file.

Bytecode generation occurs even in the .NET version of the product. The bytecode is automatically
and dynamically converted to .NET IL code prior to execution, by the IKVM runtime.

There are several configuration options associated with bytecode generation. The option
GENERATE_BYTE_CODE can be set to false to disable byte code generation (which might
be useful, for example, when doing low-level debugging). The option DEBUG_BYTE_CODE
can be set to cause the generated byte code to contain debugging information. And the option
DISPLAY_BYTE_CODE can be set to cause the generated code to be displayed (on the standard error
output).

The facility to generate byte code replaces the facility in Saxon 9.3 to generate Java source code (which
was available for XQuery only). It also replaces the XSLT facility for "compiled stylesheets".

Reading source documents
During 2011, W3C have taken steps to reduce the burden of meeting requests for commonly-
referenced documents such as the DTD for XHTML. The W3C web server is routinely rejecting such

Changes in this Release

16

requests, causing parsing failures. In response to this, Saxon now includes copies of these documents
within the issued JAR file, and recognizes requests for these documents, satisfying the request using
the local copy. For details see References to W3C DTDs.

In addition, Saxon 9.4 command line interfaces have been enhanced with a new option, -
catalog:filename that causes URIs and public identifiers to be resolved by reference to an
OASIS catalog. For details see Using XML Catalogs.

The PTree now retains the is-id and is-idref properties of attributes. This has been
done by using previously unused bits; since the old PTreeReader [Javadoc:
com.saxonica.ptree.PTreeReader] can read the new format, and the new PTreeReader
[Javadoc: com.saxonica.ptree.PTreeReader] can read the old format, no new version
number has been introduced.

XPath 3.0 changes
Support for the primitive type xs:precisionDecimal has been dropped, since it has been
removed from XSD 1.1.

The XPath 3.0 string concatenation operator ("||", borrowed from SQL) is implemented.

The XPath 3.0 simple mapping operator ("!") is implemented.

Casting from strings (and xs:untypedAtomic) to union and list types is now supported. The effect
is the same as casting to an attribute with the given type, and then atomizing the attribute. For example
casting to a type list-of-integer defined as a list type with an item type of xs:integer
returns a sequence of xs:integer values.

Certain union types can now appear in a SequenceType (e.g as the declared type of a function
argument). The union types accepted are those that are not derived by restriction from another union
types, and whose membership includes only atomic types and other union types that meet the same
criteria.

The XQuery/XPath 3.0 parser has been extended to support partial function application ("?" as a
function argument) in dynamic function calls. Previously this feature was supported only in direct
function calls to a named function.

The implementation of maps has been updated to match the draft XSLT 3.0 spec. The extensions
for maps are available in XPath 3.0 and XQuery 3.0, rather than being restricted to XSLT. This may
change as the W3C specifications evolve.

XSLT changes
See also XPath 3.0 changes.

XSLT 2.0 implementation

The call system-property('xsl:vendor') now returns the string "Saxonica". Previously it
returned a more complex string that also identified the product version; this information should now
be obtained using the XSLT 2.0 system properties such as system-property('xsl:product-
version'). Information on the values returned for each system property is at XSLT 2.0
Conformance.

The handling of type errors in an <xsl:if>, or an <xsl:choose> with no <xsl:otherwise>
branch, has been made less draconian. If the construct appears in a context where it is not allowed to
return an empty sequence, the type error is no longer reported statically, but is only reported if the
implicit else/otherwise branch is actually taken at run-time. The immediate motivation for this change
is that it enables stylesheets generated using Altova's products to be executed; it also appears to be a
more reasonable interpretation of the intent of the specification.

Changes in this Release

17

Command line

The implementation of the -TP option on the command line, which produces a timing profile, has
been rewritten. Rather than producing a trace file containing all the events with timings, which could
become very voluminous, it now aggregates the timing data in memory, and outputs the results directly
in HTML rather than requiring a separate post-processing step.

On the net.sf.saxon.Transform command line, there is a new option -threads:N
controlling how many threads are to be used. This only has effect when the -s option specifies
a directory. It does not cause individual transformations to be multi-threaded, it only causes the
transformations of different files to run in parallel with each other.

The new -catalog:filename option requests use of OASIS catalogs for resolving DTD
references, external entity references, URIs appearing in xsl:include and xsl:import
declarations, and calls to the doc() and document() functions.

In Saxon-EE, Java bytecode is generated automatically unless suppressed using the option --
generateByteCode:off

XSLT 3.0 Features

XSLT 3.0 features are available only if XSLT 3.0 support is explicitly requested, for example
by specifying -xsltversion:3.0 on the command line.

Maps, as defined in the draft XSLT 3.0 specification, are implemented as an extension to XPath 3.0.
For details see Maps in XPath 3.0.

The xsl:merge instruction is implemented.

Pattern syntax in the form ~ItemType is supported, for example match="~xs:integer"
matches an integer. Predicates are allowed on such patterns, for example ~xs:integer[. gt 0].

Associated with this change, xsl:apply-templates (as well as xsl:next-match and
xsl:apply-imports can be used to process any kind of item, not only nodes (for example, atomic
values or maps)

Similarly, xsl:for-each-group with the group-starting-with or group-ending-
with patterns can now process a sequence of atomic values.

In the xsl:mode declaration, the values supported for the on-no-match attribute have changed,
in line with changes in the XSLT 3.0 working draft. The option copy is renamed shallow-copy,
stringify is renamed text-only-copy, and discard is renamed deep-skip. Two new
options are added: deep-copy and shallow-skip.

When xsl:copy is used with a select attribute (new feature in XSLT 3.0), the context item for
evaluation of the contained sequence constructor is now the item selected by the select attribute.

The intersect and except operators can now be used in match patterns; multiple operators and
parentheses are allowed. Parentheses are also allowed around an expression that is then filtered by a
predicate, for example match="(foo|bar)[*]" or (//para)[1].

XSLT Packaged Stylesheets
The net.sf.saxon.CompileStylesheet facility, which serialized the internal representation
of a stylesheet, is withdrawn in this release. Because the feature offered few performance benefits, it
was used mainly to enable XSLT stylesheets to be distributed without revealing the source code to
users, thus preserving the intellectual property of the author. The feature is replaced by a new facility
designed to achieve the same effect in a cleaner way, with fewer restrictions.

Changes in this Release

18

Saxon-PE/EE now provide a command to create a packaged stylesheet in the form of a ZIP file. The
contents are in obfuscated form so the source code is not visible. A JAR file, saxon9-unpack.jar,
is available with all Saxon editions allowing a stylesheet that comes in this form to be executed. This
JAR file contains Saxonica proprietary (non-open-source) code, but is available at no cost and does
not require a license key to run.

For full details of the facility see Packaged Stylesheets.

XQuery 3.0 changes
See also XPath 3.0 changes.

The function annotations %public and %private are implemented (they were available in 9.3
without the "%" sign).

The variable annotations %public and %private are implemented (they were not available in 9.3).

A case clause in a typeswitch expression can list multiple alternative types separated by the "|"
operator.

In FLWOR expressions, the count clause is implemented; implementation of group-by has been
completed, and sliding and tumbling windows are implemented. Implementation of XQuery 3.0
FLWOR expressions is thus functionally complete. To achieve this, a new internal design has been
adopted, using tuple streams in a manner very close to that described in the specification.

The implementation of the -TP option on the command line, which produces a timing profile, has
been rewritten. Rather than producing a trace file containing all the events with timings, which could
become very voluminous, it now aggregates the timing data in memory, and outputs the results directly
in HTML rather than requiring a separate post-processing step.

Changes to XSD support
Various minor changes have been made to bring Saxon 9.4 into full conformance with the XSD 1.1
specification. Most of these are edge cases and bug fixes, mostly prompted by resolution of issues
in the specification.

Assertions in XSD 1.1 now use the correct rules for typing (that is, for type annotation of the tree made
visible to the XPath expression defining the assertion).

Following its removal from XSD 1.1, support for the xs:precisionDecimal data type has been
dropped.

In regular expressions, the block names that are recognized (whether running XSD 1.0 or 1.1) in
constructs of the form \p{IsBlockName} now include blocks defined in all Unicode versions
from version 3.1 to version 6.0 inclusive. Where the characters included in a block differ from one
version to another, Saxon recognizes the union of the various definitions. When XSD 1.1 is enabled
Saxon treats an unrecognized block name as a warning condition rather than an error; in this case both
\p{IsBlock} and \P{IsBlock} will match any character. For example, Saxon now recognizes
both \p{IsGreek} and \p{IsGreekAndCoptic}. Internally, the recognition of block names
no longer depends on what is recognized by the underlying Java regex library.

In regular expressions, character category matches such as \P{Nd} now use the categorization of
characters defined in Unicode 6.0.0. This not only affects characters added to Unicode since Unicode
version 3.1, it also changes the categorization of some existing characters.

In regular expressions, the metacharacters \i and \c now use the definitions of name characters from
XML 1.0 fifth edition and XML 1.1 second edition (which are identical), regardless whether XML
1.1 support is enabled or not.

Changes in this Release

19

All testing of names in Saxon now uses the rules defined in XML 1.1 and in XML 1.0 fifth edition
(which are identical), whether or not XML 1.1 or XSD 1.1 is enabled. This includes \i and \c in
regular expressions, the rules for data types such as xs:NCName and xs:QName, parsing of names in
XPath expressions and XQuery element constructors, etc. The only thing not covered is where names
are checked by non-Saxon software, for example the XML parser.

A configuration option MULTIPLE_SCHEMA_IMPORTS [Javadoc:
net.sf.saxon.lib.FeatureKeys] has been added to force xs:import to fetch the
referenced schema document. By default the xs:import fetches the document only if no schema
document for the given namespace has already been loaded. With this option in effect, the referenced
schema document is loaded unless the absolute URI is the same as a schema document already loaded.

A configuration option ASSERTIONS_CAN_SEE_COMMENTS [Javadoc:
net.sf.saxon.lib.FeatureKeys] has been added to control whether comments and
processing instructions are visible to the XPath expression used to define an assertion. By default
(unlike Saxon 9.3), they are not made visible.

On the com.saxonica.Validate command line, a new option -stats:filename is
available: it causes statistics about the validation episode to be captured in the specified XML file.

Changes to Functions and Operators
Implemented fn:parse-json() and fn:serialize-json()

Implemented fn:path()

Changes to Saxon extensions and extensibility
mechanisms

An additional flag is provided for saxon:deep-equal(): the I flag tests whether the is-ID and
is-IDREF properties of two nodes match.

To allow XSLT extension instructions to be called from generated bytecode, the interface has been
changed: evaluation must now be done using the standard call method, which is aligned with the
interface for integrated extension functions. For examples, see the source code of the SQL extension
classes.

Changes to application programming interfaces

In s9api, an XQueryEvaluator [Javadoc:
net.sf.saxon.s9api.XQueryEvaluator] is now a Destination [Javadoc:
net.sf.saxon.s9api.Destination], so queries can participate in s9api pipelines in the
same way as transformations.

In s9api, the base output URI of an XsltTransformer [Javadoc:
net.sf.saxon.s9api.XsltTransformer] is now taken from the Destination
[Javadoc: net.sf.saxon.s9api.Destination] if (a) no base output URI has been
explicitly set, and (b) the destination is a Serializer writing to a supplied File.

A class XdmFunctionItem has been added to both s9api and the Saxon.NET API to represent items
that are functions (as distinct from atomic values and nodes).

It is now possible to set a default collection and a collection URI resolver at the level of
the Controller [Javadoc: net.sf.saxon.Controller] (that is, an individual
transformation or query); previously it could only be set globally, in the Configuration
[Javadoc: net.sf.saxon.Configuration]. There is now a defined constant URI
(Collection.EMPTY_COLLECTION) which always represents an empty collection, without
needing to be resolved by the URI resolver.

Changes in this Release

20

It is now possible to set an extension function library at the level of an individual query (via the
StaticQueryContext [Javadoc: net.sf.saxon.query.StaticQueryContext]
object), or an individudual stylesheet (via the CompilerInfo [Javadoc:
net.sf.saxon.trans.CompilerInfo] object. Previously an extension function
library could only be defined at the Configuration [Javadoc:
net.sf.saxon.Configuration] level.

In the JAXP XPathFactory implementation, Saxon configuration properties (as listed in
FeatureKeys [Javadoc: net.sf.saxon.lib.FeatureKeys]) can now be supplied to
the getFeature() and setFeature() methods, provided the properties are of type boolean.

A new class Transmitter [Javadoc: net.sf.saxon.event.Transmitter] is
available as a new kind of JAXP Source, recognized in all Saxon interfaces that accept a Source. A
Transmitter writes events to a Receiver [Javadoc: net.sf.saxon.event.Receiver].
This is useful when the input to a streamed transformation is supplied programmatically.

A new simplified interface for defining context-free extension functions is available as
part of the s9api package: Processor.registerExtensionFunction [Javadoc:
net.sf.saxon.s9api.Processor], where the argument implements the interface
ExtensionFunction [Javadoc: net.sf.saxon.s9api.ExtensionFunction].
TODO: documentation, examples, tests

Changes to system programming interfaces

The Receiver [Javadoc: net.sf.saxon.event.Receiver] interface (widely used
internally within Saxon) has changed to reduce the dependency on the NamePool [Javadoc:
net.sf.saxon.om.NamePool]. On the startElement() and attribute() calls, the
names and types of elements and attributes are now passed as object references rather than integer
codes. Similarly on the namespace() call, the integer namespace code is replaced with a reference
to a NamespaceBinding object.

Integer namespace codes allocated from the name pool are no longer used. They have been replaced
with the NamespaceBinding [Javadoc: net.sf.saxon.om.NamespaceBinding]
object which contains the prefix and URI as strings. The purpose of this change is to reduce the number
of synchronized calls on the NamePool [Javadoc: net.sf.saxon.om.NamePool], and
hence to reduce contention; the performance benefit from avoiding string comparisons did not
justify the overhead caused by synchronization. This change results in small changes to both the
NodeInfo [Javadoc: net.sf.saxon.om.NodeInfo] and Receiver [Javadoc:
net.sf.saxon.event.Receiver] interfaces.

A new method getSchemaType() is added to the NodeInfo [Javadoc:
net.sf.saxon.om.NodeInfo] interface, returning the type annotation as a
SchemaType [Javadoc: net.sf.saxon.type.SchemaType] object. The existing
getTypeAnnotation() method which returns the same information as an integer fingerprint
remains available for the time being.

The mechanism for injecting trace calls into expressions has been generalised so that an arbitrary
CodeInjector [Javadoc: net.sf.saxon.expr.parser.CodeInjector] can be
supplied. This can be selective about what kind of expression it inserts into the parse tree,
and where. This gives a lot more flexibility for tools that add debugging or performance
monitoring capabilities to the product. For XQuery this can be controlled at the level of the
StaticQueryContext [Javadoc: net.sf.saxon.query.StaticQueryContext],
for XSLT using the CompilerInfo [Javadoc: net.sf.saxon.trans.CompilerInfo]
object.

In the expression tree, the representation of path expressions and axis expressions has changed. The
class PathExpression has disappeared; instead, the class SlashExpression is used, wrapped
in a DocumentSorter if sorting into document order and elimination of duplicates is required.

Changes in this Release

21

A subclass of SlashExpression, the SimpleSlashExpression, is used for expressions of
the form $p/title where the left-hand side selects a singleton and the right-hand side is an axis
expression; this optimization reduces the number of context objects that need to be created, especially
in XQuery where such constructs are very common.

Version 9.3 (2010-10-30)
The documentation now has an Alphabetical index.

At the time of writing, W3C has published draft specifications under the titles XQuery 1.1, XPath 2.1,
and XSLT 2.1. However, W3C has also announced its intent to change the numbering, so that the final
specifications will be XQuery 3.0, XPath 3.0, and XSLT 3.0. Saxon 9.3 anticipates this change by
using the version number 3.0 to refer to the new set of draft specifications.

The interfaces defining callbacks that advanced applications may use to customize Saxon's behaviour
were previously scattered around the various packages, some quite difficult to find. Most of them
have been moved into a new package net.sf.saxon.lib. This package also contains default
implementations of these interfaces, and classes defining constants for use in Saxon's various
configuration APIs.

The current state of implementation of all standard functions is now documented here.

• Highlights

• Installation on .NET

• Command line and configuration changes

• Extensibility changes

• Extensions

• XSLT 3.0 changes

• Streaming in XSLT

• XPath 3.0 changes

• XPath 2.0 and XQuery 1.0 changes

• XQuery 3.0 and XQuery Update changes

• Functions and Operators

• XML Schema 1.0 changes

• XML Schema 1.1 changes

• Changes to the s9api API

• Saxon on .NET changes

• Serialization

• Running Saxon from Ant

• The SQL Extension

• Internal changes

Changes in this Release

22

Highlights
Some of the most significant features of Saxon 9.3 are:

• An installation wizard is provided on .NET

• Support for XML Schema 1.1 is almost complete.

• Support for streamed processing of XSLT is greatly extended, making transformation of very large
documents much more feasible.

• For the first time, Saxon has support for parallel processing of XSLT to take advantage of multi-
core CPUs.

• Many features from the draft 3.0 specifications are implemented.

• The range of data-types available is extended by the provision of immutable maps.

Installation on .NET
Saxon on .NET now comes with an installer. The downloaded file is an executable which installs the
product into a user-selected directory. It also installs the relevant DLLs in the Global Assembly Cache,
and creates some entries in the Windows registry, notably the path name of the directory where the
software is installed. This registry entry is used when locating the license file for Saxon-PE and Saxon-
EE, replacing the previous mechanism which used the SAXON_HOME environment variable.

License keys issued for Saxon-SA 9.1 and earlier on .NET, with the filename saxon-
license.xml, are no longer recognized. If you have such a license key that is still valid for new
software releases, please contact Saxonica for a replacement in the saxon-license.lic format.

Command line and configuration changes
The code for the net.sf.saxon.Transform and net.sf.saxon.Query command line
interfaces has been refactored. Impact: (a) some legacy options are no longer supported (for example,
-ds, -dt, and the ability to separate keyword from value using a space rather than a colon, e.g. "-
o output.html"). (b) -opt:? now requests help on that particular option, (c) options that were
previously freestanding now accept "on" as a value, e.g. -t can be written -t:on.

A new option -init:initializer is available on all command line interfaces. The value is the
name of a user-supplied class that implements the interface net.sf.saxon.lib.Initializer
[Javadoc: net.sf.saxon.lib.Initializer]; this initializer will be called during the
initialization process, and may be used to set any options required on the Configuration
[Javadoc: net.sf.saxon.Configuration] programmatically. It is particularly useful for
such tasks as registering extension functions, collations, or external object models, especially in Saxon-
HE where the option does not exist to do this via a configuration file. Saxon only calls the initializer
when running from the command line, but of course the same code may be invoked to perform
initialization when running user application code.

On the Transform command line interface, the -traceout option now governs
the destination of trace output from the standard TraceListener [Javadoc:
net.sf.saxon.lib.TraceListener] (-T option) as well as from the trace() function.
The -TP option (for timing profile information) is extended so a filename can be specified: -
TP:filename.

On the Transform command line interface, the option -xsltversion:2.0 or -
xsltversion:3.0 indicates whether the XSLT processor should implement the XSLT
2.0 specification or the XSLT 3.0 (also known as 2.1) specification. The default value -
xsltversion:0.0 indicates that this decision should be made based on the version attribute

Changes in this Release

23

of the xsl:stylesheet element. Similar options to set the XSLT processor version are
available in the XsltCompiler [Javadoc: net.sf.saxon.s9api.XsltCompiler]
class (s9api on Java, Saxon.Api on .NET), and via new options in FeatureKeys [Javadoc:
net.sf.saxon.lib.FeatureKeys] and in the configuration file.

The com.saxonica.Validate interface accepts some additional options as a result of these
changes: -dtd, -ext, -opt, -y. The option -xsdversion was already accepted, but not
documented.

The com.saxonica.Validate interface has a new option -stats:filename which produces
an output document showing which schema components were used during the validation, and how
often. The output is in XML, allowing further processing to produce profiles and coverage reports
for the schema. (There are corresponding internal APIs that allow the same effect when validation is
invoked from an application, but they are not currently exposed through s9api.)

The command com.saxonica.CompileStylesheet now uses the -key:value argument
style throughout. It now accepts a -config:filename argument. The compiled stylesheet output
may be specified using -csout:filename

All commands now accept --F:value where F is the name of a string defined in FeatureKeys (the
part after "http://saxon.sf.net/feature/"), and value is the string value of the feature;
or --F as a synonym for --F:true.

Most places in the code that previously wrote to System.err,
or that used System.err as a default destination, now default
instead to using Configuration.getStandardErrorOutput() [Javadoc:
net.sf.saxon.Configuration#getStandardErrorOutput]. This can be set to
a different destination by calling Configuration.setStandardErrorOutput()
[Javadoc: net.sf.saxon.Configuration#setStandardErrorOutput]
(which expects a PrintStream), or by setting the write-only
configuration property FeatureKeys.STANDARD_ERROR_OUTPUT_FILE [Javadoc:
net.sf.saxon.lib.FeatureKeys#STANDARD_ERROR_OUTPUT_FILE] (which expects
a filename, which will be appended to). In the configuration file the corresponding setting is
global/@standardErrorOutputFile. Note that this only redirects Saxon output; other
application output written to System.err is unaffected. Output written directly by command-line
interfaces such as net.sf.saxon.Transform is unaffected. Examples of affected output are
the default destination of the ErrorListener; the default destination for TraceListener and
xsl:message output; the default destination for optimizer tracing and "explain" output.

Extensibility changes
Reflexive extension functions must now use the "strict" URI format
(for example "java:java.util.Date") rather than the "liberal" format
(which allows for example "http://my.com/extensions/java.util.Date"),
unless the configuration property ALLOW_OLD_JAVA_URI_FORMAT [Javadoc:
net.sf.saxon.lib.FeatureKeys#ALLOW_OLD_JAVA_URI_FORMAT] is set. This change
was documented for 9.2 but not implemented (the default value for the flag was to allow the old URI
syntax). Note that because dynamic extension functions require at least Saxon-PE, this flag is not
recognized in Saxon-HE.

Extensions
A new extension is introduced to allow maps to be maintained. A map is a dictionary data structure
that maps atomic values to arbitrary XDM sequences. The map can be built incrementally, but it is
immutable (as with operations on sequences, adding an entry to a map creates a new map, leaving the
existing map unchanged). The implementation optimizes this behind the scenes to avoid rebuilding
the map from scratch each time an entry is added, and to allow memory to be shared. For details see
The map extension.

Changes in this Release

24

This facility is particularly useful in streaming transformations in conjunction with xsl:iterate,
as it allows arbitrary information to be "remembered" for later use during the course of a streaming
pass through the source document.

A new extension function saxon:current-mode-name() is introduced for use in XSLT,
returning the name of the current mode as a QName.

In XSLT, the extension attribute saxon:threads is introduced on xsl:for-each to allow items
in the input sequence to be processed in parallel, using the specified number of threads. Multithreading
will be used only when requested; it can also be suppressed at the Configuration level, and it is disabled
when a stylesheet is compiled with tracing enabled, because the trace output would otherwise be
unintelligible.

XSLT 3.0 changes
(Also affects XSLT 2.0): Saxon no longer detects or reports the recoverable error XTRE0270
(conflicting definitions of xsl:strip-space and xsl:preserve-space). Instead it always
takes the optional recovery action, which is to use whichever declaration comes last. Previously this
was the behaviour when applying stripping to an existing tree, but not when using a stripping filter
during tree construction. The change is made in the interests of simplifying and speeding up the code
(matching of whitespace stripping rules no longer shares the same code as template rule matching).

(Also affects XSLT 2.0): The call system-property("xsl:is-schema-aware") now
returns true or false depending on whether the particular stylesheet is schema-aware (which is true if
it uses xsl:import-schema or if schema-awareness was selected via an API or command line
option). Previously it returned true if the stylesheet was processed using the schema-aware version of
the Saxon product, regardless of configuration settings.

XSLT 3.0 features are available only in Saxon-EE or (in some cases) Saxon-PE, and they need to be
enabled explicitly. From the command line this can be done using the option xsltversion:3.0;
the default is to take the version from the xsl:stylesheet element, so that XSLT 3.0 features are
enabled if and only if the stylesheet itself specifies version="3.0".

XPath 3.0 constructs such as higher-order functions (to the extent they are implemented) are
automatically available when XSLT 3.0 is enabled.

The xsl:evaluate instruction is implemented.

The xsl:copy instruction now has an optional select attribute, defaulting to select=".".

The saxon:iterate, saxon:break, saxon:continue, and saxon:finally instructions
are renamed xsl:iterate, xsl:break, xsl:next-iteration, and xsl:on-
completion, and are available only if XSLT 3.0 support is enabled. The xsl:break instruction
is now allowed to take a sequence constructor as its content.

The saxon:try and saxon:catch elements are renamed xsl:try and xsl:catch, and are
available only if XSLT 3.0 support is enabled.

The syntax of match patterns has been extended, to include the forms $x, $x//a/b/c, doc(X),
doc(X)//a/b/c, element-with-id(X), element-with-id(X)//a/b/c, as well as the
two-argument form of id() and the three-argument form of key(). The keyword "union" is
allowed as an alternative to the "|" operator.

The unparsed-text-lines() function is implemented.

The copy-of() and snapshot() functions are implemented. (There is a restriction in
snapshot(), in that it does not yet handle attribute or namespace nodes.

The xsl:analyze-string instruction accepts the enhancements to regular expressions and flags
defined in XPath 3.0. It also now accepts an empty sequence as the value of the select attribute,
treating it in the same way as a zero-length string.

Changes in this Release

25

Streaming in XSLT
Many more constructs are now acceptable in streaming templates. For full details see Streaming
Templates.

Explicit support for streaming is available for the functions data(), avg(), count(),
distinct-values(), empty(), exists(), min(), max(), string(), string-
join(), sum(); for the operators "," and the (= | != | <= | < | >= | >) family,
and for the instructions xsl:attribute, xsl:apply-imports, xsl:apply-templates,
xsl:choose, xsl:comment, xsl:copy, xsl:copy-of, xsl:document, xsl:element,
xsl:for-each, xsl:iterate, xsl:result-document. Implicit support is available for all
functions and operators that process singleton items, and for many functions and instructions that
operate on sequences - such as subsequence() and xsl:for-each-group - with the caveat
that their input is buffered in memory.

XPath 3.0 changes
Support for XPath 3.0 (previously known as XPath 2.1) is provided.
To enable this, call setLanguageVersion("2.1") on the s9api
XPathCompiler [Javadoc: net.sf.saxon.s9api.XPathCompiler], or
equivalent calls on the net.sf.saxon.sxpath.XPathEvaluator [Javadoc:
net.sf.saxon.sxpath.XPathEvaluator]. Within XSLT, XPath 3.0 syntax is
supported if the version attribute on the principal stylesheet module is set
to "3.0". From JAXP XPath interfaces, support for XPath 3.0 is supported
by casting the XPath object to net.sf.saxon.xpath.XPathEvaluator
[Javadoc: net.sf.saxon.xpath.XPathEvaluator] and calling
xpath.getStaticContext().setXPathLanguageLevel(new
DecimalValue("2.1")).

The following features are available when XPath 3.0 is enabled:

• The let expression (let $x := expr, $y := expr return expr).

• The new context-independent QName syntax ("uri":local, also "uri":*)

• Facilities associated with higher-order functions: function literals, partial function application,
dynamic function invocation, inline functions, plus associated functions such as map(),
filter(), fold-left(), and fold-right().

• New functions and operators: see Changes to functions and operators

• Enhancements to regular expressions (non-capturing groups (?:xxxx)) and flags (the q flag)

The s9api API, together with lower-level APIs for running XPath (including the StaticContext
[Javadoc: net.sf.saxon.expr.StaticContext] interface) have been enhanced to
allow the required type of the context item to be supplied as a property of the static context.

XPath 2.0 and XQuery 1.0 changes
Erratum XQ.E34 is implemented. This affects what can appear after a "/" at the start of an expression.
Certain constructs that can appear at the start of a relative path expression are now recognized, when
they were previously rejected as errors: for example /element{a}{b} or / or /unordered{x}.
Some other constructs that were previously accepted are now rejected, for example / instance
of document-node() (this must now be written (/) instance of document-node()).

In XQuery 1.0 and XQuery 1.1, the pragmas saxon:stream and saxon:validate-type are
now ignored (with a warning) if running Saxon-HE or Saxon-PE. Previously they caused a static error.

Changes in this Release

26

XQuery 3.0 and XQuery Update changes

In the absence of an xquery version declaration in the query prolog, Saxon now permits XQuery
3.0 syntax if it is enabled from the command line or API. An xquery version declaration that
specifies version="3.0" is accepted only if XQuery 3.0 has been enabled from the command line or
API.

The syntax for production AnyFunctionItem is now function(*) rather than function().
For backwards compatibility with Saxon 9.2, the older syntax continues to be supported for the time
being.

The new switch expression is implemented.

The custom syntax for partial function application (for example concat("[", ?, ", ", ?,
"]") is implemented. (For the time being, the partial-apply() function remains available as
well.)

The syntax for "outer for" has been changed (W3C bug 6927). In place of "outer for $x in
E", write "for $x allowing empty in E".

In a FLOWR expression, the where clause can now be repeated. (The construct where X where
Y is simply another way of writing where X and Y.)

The new context-independent QName syntax "uri":local is recognized if XQuery 3.0 is enabled.

The qualifiers deterministic, nondeterministic, public, and private are now
recognized on function declarations. However they currently have no effect.

In XQuery Update, the tree constructed by the copy-modify (or "transform") expression will
now automatically be a mutable tree, regardless of the default tree model for the Configuration
[Javadoc: net.sf.saxon.Configuration].

On the net.sf.saxon.Query command line interface, the -traceout option now
governs the destination of trace output from the standard TraceListener [Javadoc:
net.sf.saxon.lib.TraceListener] (-T option) as well as from the trace() function.
The -TP option (for timing profile information) is extended so a filename can be specified: -
TP:filename.

Functions and Operators
The current state of implementation of all standard functions is now documented here.

The new function fn:analyze-string() is implemented.

The higher-order functions map(), filter(), fold-left(), fold-right(), and map-
pairs() are implemented.

The functions head() and tail() are implemented.

The functions pi(), sqrt(), sin(), cos(), tan(), asin(), acos(), and atan() are
implemented - note that these are in the namespace http://www.w3.org/2005/xpath-
functions/math. Unlike the other new functions, these are available whenever Saxon-PE or
Saxon-EE are in use, regardless of whether XQuery 3.0 or XPath 3.0 are enabled - this is conformant
because they are in a namespace to which the 1.0/2.0 specifications attach no restrictions.

The single-argument version of string-join() is implemented.

The two-argument version of round() is implemented.

The zero-argument forms of data(), node-name(), and document-uri() are implemented.

Changes in this Release

27

The new format-integer() function is implemented.

The new regular expression flag "q" is recognized. This causes all characters in the regex to be treated
as ordinary characters, for example "." will match a single period, rather than matching any character.
This is only recognized when XPath 3.0 or XQuery 3.0 is enabled.

Non-capturing groups are recognized, with the syntax (?:aaaa) where aaaa is any regular
expression.

XML Schema 1.0 changes
There is a rule in both XSD 1.0 and XSD 1.1 that components redefined using xs:redefine
must have been defined immediately within the schema document referenced by the xs:redefine
element. Previous releases of Saxon did not enforce this rule, instead allowing the redefined component
to be either in the redefined schema document or in an indirectly included schema document. Saxon
9.3 checks the rule, but reports any violations in the form of a warning rather than a hard error, to
avoid invalidating schemas that previously worked.

Elements and attributes of type xs:ENTITY or xs:ENTITIES are now checked against the list of
unparsed entities declared in the document. (This check is not performed during validation invoked
by XSLT or XQuery validation, but it is performed during standalone schema validation.)

There is a new switch FeatureKeys.VALIDATION_COMMENTS [Javadoc:
net.sf.saxon.lib.FeatureKeys#VALIDATION_COMMENTS] to control whether
comments are written into an instance document when validation fails. Previously this
always happened if the switch FeatureKeys.VALIDATION_WARNINGS [Javadoc:
net.sf.saxon.lib.FeatureKeys#VALIDATION_WARNINGS] was on; it can now
be controlled separately, and the default is off. A corresponding switch has been
added to the configuration file. The command-line option -outval:recover sets both
switches on. Internally the switches are held in the ParseOptions [Javadoc:
net.sf.saxon.lib.ParseOptions] object and can thus be set differently for different
validation episodes. For the FeatureKeys.VALIDATION_WARNINGS [Javadoc:
net.sf.saxon.lib.FeatureKeys#VALIDATION_WARNINGS] switch, the two flags
previously held in the default ParseOptions and in local Configuration [Javadoc:
net.sf.saxon.Configuration] data have been combined into one, preventing the use of
inconsistent settings.

Static type checking is now applied to the XPath expressions in the xs:field and xs:selector
elements of identity constraints. Warnings are reported if the paths select nothing, or if the field
expression potentially selects multiple nodes, an empty sequence (in the case of xs:key only), or
nodes whose type is not a simple type or a complex type with simple content.

XML Schema 1.1 changes
The xs:override declaration is implemented. Pending resolution of specification bug 9661, a
declaration that appears within xs:override and does not override anything in the overridden
schema is included in the schema; the other possible interpretation of the specification is that it should
be ignored. Restrictions: circular xs:override chains are not allowed, and there has been no testing
of the interaction of xs:override with xs:redefine.

Saxon recognizes the attribute saxon:extensions on the xs:schema element: the value is
a space-separated list of strings giving the names of extensions that are enabled in this schema
document. If the extension id-xpath-syntax is enabled, then the XPath syntax permitted
in the xs:selector and xs:field elements of uniqueness, key and keyref constraints is
extended to allow any . For example, this allows the use of attribute-based predicates, such as
xpath="employee[@location='us']"

The new primitive type xs:precisionDecimal is implemented - at least, to the extent required
for schema validation. It is not recommended yet to use this type in documents subject to query and

Changes in this Release

28

transformation, or to use it for free-standing atomic values, since (a) there is no specification for
how operations such as arithmetic and comparison should behave in XPath, (b) there are gaps in the
implementation in this area, (c) very limited testing has been done, and (d) the type could yet be
dropped (it is marked as a "feature at risk", and there is some political objection to it).

Inheritable attributes are implemented (for use in Conditional Type Assignment only: the only effect
of declaring an attribute to be inheritable is that it can be referenced in the XPath condition of the
xs:alternative element).

An element may now have more than one ID attribute. Several ID attributes or children of an element
may have the same value. ID and IDREF values appearing within a list, or as a member type of a union,
are now recognized. (Most of these changes have been applied also to XSD 1.0, with the exception that
multiple ID attributes are not allowed on an element. Saxon 9.2 and earlier releases correctly allowed
an element to have more than one ID-valued child element, but incorrectly reported an error if more
than one ID-valued child of the same parent element had the same ID value. The rules for list types
and union types with an ID or IDREF member are unclear in XSD 1.0, so for simplicity, the XSD 1.1
rules have been implemented unconditionally.

It is now an error for the outermost element of the document (the validation root) to be of type xs:ID.
(The rules in the W3C spec have always implied this, though many cases in the W3C test suite consider
this to be valid. The Working Group has confirmed in its decision on bug #9922 that this is intended
to be invalid.)

In element wildcards, notQName="##definedSibling" is implemented.

An xs:all group may now contain an xs:group element to refer to a named model group
declaration, provided the named model group definition in turn contains an xs:all group, and that
minOccurs = maxOccurs = 1.

The way that xs:anyURI values are checked (to see if they are valid URIs) has changed. In
accordance with the W3C specifications, there is now no checking at all when XSD 1.1 is selected at
the Configuration [Javadoc: net.sf.saxon.Configuration] level - any string may
be used. When 1.0 is selected, strings are checked to be valid URIs (as defined by the java.net.URI
class) only when performing schema validation, or explicit casting from string to xs:anyURI. There
is no longer any check performed by methods such as namespace-uri() or namespace-uri-
from-QName, regardless whether XSD 1.0 or XSD 1.1 is selected in the Configuration. It is also
possible to configure the checking that is performed to use a user-supplied URIChecker, for example
one that performs stricter or more liberal checking.

Changes to the s9api API
The XsltTransformer [Javadoc: net.sf.saxon.s9api.XsltTransformer]
interface has two new methods, setURIResolver() and getURIResolver(). These define
the URIResolver used for resolving calls to doc() and document().

The DocumentBuilder [Javadoc: net.sf.saxon.s9api.DocumentBuilder]
class has a new method newBuildingStreamWriter(). This gives access to a
class that allows a Saxon document tree to be built programmatically by writing Stax
XMLStreamWriter events. This is a lot easier than the previous alternatives, of generating
SAX events or Saxon Receiver [Javadoc: net.sf.saxon.event.Receiver]
events. This mechanism is supported by an underlying class StreamWriterToReciever
[Javadoc: net.sf.saxon.event.StreamWriterToReceiver] which converts Stax
XMLStreamWriter events into Saxon Receiver events. this class does not cache the NamePool:
it may therefore generate a high level of contention if used in a multithreading environment.

Similarly, the DocumentBuilder [Javadoc:
net.sf.saxon.s9api.DocumentBuilder] class has a new method
newContentHandler(). This returns a SAX ContentHandler to which events may be sent
to build a tree programmatically. Although slightly less convenient than the XMLStreamWriter
interface, this is useful for the many cases where an existing application already generates SAX events.

Changes in this Release

29

The specification of the XdmDestination [Javadoc:
net.sf.saxon.s9api.XdmDestination] class has been clarified to state that the event
stream written to the XdmDestination must constitute either a single tree that is rooted at a
document or element node, or an empty sequence; and the implementation has been changed to enforce
this. This means that when this class is used for the destination of an XQuery query, an exception is
thrown if the query returns atomic values, nodes other than document or element nodes, or sequences
of multiple nodes. Previously the effect in such cases was poorly specified and could lead to internal
exceptions with poor diagnostics.

The XdmNode [Javadoc: net.sf.saxon.s9api.XdmNode] class now has a public
constructor allowing a NodeInfo [Javadoc: net.sf.saxon.om.NodeInfo] to be
wrapped.

The Processor [Javadoc: net.sf.saxon.s9api.Processor] class now has a public
constructor allowing a Configuration [Javadoc: net.sf.saxon.Configuration]
to be wrapped.

The Processor [Javadoc: net.sf.saxon.s9api.Processor] class now
has a number of convenience factory methods allowing a Serializer [Javadoc:
net.sf.saxon.s9api.Serializer] to be constructed. There is also a method
setProcessor() that allows the Serializer to retain a connection with a Processor, and
hence a configuration. This enables new methods on the Serializer to be simplified, avoiding the
need to supply a Processor (or Configuration) on the method call. Eventually the free-standing
constructors on Serializer may be deprecated.

The Serializer [Javadoc: net.sf.saxon.s9api.Serializer] class has
two new convenience methods, allowing serialization of an XdmNode [Javadoc:
net.sf.saxon.s9api.XdmNode] to an arbitrary Destination [Javadoc:
net.sf.saxon.s9api.Destination], or more simply to a Java string.

The Serializer [Javadoc: net.sf.saxon.s9api.Serializer] class has a new
method getXMLStreamWriter(), allowing an XMLStreamWriter to be constructed as a front-
end to this Serializer. This is a very convenient way of generating serialized XML output from
a Java application: for an example of its use, see the XSLT test suite driver in the samples directory.

The XPathCompiler [Javadoc: net.sf.saxon.s9api.XPathCompiler] object now
has the ability to maintain a cache of compiled XPath expressions. If this feature is enabled, any
attempt to compile an expression first causes a lookup in the cache to see whether the same expression
has already been compiled. The cache is cleared if any changes to the static context are made (for
example, changing the namespace declarations in force).

The XPathCompiler [Javadoc: net.sf.saxon.s9api.XPathCompiler] object has
two new convenience methods, evaluate() and evaluateSingle(), allowing an expression
to be compiled and executed with a single call. This works especially well when the compiler is also
caching compiled expressions.

Running a pipeline of XSLT transformations by using each XsltTransformer [Javadoc:
net.sf.saxon.s9api.XsltTransformer] as the Destination [Javadoc:
net.sf.saxon.s9api.Destination] of the previous one is now more efficient; the code
has been changed so that the second transformation does not start until the stack and heap for the
first one have been released. This has entailed a minor change to the Destination interface:
it now has a close() method; and it also means that the XsltTransformer is not serially
reusable. You should create a new XsltTransformer for each transformation (while reusing the
XsltExecutable [Javadoc: net.sf.saxon.s9api.XsltExecutable], of course).

The XQueryEvaluator [Javadoc: net.sf.saxon.s9api.XQueryEvaluator] has
a new method callFunction() that allows any user-declared function within the compiled query
to be called directly from the Java application. This in effect enables the creation of a query library
containing multiple functions that can be invoked from the calling application. Note that to compile a
query, it must still have a "main query" to satisfy the syntax rules of the XQuery language.

Changes in this Release

30

Saxon on .NET changes
The XsltExecutable object has a new Explain() method that gives a diagnostic representation
of the compiled code (as an XML document).

The Equals() and GetHashCode() methods on XdmNode are now defined so that two
XdmNode instances are equal if and only if they represent the same node (that is, they reflect the
XPath "is" operator).

The XPathCompiler object now has the ability to maintain a cache of compiled XPath expressions.
If this feature is enabled, any attempt to compile an expression first causes a lookup in the cache to
see whether the same expression has already been compiled. The cache is cleared if any changes to
the static context are made (for example, changing the namespace declarations in force).

The XPathCompiler object has two new convenience methods, Evaluate() and
EvaluateSingle(), allowing an expression to be compiled and executed with a single call. This
works especially well when the compiler is also caching compiled expressions.

The error handling in the XPath API has been improved so that static and dynamic
errors occurring during XPath evaluation now result in a Saxon.Api.StaticError or
Saxon.Api.DynamicError being thrown, rather than exposing the underlying Java exceptions.

The XQueryEvaluator has a new method CallFunction that allows any user-declared function
within the compiled query to be called directly from the Java application. This in effect enables
the creation of a query library containing multiple functions that can be invoked from the calling
application. Note that to compile a query, it must still have a "main query" to satisfy the syntax rules
of the XQuery language.

There is a new overload of DocumentBuilder.Build() that allows the XML document to be
supplied from a TextReader rather than a stream (including a StringReader, which makes it
easier to build from XML held as a string literal).

Serialization
Two new serialization methods are introduced, saxon:base64Binary and saxon:hexBinary. These are
useful when writing binary output files such as images. They can be used in conjunction with the
xsl:result-document instruction, using a result tree whose text nodes contain, in base64 or
hexBinary format, the binary data to be output. These serialization methods require Saxon-PE or
higher.

The existing serialization method saxon:xquery is now available only in Saxon-PE or higher.

The suppress-indentation serialization parameter (previously available as an extension in the
Saxon namespace) is now implemented.

A new serialization property saxon:line-length is introduced. Its value is an integer, with
default value 80. With both the HTML and XML output methods, attributes are output on a new
line if they would otherwise extend beyond this column position. With the HTML output method,
furthermore, text lines are split at this line length when possible. In previous releases, the HTML
output method attempted to split lines that exceeded 120 characters in length.

In the XQJ interface, serialization properties are now validated. The XQJ spec is not very clear
about how all parameters should be supplied: follow the conventions of JAXP interfaces such as
Transformer.setOutputProperty(). In particular, the values for boolean properties should
be set to the string "yes" or "no".

Running Saxon from Ant
The custom Ant task for Saxon is no longer supported. Instead, all the required functionality is
available through the standard Ant xslt task. In particular, it is now possible (with Saxon-PE and

Changes in this Release

31

Saxon-EE) to specify the name of a Saxon configuration file as an attribute child of the factory
element, which provides full control over the Saxon configuration used to run the transformation.

A new class com.saxonica.jaxp.ValidatingReader [Javadoc:
com.saxonica.jaxp.ValidatingReader] has been introduced. This implements the SAX2
XMLReader interface and accepts a number of Apache-defined properties, allowing it to be used as
a plug-in replacement for Xerces to support the Ant xmlvalidate and schemavalidate tasks,
using the Saxon schema processor including the option of using XSD 1.1 for validation. For details
see Running validation from Ant.

The SQL Extension
The sql:connect instruction now supports an attribute auto-commit="{yes|no}" to control
this property of the JDBC connection.

A new instruction sql:execute is available to execute an arbitrary SQL statement (returning no
result). It takes two attributes, connection and statement. For details see sql:execute

Internal changes
There has been some reorganization of the structure of classes and packages. Many of the
interfaces that are intended for applications to implement (such as CollectionURIResolver
[Javadoc: net.sf.saxon.lib.CollectionURIResolver]), and also classes
defining constants for use as parameters in an API (such as FeatureKeys
[Javadoc: net.sf.saxon.lib.FeatureKeys] and SaxonOutputKeys [Javadoc:
net.sf.saxon.lib.SaxonOutputKeys]) have been moved to the new package
net.sf.saxon.lib. Classes and packages that are purely for internal use have in same
cases been buried in a more deeply nested package hierarchy, to make it easier to find the
classes that are of interest to applications. For example, implementations of SequenceIterator
[Javadoc: net.sf.saxon.om.SequenceIterator] have been pushed down into
net.sf.saxon.om.iter. Classes concerned with serialization have been moved out of the
event package into a new serialize package.

There is no longer a separate parser for XSLT Patterns; instead, patterns are parsed as XPath
expressions, and the resulting expression tree is then converted to a pattern object.

In the representation of a stylesheet tree, there is now a
distinction between a stylesheet document (XSLStylesheet [Javadoc:
net.sf.saxon.style.XSLStylesheet]), and a stylesheet module (StylesheetModule
[Javadoc: net.sf.saxon.style.StylesheetModule]). This caters for the case where
the same stylesheet document is imported several times with different import precedence. The new
structure allows several StylesheetModules therefore to share the same source code, but with
different precedence. This also paves the way to allowing stylesheet modules eventually to be parsed
once and shared between different stylesheets (but this is not easy, because references such as variable
references and function calls may be resolved differently in the different cases).

The class PreparedStyleSheet [Javadoc: net.sf.saxon.PreparedStyleSheet]
now subclasses Executable [Javadoc:
net.sf.saxon.expr.instruct.Executable], and duplication of functionality between
these two classes has been eliminated.

Dropped the methods (deprecated since Saxon 8.9) build()
[Javadoc: net.sf.saxon.sxpath.XPathEvaluator#build] and
setStripSpace() [Javadoc: net.sf.saxon.sxpath.XPathEvaluator#build]
in net.sf.saxon.sxpath.XPathEvaluator [Javadoc:
net.sf.saxon.sxpath.XPathEvaluator].

In the NodeInfo [Javadoc: net.sf.saxon.om.NodeInfo] interface, the copy()
method has been changed to take a bit-significant copyOptions argument replacing the previous

Changes in this Release

32

whichNamespaces and typeAnnotations arguments. (It also allows an additional option for
requesting that the copy should be mutable.)

There is a new optimization for the expression (A intersect B); if the first operand (say) is a
singleton, the operator is rewritten as singleton-intersect and the run-time evaluation does
a serial search of the second operand to see if the first item is present. This avoids an unnecessary
sort of the second operand.

There have been improvements to schema-aware type checking for the descendant axis, in particular
(a) for expressions starting at the document node, in cases where the type of the document node is
known in the form document-node(schema-element(X)), and (b) where the structure is
recursive (or more generally, where the descendant element can be reached by different routes, but has
the same type in each case). The result is that misspelt names appearing in a path after a "//" operator
are more likely to be detected and reported; and in some cases more efficient code will be generated
to handle the atomized result of the path expression.

When parameters are passed to a stylesheet or query, Saxon generally applies the function conversion
rules to the supplied values. For example, if the required type is xs:double then it is acceptable to
supply an integer. Two changes have been made in this area. Firstly, the existing code was too liberal
in the case of numeric parameters: if the supplied value and the required type were both numeric, it
applied the casting rules rather than only allowing numeric promotion. Secondly, the XQJ specification
requires the supplied value to match the required type without conversion or promotion, so Saxon now
provides an option in the XQuery interface to suppress conversion, and this option is always set in
the case of XQJ applications.

In the JAXP XPath API, Saxon's implementation of XPathFactory now automatically registers
JDOM, DOM4J, and XOM as supported external object models if a Saxon-PE or Saxon-EE
configuration is in use.

Version 9.2 (2009-08-05)

Note that Saxon 9.2 requires J2SE 5 or later. It no longer works with JDK 1.4

Note in particular the packaging changes. Saxon now comes in three editions: Home Edition,
Professional Edition, and Enterprise Edition.

• Highlights

• Installation and Licensing

• S9API interface

• Saxon on .NET

• XSLT

• XQuery 1.0

• XQuery Updates

• XQuery 1.1

• XML Schema

• Streaming

Changes in this Release

33

• Functions and Operators

• XML Parsing and Serialization

• External Object Models

• Extensibility

• Extensions

• Optimizations

• Internals

Highlights
This page lists some of the most important new features introduced in Saxon 9.2.

• Saxon 9.2 requires JDK 1.5

• Saxon 9.2 comes in three editions: Home, Professional, and Enterprise, replacing the previous split
between Basic and Schema-Aware.

• Home Edition (HE) includes most of what was in Saxon-B, with the exception of Saxon
extensions and extensibility features

• Professional Edition (PE) includes everything that was in Saxon-B, plus some additional features
previously only available in Saxon-SA, such as XQuery 1.1 support and higher-order functions

• Enteprise Edition (EE) is the successor to Saxon-SA, and includes all the capability of Saxon-
SA plus new features introduced in Saxon 9.2.

• Configuration information can now be specified in an optional configuration file

• A new mechanism for creating "integrated extension functions" is defined, removing the reliance
on Java reflection and the dependency on ad-hoc rules for conversions between XPath types and
Java classes

• Separate compilation of query modules in now possible (Saxon-EE only)

• Support for XQuery Updates is aligned with the Candidate Recommendation

• Selected features from the draft XQuery 1.1 Recommendation are implemented, notably Higher
Order Functions

• A number of Saxon extension functions have been reimplemented to use higher order functions,
leading to a slight change in interface

• More features from XML Schema 1.1 have been implemented, including "open content", and the
ability for an element to belong to multiple substitution groups.

• More capabilities are available for running transformations in streaming mode, in particular, it is
now possible to traverse a streamed document using recursive template rules provided that the
template rules are sufficiently simple.

Installation and Licensing

JDK dependency

Saxon on the Java platform now requires J2SE 5 (often called JDK 1.5) or later. It no longer works
with JDK 1.4.

Changes in this Release

34

Repackaging

Saxon is now available in three editions: Home (HE), Professional (PE), and Enterprise (EE). The
Home Edition is open-source, available free of charge, and runs without a license file. The Professional
and Enterprise editions both require a license key obtainable from Saxonica.

The Saxon-SA product has been renamed Saxon-EE (for "Enterprise Edition") to reflect the fact that
it contains many added-value features beyond schema-awareness: for example, streaming, XQuery
Updates, compilation of queries to Java code, separate compilation of query libraries, and an advanced
query optimizer.

The JAR and DLL files are renamed accordingly (for example saxon9ee.jar, saxon9ee.dll).

The Configuration class for Saxon-EE (previously
com.saxonica.validate.SchemaAwareConfiguration) is now renamed
com.saxonica.config.EnterpriseConfiguration. This change reflects that fact
that use of this Configuration enables all features that are exclusive to Saxon-EE, of
which schema-awareness is only one. The Configuration class for Saxon-PE is named
com.saxonica.config.ProfessionalConfiguration, while that for Saxon-HE is
simply net.sf.saxon.Configuration.

The JAXP factory classes for Saxon-EE (previously
com.saxonica.SchemaAwareTransformerFactory and
SchemaAwareXPathFactory) are renamed
com.saxonica.config.EnterpriseTransformerFactory and
com.saxonica.config.EnterpriseXPathFactory.

Similarly, Saxon-PE (professional edition) offers
com.saxonica.config.ProfessionalTransformerFactory and
com.saxonica.config.ProfessionalXPathFactory.

Some features that were previously available in the open-source product Saxon-B are not included in
the Saxon-HE (home edition) product build. These features are all optional extras, in the sense that
they are not required for conformance to the W3C or Java API standards. The relevant features are:

• The traditional mechanism for binding extension functions by reflexion (searching the classpath for
matching names) is now available only in Saxon-PE and Saxon-EE. In Saxon-HE, the only way to
define extension functions is the new mechanism of "integrated extension functions", which need
to be explicitly registered with the Configuration.

• All extension functions in the Saxon namespace http://saxon.sf.net/ now require at least
Saxon-PE.

• All EXSLT extension functions now require at least Saxon-PE.

• The XSLT extension instructions saxon:assign, saxon:call-template,
saxon:doctype, saxon:entity-ref, saxon:import-query, saxon:script, and
saxon:while now require Saxon-PE.

• The SQL extension: that is, the extension instructions sql:connect, etc, is not available in
Saxon-HE. The code for this extension remains available as an open-source plug-in for use with
Saxon-PE or Saxon-EE.

• External object model support for JDOM, DOM4J, and XOM is not available for Saxon-HE "out
of the box". However, the source code for these extensions remains available in open-source form,
and can be used by compiling it and registering it with the Configuration.

• Memo functions, previously available in Saxon-B, now require Saxon-PE or Saxon-EE. Any request
in a stylesheet or query to create a memo function is ignored under Saxon-HE with a warning.

Changes in this Release

35

• The ability to "compile" stylesheets (that is, to create a Java serialization of the internal
representation) is now available only in Saxon-EE. The command to achieve this is renamed
com.saxonica.CompileStylesheet. Such stylesheets can be executed under Saxon-HE,
but because they have always required a dedicated Configuration, this is now packaged for
use only from the command line (if you need to run it from a different application, you can copy the
relevant code from the net.sf.saxon.Transform source, and you must take responsibility
for ensuring that the application runs in its own Configuration.)

• Localization support for a number of languages other than English in xsl:number and in
the format-dateTime() family of functions is provided by means of modules in package
net.sf.saxon.option.local. These modules are included in the JAR files for Saxon-
PE and Saxon-EE; if required for Saxon-HE they can be compiled from source code. In
all cases they are no longer picked up automatically by virtue of class naming conventions,
instead they must be explicitly registered with the Configuration either by using the method
setLocalizationClass() or, in Saxon-PE and Saxon-EE, via the configuration file.

Some features that were previously available only in Saxon-SA are now available in Saxon-PE
(without open source code). These include:

• The PTree persistent XML tree format

• A number of extension functions: saxon:analyze-string(), saxon:call(), saxon:find(), saxon:index(),
saxon:for-each-group(), saxon:format-dateTime(), saxon:format-number(), saxon:function(),
saxon:generate-id(), saxon:try()

• Support for a subset of the new facilities in XQuery 1.1 (grouping, format-number(), format-date(),
etc)

Schema-awareness is now a property of a compiled query, stylesheet, or XPath expression. By default,
these executables are schema-aware if they contain an import schema declaration in the source code, or
if a schema was imported programmatically into the static context for the compilation. If the executable
is not schema-aware, then all the data supplied at run-time must be untyped. The reason for this is
that there is a considerable performance penalty if it is not known statically whether data will be
typed or untyped; therefore, code that is not explicitly declared to be schema-aware is now compiled
to handle untyped data only. (This allows the type annotations xs:untyped, xs:anyType, and
xs:untypedAtomic. Of these, xs:anyType will appear only in nodes constructed from within
a query, and only when construction mode is "preserve".)

For XSLT a transformation can be set to be schema-aware, even if it does not import
a schema, by setting the Configuration property FeatureKeys.XSLT_SCHEMA_AWARE to
true. For XQuery, the same effect can be achieved by setting the Configuration property
FeatureKeys.XQUERY_SCHEMA_AWARE.

The command-line interfaces Transform and Query will now load an enterprise configuration if
they can (that is, if Saxon-EE and a valid license file can be located). The -sa option is now needed
only to enable schema-awareness in a transformation or query that does not import a schema. This
might be needed, for example, if the transformation or query uses untyped input but validates its output.
The option is no longer needed to enable other Saxon-EE features such as advanced optimization or
streaming.

Licensing changes

Saxon-PE and Saxon-EE (professional and enterprise editions) are available under commercial license
terms. These impose the usual commercial restrictions, for example redistribution of the software is
allowed only under an explicit agreement.

The open source product, Saxon-HE, is available under the same conditions as its predecessor, Saxon-
B: that is, the Mozilla Public License.

Changes in this Release

36

The effect of this is that there are very few restrictions on applications built using Saxon-HE: the JAR
file can be distributed with the application, and the application can be issued under any licensing terms
you choose, whether commercial or open source. The only restriction you need to watch out for is
that there is a requirement to distribute the notices contained in the notices directory whenever
you distribute the JAR file itself. Some popular software distribution mechanisms such as maven are
currently unable to satisfy this obligation.

License keys

Saxon-EE and Saxon-PE on .NET now uses the same license key files as Saxon on Java. For the time
being, Saxon-EE on .NET will also work with previously issued .NET license keys, but all new license
keys issued will be in cross-platform format.

For Saxon-EE and Saxon-PE on Java, it is no longer necessary for the directory containing the license
key file to be on the classpath. Instead, the license file saxon-license.lic can be installed
in the directory containing the saxon9ee.jar or saxon9pe.jar file, where Saxon will find it
automatically. Saxon now looks first in this location, and then on the classpath.

Since the license key directory no longer needs to be on the classpath, the class
net.sf.saxon.Transform is now the registered entry point for all three JAR files: saxon9he.jar,
saxon9pe.jar, and saxon9ee.jar, making it possible to run all three products using the -jar option
on the command line.

There has been some abuse of evaluation licenses, notably in developing countries. Two measures
have been introduced to discourage the use of evaluation licenses for production work:

• Saxon now disables the use of evaluation licenses for a short period each day (typically five minutes,
but random). These events are designed to be sufficiently rare that genuine evaluation projects are
not impacted, but sufficiently frequent to cause a nuisance when attempting to run a production
workload using an evaluation license.

• Occasionally and at random, in about 1% of runs, when running with an evaluation license Saxon
will insert asterisks into the output when serializing.

S9API interface
Separate compilation of XQuery modules is available (under Saxon-EE only). An overloaded method
compileLibrary() is available in the XQueryCompiler class to compile a library module; any
subsequent compilation using the same XQueryCompiler may import this module (using import
module specifying only a module URI - any location hint will be ignored), and the global functions
and variables declared in the library module will be imported without incurring the cost of recompiling
them.

The XPathCompiler has a new option to permit undeclared variables in XPath expressions. This
allows an expression to be compiled without pre-declaring the variables that it references. It is possible
to discover what variables are used in the expression (so that they can be initialized) by means of new
methods provided on the XPathExecutable object.

The class XdmValue has a new method append() allowing a new XdmValue to be constructed
by concatenating two existing instances of XdmValue.

The classes DocumentBuilder and XdmDestination have a new method setTreeModel()
(and a corresponding accessor getTreeModel()) to indicate that what tree model should be used
for the constructed tree. This allows selection of a linked tree in the case where XQuery Update
access is required, or of the new condensed tiny tree. These methods are defined in terms of a new
TreeModel class which in principle defines an extensibility point where new user-defined tree
models can be supported.

The class XdmNode has a new method getColumnNumber() allowing the column number in the
original lexical XML to be obtained, in cases where line numbers have been preserved.

Changes in this Release

37

The Processor object is now accessible to the code of extension functions by calling
context.getConfiguration().getProcessor(), assuming that the method in question
has a first argument of type net.sf.saxon.expr.XPathContext. This is useful when the
extension function wants to create new nodes or invoke Saxon operations such as XSLT or XQuery
processing.

A new mechanism is provided in the s9api Processor for declaring so-called extension
functions. Unlike traditional extension functions invoked as Java methods through reflexion,
an integrated extension function is implemented as a pair of classes: a class that extends
the abstract class net.sf.saxon.functions.ExtensionFunctionDefinition, which
defines static properties of the extension function, and a second class which extends
net.sf.saxon.functions.ExtensionFunctionCall, and represents a specific call on
the extension function, and provides a call() method to evaluate its result.

Many Saxon extension functions have been re-implemented using this mechanism; examples are
saxon:parse() and saxon:serialize().

The XsltTransformer class now has methods to get and set an ErrorListener for dynamic
errors.

Saxon on .NET
Saxon on .NET is now built using IKVM 0.40. However, the OpenJDK Classpath library has been
customised to reduce its size, by removing parts that Saxon does not need.

The Saxon DLL file now contains a cross-compiled copy of the Apache Xerces-J XML parser. The
Sun fork of Xerces (which is part of the standard OpenJDK) is not included. Xerces is now the
preferred XML parser; to use the Microsoft System.Xml parser instead, set the configuration option
PREFER_JAXP_PARSER to false, or use Saxon API interfaces that take an XmlReader as an
explicit argument. When a DocumentBuilder is used, the supplied XmlResolver will be used
to dereference external entity references whichever parser is used.

Interfaces that take an XmlReader as an argument (for compiling a stylesheet or a schema) now
use that XmlReader without modification: they no longer wrap a supplied XmlTextReader in an
XmlValidatingReader, as these classes have been deprecated since .NET 2.0. It is therefore the
user's responsibility to supply a correctly-configured XmlReader.

Saxon now uses the regular expression library provided in OpenJDK in preference to the .NET regular
expression library. This avoids the need to maintain two copies of very similar code in Saxon, and it
takes advantage of the Java regex handling of high Unicode characters.

The XPathCompiler has a new option to permit undeclared variables in XPath expressions. This
allows an expression to be compiled without pre-declaring the variables that it references. It is possible
to discover what variables are used in the expression (so that they can be initialized) by means of new
methods provided on the XPathExecutable object.

The class XdmValue has a new method Append() allowing a new XdmValue to be constructed
by concatenating two existing instances of XdmValue.

The Processor object is now accessible to the code of extension functions by calling
context.getConfiguration().getProcessor(), assuming that the method in question
has a first argument of type net.sf.saxon.expr.XPathContext. This is useful when the
extension function wants to create new nodes or invoke Saxon operations such as XSLT or XQuery
processing.

The XdmDestination object now has a TreeModel property, allowing a query or transformation
result to be written to a LinkedTree, which makes it amenable to processing using XQuery Update.

A number of classes have been added to the API to represent types (notably XdmSequenceType
and XdmItemType with subtypes such as XdmAtomicType). These were introduced primarily

Changes in this Release

38

to support the new class ExtensionFunction which provides a way of implementing extension
functions that does not rely on dynamic loading, and that can take advantage of information in the static
and dynamic context. Instances of ExtensionFunction can be registered with the Processor.

XSLT
Static type checking is now implemented for non-tunnel parameters on xsl:call-template in
the same way as for function calls: that is, the supplied value is compared against the required type,
conversion code is generated if necessary, and errors are reported if the static type of the supplied
value is incompatible with the required type. Tunnel parameters and parameters for xsl:apply-
templates are checked dynamically as before. One effect of this change is that declaring the
required type of parameters on named templates now gives a performance benefit as well as improving
debugging and robustness.

In <xsl:number level="any">, the rules have been changed for the case where the node
being numbered matches the pattern given in the from attribute: such a node is now numbered 1,
whereas previously it was numbered according to its distance from the previous node that matched
the from pattern, if any. This implements the change defined in W3C bug 5849 [http://www.w3.org/
Bugs/Public/show_bug.cgi?id=5849].

For the three serialization parameters doctype-system, doctype-public, and
saxon:next-in-chain, supplying "" (a zero-length string) as the value of the parameter is
taken as setting the parameter to "absent". This is equivalent to omitting the parameter, except
that it overrides any setting that would otherwise be used. For example, this allows a value set in
<xsl:output> to be overridden in an importing stylesheet, in an <xsl:result-document>
instruction, in the JAXP setOutputProperties() method, or from the command line (where
the syntax is simply !doctype-system=). (Note that this takes a slight liberty with the W3C and
JAXP specifications.)

The doc-available() function, when it returns false, now ensures that the document remains
unavailable for the rest of the transformation: previously, if called repeatedly it would check
repeatedly, and therefore could return different results on different calls. Also, once doc-
available() has returned false, subsequent calls on doc() or document() are now guaranteed
to fail. A call on doc-available() that returns false does not prevent the document being created
using xsl:result-document, but any such document will not be available during the same
transformation.

The new function element-with-id(), introduced in the errata for Functions and Operators, is
available. It behaves the same as the id() function, except in the case of ID-valued elements, where
it returns the parent of the element having the is-ID property, rather than the element itself.

For <xsl:number>, numbering sequences have been added for format tokens x2460 (circled digits),
x2474 (parenthesized digits), and x2488 (digit followed by full stop). In each case the numbering
sequence only handles numbers in the range 1-20; numbers outside this range are formatted using the
format token "1" (that is, as conventional decimal numbers).

The option input-type-annotations="strip" is now honoured for a document supplied
in the form of a pre-built tree, by creating a view of the tree in which all nodes appear as untyped.
Previously it was honoured only when the tree was built by the XSLT processor.

The TimedTraceListener, used for timer profiling, is now capable of writing the profile output
to a destination other than System.err. This option cannot however be enabled from the command
line, only from the Java API.

A stylesheet that does not use an xsl:import-schema declaration is now (by default) compiled
with schema-awareness disabled. This means that it will not be able to handle schema-typed input
documents, or to validate temporary trees created within the stylesheet, though it can still validate
the final output tree. This is for performance reasons: generating code to handle typed input data
when it will not be encountered adds to the execution cost. It is possible to override this setting

http://www.w3.org/Bugs/Public/show_bug.cgi?id=5849
http://www.w3.org/Bugs/Public/show_bug.cgi?id=5849
http://www.w3.org/Bugs/Public/show_bug.cgi?id=5849

Changes in this Release

39

from the s9api API on Java or from the Saxon.Api on .NET. From the command line, schema-
awareness is set automatically if the -sa option or any other option implying schema-awareness is
used (for example -val:strict). From JAXP, schema-awareness is set automatically if the schema-aware
TransformerFactory is used.

The amount of compile-time checking when schema-awareness is used has been further increased. In
particular, if the expected type of a constructed element is known, Saxon now attempts to check (a)
that the sequence constructor delivering the content of the element is capable of delivering a sequence
of elements that matches the content model (previously it only checked that each child element could
legitimately belong to the content model), and (b) that the sequence constructor is capable of creating
each mandatory attribute required by the complex type of the element.

In the interests of performance, the decision whether to treat an ambiguous template rule match as
a fatal error, a warning, or as fully recoverable, is now made at stylesheet compile time rather than
at run-time.

The extension attribute saxon:allow-all-built-in-types is no longer recognized.

Command line changes

If the filename specified in the -o option is in a directory that does not exist, the directory is now
created.

A new option -config:filename is available. This refers to a configuration file in which many
configuration options can be specified. Options specified directly on the command line override
corresponding options in the configuration file. The format of the configuration file is given in The
Saxon configuration file.

Saxon-defined serialization parameters can now be defined on the command line using a lexical
QName, for example !saxon:indent-spaces=3 as an alternative to the Clark-format expanded
name.

The command line interface (net.sf.saxon.Transform) now allows a stylesheet parameter to
be supplied as the value of an XPath expression. For example, java net.sf.saxon.Transform
-xsl:style.xsl ?p=current-dateTime() sets the stylesheet parameter p to the value of
the current date and time (as an instance of xs:dateTime). The fact that the value needs to be
evaluated as an XPath expression is signalled by the leading "?" before the parameter name. Note that
the context for evaluating the expression includes only the "standard" namespaces, no context item,
and no variables.

A new option is available (-dtd:recover on the command line) to perform DTD validation but
treat the error as non-fatal if it fails.

A new option -now is available on the command line to set the current date and time (and the implicit
timezone). This is designed for testing, to enable repeatable results to be obtained.

XQuery 1.0
The syntax for declare option saxon:output "parameter=value" now allows the
value to be zero-length.

The default serialization options have been changed to align with the defaults in Appendix C.3 of the
W3C specification: specifically, the default for indent is now "no". The old default of "yes" can be
achieved by setting the value from the command line, from the Java API, from the Query prolog, or
from the Saxon configuration file.

For the two serialization parameters doctype-system and doctype-public, supplying "" (a
zero-length string) as the value of the parameter is taken as setting the parameter to "absent". This

Changes in this Release

40

is equivalent to omitting the parameter. For example, this allows a value set in the query prolog to
be overridden from the API or from the command line (where the syntax is simply !doctype-
system=).

The doc-available() function, when it returns false, now ensures that the document remains
unavailable for the rest of the query: previously, if called repeatedly it would check repeatedly,
and therefore could return different results on different calls. Also, once doc-available() has
returned false, subsequent calls on doc() are now guaranteed to fail. A call on doc-available()
that returns false does not prevent the document being created using put(), but any such document
will not be available during the same query.

The new function element-with-id(), introduced in the errata for Functions and Operators, is
available. It behaves the same as the id() function, except in the case of ID-valued elements, where
it returns the parent of the element having the is-ID property, rather than the element itself.

A query that does not use an import schema declaration is now (by default) compiled with schema-
awareness disabled. This means that it will not be able to handle schema-typed input documents, or to
validate temporary trees created within the query, though it can still validate the final output tree. This
is for performance reasons: generating code to handle typed input data when it will not be encountered
adds to the execution cost. It is possible to override this setting from the s9api API on Java or from the
Saxon.Api on .NET, or from the configuration file. From the command line, schema-awareness is set
automatically if the -sa option or any other option implying schema-awareness is used (for example
-val:strict). With XQJ, schema-awareness is set automatically if Saxon-EE is loaded.

The amount of compile-time checking when schema-awareness is used has been further increased. In
particular, if the expected type of a constructed element is known, Saxon now attempts to check (a)
that the sequence constructor delivering the content of the element is capable of delivering a sequence
of elements that matches the content model (previously it only checked that each child element could
legitimately belong to the content model), and (b) that the sequence constructor is capable of creating
each mandatory attribute required by the complex type of the element.

Command line changes

If the filename specified in the -o option is in a directory that does not exist, the directory is now
created.

A new option -config:filename is available. This refers to a configuration file in which many
configuration options can be specified. Options specified directly on the command line override
corresponding options in the configuration file. The format of the configuration file is given in The
Saxon configuration file.

A new option is available (-dtd:recover on the command line) to perform DTD validation but
treat the error as non-fatal if it fails.

In the command line interface, Saxon-defined serialization parameters can now be defined using a
lexical QName, for example !saxon:indent-spaces=3 as an alternative to the Clark-format
expanded name.

The command line interface (net.sf.saxon.Query) now allows an external variable to be
supplied as the value of an XPath expression. For example, java net.sf.saxon.Query -
xsl:style.xsl ?p=current-dateTime() sets the external variable p to the value of the
current date and time (as an instance of xs:dateTime). The fact that the value needs to be evaluated
as an XPath expression is signalled by the leading "?" before the parameter name. Note that the
context for evaluating the expression includes only the "standard" namespaces, no context item, and
no variables.

XQJ changes

XQJ support has been updated to the final JSR 225 specification published on 24 June 2009.

Changes in this Release

41

This involves the removal of two methods, the overloads of bindDocument() on
XQDataFactory and XQDynamicContext that took an XMLReader as argument. It's unlikely
anyone was using these methods because the specification was so weird, but it should be easy to
replace any call with a call on the overload that accepts a Source (by supplying a StreamSource
that wraps the XMLReader).

XQuery Updates
The XQuery update code has been amended to classify expressions as "updating" or "vacuous" as
in the Candidate Recommendation. To ensure all cases of invalid updating expressions are properly
detected, Saxon now delays some of its rewriting of conditional and typeswitch expressions until the
type-checking phase.

In XQuery Update, following a decision on W3C bug 5702, deleting a node that has no parent is no
longer an error.

The XQuery Update implementation has been significantly improved, responding to clarifications
in the W3C specifications, and an improved test suite. Many of the changes are minor, affecting
behaviour in error or edge cases. It has proved necessary to change the MutableNodeInfo interface
to reflect the fact that an attribute's identity cannot be adequately inferred from its name (an attribute
can now be renamed without changing its identity, and conversely, it can be replaced by another
attribute having the same name). In the linked tree implementation, attribute identity is now associated
with the identity of the element node object together with the index position of the attribute; index
positions are not reused when an attribute is deleted. A method isDeleted has been added to allow
testing whether an object refers to a node that has been deleted; no further operations should be
attempted with such an object.

XQuery 1.1
These new features are available only with Saxon-PE or Saxon-EE, and require XQuery 1.1 to be
enabled (a) from the command line (-qversion:1.1) or Configuration and (b) from the query prolog
(xquery version "1.1";).

The try/catch syntax from the draft XQuery 1.1 specification is implemented, but without the ability
to declare variables to receive error information. This feature cannot be used with XQuery Updates.

A subset of the grouping syntax from the draft XQuery 1.1 specification is implemented. The group
by clause must be preceded in the FLWOR expression by (a) a single for clause, which selects the
sequence to be grouped, and (b) a single let clause, which defines the grouping key; the "group by"
clause must name the variable that is declared in the let clause. For example: for $x in //
employee let $k := $x/department group by $k return Within the return
clause, $x refers to the content of the current group, and $k to the current grouping key.

The "outer for" clause of a FLWOR expression is implemented. The implementation is functionally
complete, but there is no optimization.

Computed namespace node constructors are supported, in the form namespace prefix {uri-
expression} or namespace {prefix-expression} {uri-expression}.

In the query prolog, it is now possible to provide a default value for an external variable (for example,
declare variable $ext external := 0;.

The declare context item declaration in the query prolog is implemented. This allows a
required type and a default value to be declared for the context item. At present (the rules aren't entirely
clear) it is possible to specify a value from the calling API, or to not specify a value, regardless whether
"external" is specified or not. At present there is no interaction with the API facilities for defining a
required type for the context item: both can be used independently.

The expression validate as type-name { expr } is implemented.

Changes in this Release

42

The functions format-date(), format-time(), and format-dateTime(), as specified in
XSLT 2.0, are now also available in XQuery 1.1.

The function format-number() is now available, along with the new syntax in the Query Prolog
to declare a (named or default) decimal-format. (This has entailed some internal change in the way
decimal formats are managed, since XQuery allows each module to have its own set of named decimal
formats.)

Higher-order functions

The new facility for higher-order functions is fully implemented, with one or two restrictions.

The syntax my:function#3 is now available. This is synonymous with the extension available in
earlier releases, saxon:function('my:function', 3). This has also been extended so that
it works with all functions; the Saxon extension previously worked only with user-written functions.

The SequenceType syntax function() is now available to denote the type of a function item,
that is, the type of the result of my:function#3 or saxon:function('my:function',
3). You can also use a full type signature, for example function(xs:int, xs:int) as
xs:string*.

The type function() is implemented as a new subtype of Item represented by the Java class
net.sf.saxon.om.FunctionItem. Note that any code that assumes every Item is either a node
or an atomic value is potentially affected.

Dynamic function calls can now be written, for example, as $f(x, y) rather than
saxon:call($f, x, y) as previously. In this expression $f can be replaced by any primary
expression or filter expression whose value is a function item.

Inline (anonymous) functions can be written, for example function ($x as xs:integer)
as xs:boolean {$x mod 2 eq 0}. Such a function will typically be used as an argument in
a function call expecting a parameter of type function().

The functions fn:function-name(), fn:function-arity(), and fn:partial-
apply() are implemented.

Saxon applies function coercion when a function is passed to another function, or when it is returned as
a function result. However it also implements a proposed change to the specification whereby function
coercion is not used for operations such as "instance of". These follow stricter type checking rules: a
function F(A,B)->T is an instance of a type F(X,Y)->U if every T is an instance of U, every X
is an instance of A, and every Y is an instance of B.

XML Schema

XML Schema 1.0

The implementation of xs:redefine has been revised slightly, to better reflect the notion of
"pervasiveness" described (with tantalising lack of detail) in the language specification. Every
component now has a redefinition level; a component defined within xs:redefine has a
redefinition level one higher than that of the component it redefines. If two different but identically-
named components have the same redefinition level, this is an error; but if they have different
redefinition levels, the higher one wins. An example where this comes into play is if a module
R.XSD contains two xs:redefine elements; the first one redefines A.XSD, which itself includes
B.XSD, and the second redefines B.XSD, providing a revised version of a type T contained in B.XSD.
Previously Saxon reported this as an error, on the grounds that the schema returned by the first
xs:redefine and the schema returned by the second xs:redefine could not be combined
because they contained incompatible definitions of type T. This schema is now accepted as valid, and
the redefined type T wins.

Changes in this Release

43

In the command line interface, a new option -config:filename is available. This refers to a
configuration file in which many configuration options can be specified. The configuration described
by this file must be an EnterpriseConfiguration. Options specified directly on the command line
override corresponding options in the configuration file. The format of the configuration file is given
in The Saxon configuration file.

The bogus gMonth format --MM-- is no longer accepted. This format appeared in error in the
original XML Schema 1.0 Recommendation, and was subsequently corrected by erratum. It still
appears in a number of books on XML Schema. It was recognized in all Saxon releases until and
including 9.1. The correct format is --MM.

XML Schema 1.1

The type xs:error has been implemented.

The facility for conditional inclusion of parts of schema documents, based on attributes such as
vc:minVersion and vc:maxVersion, is now implemented. This works whether the schema
processor is in 1.0 or 1.1 mode, allowing a schema that is processed in 1.0 mode to ignore facilities
such as assertions that require XSD 1.1.

For this purpose the set of types that are "automatically known" to the processor includes only the built-
in types (which are currently the same for XSD 1.0 and XSD 1.1, with the exception of xs:error
which is available only in 1.1), and the set of facets are the built-in facets, which includes xs:assert
when running in 1.1 mode, but not when running in 1.0 mode.

An element declaration may now appear in more than one substitution group.

The ref attribute of xs:unique, xs:key, and xs:keyref has been implemented.

The notNamespace and notQName attributes are now supported on xs:any and
xs:anyAttribute wildcards. However, the option notQName="##definedSibling" is not
yet implemented.

Although these attributes are only available when XSD 1.1 is enabled (command line switch -
xsdversion:1.1), a side-effect of the change is that wildcard unions and intersections that were
not expressible in 1.0 are now expressible, and this change applies whether or not 1.1 is enabled. This
means that some rather obscure conditions that are errors in 1.0 but not in 1.1 are no longer detected
as errors.

The algorithm for testing subsumption among xs:all content models now performs a more
intelligent analysis of wildcard particles.

Open content is implemented. The xs:defaultOpenContent element can appear as a child of
xs:schema, and and xs:openContent as a child of xs:complexType, xs:extension or
xs:restriction. This works with sequence, all, empty and mixed content models.

There are some limitations in subsumption testing: for a type R to be a valid restriction of B, the
"primary content" of R must be a valid restriction of the primary content of B, and the "open content"
of R must be a valid restriction of the open content of B.

Default attributes are implemented (that is, the defaultAttributes attribute of xs:schema,
and the defaultAttributesApply attribute of xs:complexType).

An xs:all content model may now be derived by extension from another xs:all content model.

A new facet xs:explicitTimezone is available with values required, optional, or
prohibited. This allows control of whether or not the timezone part of a date, time, dateTime,
gYear, gYearMonth, gMonth, gMonthDay, or gDay is present or absent.

The new built-in data type xs:dateTimeStamp (an xs:dateTime with timezone required) is
implemented.

Changes in this Release

44

Saxon XSD Extensions

In assertions, and on all elements representing facets (for example pattern), Saxon supports the
attribute saxon:message="message text". This message text is used in error messages when
the assertion or facet is not satisfied.

The XSD 1.1 specification allows vendor extensions in the form of vendor-defined primitive
types and vendor-defined facets. Saxon 9.2 exploits this freedom to provide a new facet,
saxon:preprocess. This is a pre-lexical facet (like xs:whiteSpace) in that it is
used to transform the supplied value before validation. The preprocessing is done using an
arbitrary XPath expression which takes a string as input and produces a string as output. For
example <saxon:preprocess action="normalize-unicode($value)"/> can be
used to perform Unicode normalization, while <saxon:preprocess action="upper-
case($value)"/> normalizes the value to upper case. This is done before application of other
facets such as the pattern and enumeration facets. It is also possible to provide another XPath
expression to reverse the process, for use when the typed value is converted back to a string. For more
information see The saxon:preprocess facet.

Streaming
The saxon:iterate instruction and its subsidiary instructions saxon:break,
saxon:continue, and saxon:finally are now available only in Saxon-EE. This reflects the
fact that the instructions are designed primarily for use with streaming, which is available only in
Saxon-EE.

The behaviour of saxon:iterate has been changed in the case where a saxon:continue
instruction does not specify values for all the parameters declared on the containing
saxon:iterate instruction. Any parameters for which no value is supplied now retain their
previous value (that is, the effect is the same as specifying <xsl:with-param name="p"
select="$p"/>). Previously such parameters reverted to their default value. A further change is
that it is no longer possible to specify required="yes" on saxon:iterate parameters. These
changes are in line with the (as-yet-unpublished) XSLT 2.1 draft specification.

Saxon 9.2 introduces the concept of . This allows hierarchic processing of a document using
<xsl:apply-templates> to operate in a streaming pass over the document, without building
the tree in memory. The templates, of course, have to conform to strict rules to make them streamable.
Nevertheless a great many simple transformations can be implemented this way: for example,
renaming elements, deleting selected elements, computing new attribute values, and so on.

For more details see Streaming Templates.

Functions and Operators
In regular expressions, the rules on back-references as defined in errata E4 and E24 have now
been implemented. Backreferences of more than two digits are now recognised; a back-reference is
recognized as the longest sequence of digits after "\" that is either one digit or is longer than the number
of preceding left parentheses; a backreference must not start with the digit zero; a backreference N is
an error if it appears before the closing bracket corresponding to the Nth opening bracket.

The rules for regular expressions in the draft XML Schema 1.1 specification clarify the ways in
which hyphens may be used within a character class expression (that is, within square brackets). To
implement these rules, Saxon now disallows an unescaped hyphen at the start or end of a character
range (for example [--a]).

The option alphanumeric=codepoint is now available in collation URIs to request
alphanumeric collation (integers embedded in the string are sorted as integers) with codepoint collation
for the "alpha" parts of the string.

Changes in this Release

45

The collection() function now allows directories of text files to be read, provided the text
uses characters that are legal in XML. This is achieved using the additional query parameter
unparsed=yes in the collection URI. The resulting files are returned in the form of document nodes,
each having a single text node as a child. The platform default encoding is assumed.

XML Parsing and Serialization

Parsing

If a SAXSource containing an XMLReader is supplied to Saxon, Saxon now respects the
ErrorHandler associated with the XMLReader rather than replacing it with its own.

Serialization

Some very basic support for HTML 5 has been added. If the serialization method is "html" and the
version is "5.0", a heading <!DOCTYPE HTML> will be output regardless of the doctype-system
and doctype-public properties.

A new serialization option saxon:recognize-binary has been added for use with the text
output method (only). If set to yes, the processing instructions <?hex XXXX?> and <?b64 XXXX?
> will be recognized; the value is taken as a hexBinary or base64 representation of a character string,
encoded using the encoding in use by the serializer, and this character string will be output without
validating it to ensure it contains valid XML characters. This enables non-XML characters, notably
binary zero, to be output. For example, <?hex 0c?> outputs an ASCII form feed. Also recognized
are <?hex.EEEE XXXX?> and <?b64.EEEE XXXX?>, where EEEE is the name of the encoding
of the base64 or hexBinary data: for example hex.ascii or b64.utf8.

A new UTF8 writer, contributed by Tatu Saloranta, is used in place of the standard Java UTF8 writer.
The effect is to speed up serialization by around 20%; for a transformation that copies its input to its
output, the improvement is about 10% overall.

External Object Models
Note that the support modules for JDOM, XOM, and DOM4J are not packaged with Saxon-HE, but
they can be built from source code if required.

Saxon's JDOM interface now supports use of the id() and idref() functions.

The DOM interface now supports the unparsed-entity-uri() and unparsed-entity-
system-id() functions.

The DOM interface now filters out zero-length text nodes. (It also treats nodes whose nodeValue is
null as if it were a zero-length string: this was a bug fix also applied to the 9.1 branch.)

The XOM interface (XOMObjectModel) and the JDOM interface (JDOMObjectModel) both now
implement the new TreeModel interface, which means they can be set as the desired tree model for
example in a s9api DocumentBuilder or XdmDestination. In fact, they can even be set as the
selected tree model in a Controller, in which case the selected model will be used for temporary
trees constructed within a query or transformation.

Extensibility
A new way of implementing extension functions is available. These are known as extension
functions. Unlike traditional extension functions invoked as Java methods through reflexion, each
integrated extension function is implemented as a separate class that extends the abstract class
net.sf.saxon.functions.ExtensionFunctionDefinition, together with a class
that extends net.sf.saxon.functions.ExtensionFunctionCall. The first class must

Changes in this Release

46

implement a number of methods providing information about its argument types and result types,
while the second provides the call() method which is invoked to call the function. A key advantage
of this kind of extension function is that it can exercise compile-time behaviour, for example saving
information about the static context in which it is called, or optimizing itself based on the expressions
supplied in the function arguments. Another advantage is that you have complete control over the
function name, for example you can choose any namespace you like.

Integrated extension functions need to be registered in the Saxon Configuration. You can do this
via the API, or (in Saxon-PE and Saxon-EE) via the configuration file. This means that in Saxon
Home Edition it is not possible to use integrated extension functions when running from the standard
command line interface.

The old way of binding extension functions ("reflexive extension functions"), by mapping
the namespace URI of the function name to a Java class, is not available in
Saxon Home Edition. Also, it has changed so that by default, it only recognizes
namespaces using the recommended format java:full.class.name. If you need
to recognize arbitrary namespaces ending in the Java class name (as allowed in
previous releases on XSLT, but not XQuery), find the JavaExtensionLibrary by
calling Configuration.getExtensionBinder("java"), and on this object call
setStrictJavaUriFormat(false).

The ExtensionFunctionFactory (which can be used to change the details of the
calling mechanism for reflexive extension functions, for example to perform diagnostic
tracing) is now set as a property of the JavaExtensionFunctionLibrary or
DotNetExtensionFunctionLibrary, rather than directly via the Configuration.

Under .NET, if an extension function expects a value of type XdmAtomicValue, it is now possible
for the calling XPath expression to supply a node; the node will be automatically atomized.

The factory mechanism for handling XSLT extension instruction namespaces has changed.
Previously it was required that the namespace URI should end in the Java class name of a
class implementing the ExtensionElementFactory interface. It is now possible to use any
namespace URI you like. The namespace you choose must be associated with the name of the
ExtensionElementFactory class in the Configuration, which you can do programmatically by
calling Configuration.setExtensionElementNamespace(), or from the configuration
file. Element extensibility is not available in Saxon Home Edition, which also means that the SQL
extensions are not available.

Extensions
A new extension function saxon:adjust-to-civil-time() is available. This adjusts
a date/time value to its equivalent in the civil time of a named timezone, taking
account of summer time (daylight savings time) changes. For example adjust-to-civil-
time(xs:dateTime('2008-07-10T12:00:00Z', 'America/New_York') returns
2008-07-10T08:00:00-04:00

Two new XSLT extension instructions are available (in Saxon-EE only): <saxon:try> and
<saxon:catch>. These complement the existing saxon:try() extension function, but are more
powerful, and more convenient in many cases because they catch errors at the XSLT level. For details
see saxon:try.

A new extension function saxon:parse-html() is available. This works in the same way as
saxon:parse(), but it assumes the input is HTML rather than XML. The TagSoup parser must
be available on the classpath for this to work.

The extension functions saxon:file-last-modified() and saxon:last-modified()
have been changed. There is now only one function, saxon:last-modified(), and it takes a
URI as its argument. It can now be a relative or absolute URI (if relative, it is resolved against the
base URI from the static context). To get the last-modified date of the file from which a particular

Changes in this Release

47

node was loaded, use saxon:last-modified(document-uri(/)). The function now throws
a dynamic error if given an invalid URI or a URI that cannot be resolved or dereferenced; this can
be caught using try/catch if needed. The function returns an empty sequence if the resource can be
retrieved but no date/time is available.

In the saxon:try() extension function, the ability to supply a function as the second parameter (to
be called if evaluation of the first parameter fails) is withdrawn. The second argument is now always
evaluated directly.

The support for the EXSLT date-and-time library has been updated. Some new methods are available
(add(), difference(), seconds(), duration(), sum()), and implementations of existing functions have
been upgraded to conform more closely to the spec, in particular by checking for erroneous input. One
change that may be noticed is that the function date(), with no arguments, now returns the current
date with a timezone.

The extension function saxon:function() has changed so the argument can now be a system
function as well as a user-defined function. If the function name is unprefixed, it is now assumed to
be in the default function namespace.

The extension functions saxon:highest(), saxon:lowest(), saxon:sort(), and
saxon:leading() have been reworked to take advantage of higher-order functions. The second
argument (if present) is now a function item rather than a dynamic expression.

The extension function saxon:after(), which has been undocumented for many years, is finally
dropped from the code.

The extension functions saxon:index() and saxon:find() now impose the same comparison
rules as value comparisons: for example, if the value indexed is untyped atomic, then supplying an
integer as the argument to saxon:find()results in a type error. Previously, it resulted in a "no
match" (typically, saxon:find() returned an empty sequence).

The extension function saxon:type-annotation(), when applied to a document node, now
returns xs:anyType if the document has been schema-validated, or xs:untyped otherwise.
Previously it return xs:untypedAtomic. For comment, processing-instruction, and namespace
nodes it now returns xs:string.

The XSLT extension instruction saxon:script is dropped. It suffered a major design problem:
the bindings it declared were global (applying to a Configuration as a whole, and in part to all
Configurations in the Java VM, rather than to a particular stylesheet), and the cost of fixing this
problem would not be justified by the level of usage of this legacy feature. Equivalent facilities are
now available via the configuration file, or using the Configuration API.

Optimizations
A new configuration option is available to control the optimization level. This appears as the -opt
option on the Query and Transform interfaces, and as FeatureKeys.OPTIMIZATION_LEVEL
on APIs such as Configuration.setConfigurationProperty() and
TransformerFactory.setAttribute(). The value is an integer in the range 0 (no
optimization) to 10 (full optimization); currently all values other than 0 result in full optimization
but this is likely to change in future. The default is full optimization; this feature allows optimization
to be suppressed in cases where reducing compile time is important, or where optimization gets in
the way of debugging, or causes extension functions with side-effects to behave unpredictably. (Note
however, that even with no optimization, lazy evaluation may still cause the evaluation order to be
not as expected.)

A function call appearing within a loop, but with no dependency on the loop variables, can now be
moved out of the loop, provided the function does not create new nodes. Previously, the worst-case
scenario was assumed: that the function could create new nodes, and that it therefore needed to be
called repeatedly even if the arguments were unchanged. The analysis of whether the function creates
new nodes is now done in all cases except for recursive functions, where the worst-case is still assumed.

Changes in this Release

48

Note that "creates new nodes" here means "creates new nodes and returns a result that depends on the
node identity". A function that creates new nodes and immediately atomizes them is not considered
to be creative, and can safely be moved out of a loop. By contrast, a function whose result depends on
the XSLT generate-id() function is considered creative in all cases.

The design of the LargeStringBuffer used to hold the content of text nodes in the tiny tree
has changed to use fixed-length segments instead of variable-length segments. The result is that in
general, locating text is faster, with the downside that more data copying is needed for unusually long
text nodes. Overall, in the XMark benchmark, this shows an improvement of 5% in query execution
times; occasionally 10%.

A new variant of the tiny tree data structure can be selected at user option. This is the "condensed
tiny tree". While building a condensed tiny tree, the system checks before creating a text or attribute
node whether there is already another node with the same string value; if so, the value is only
stored once. The tree thus takes a little longer to build (perhaps 10Mb/sec rather than 15Mb/
sec) but will typically occupy less memory. The saving in memory obviously depends greatly
on the nature of the data. This option is selected from the Transform or Query command line
using the option -tree:tinyc, or from the API using the value "tinyTreeCondensed" for the
configuration option TREE_MODEL_NAME, or the value Builder.TINY_TREE_CONDENSED in
various setTreeModel() interfaces.

By default the tiny tree now maintains a cache of the typed values of element and attribute nodes. The
typed value is held in this cache if it is an instance of string, untypedAtomic, or anyURI (which means
that the cache is only populated for Saxon-EE). The typed value is placed in the cache the first time
it is computed during the course of a query or transformation (not at the time of initial validation). If
this uses excessive memory, or if it delivers no benefit for the query/transformation in question (which
can happen if each element/attribute is only processed once, for example) then there is a configuration
option USE_TYPED_VALUE_CACHE to disable it.

In XQuery FLWOR expressions, the rewriting of the "where" conditions into predicates applied to
the individual "for" clauses is now done more vigorously. Previously it was done only for terms in
the where condition that were potentially indexable, for example a value comparison; it is now done
for expressions of any kind. Where the FLWOR expression is evaluated by nested looping, this can
significantly reduce the number of iterations of the inner loop. The rewrite is also less likely to be
prevented by the presence of references to the context item within the predicate (in most cases these
can now be converted into reference to a variable declared and bound to the context item at an outer
level). Finally, a predicate of the form where not(A or B or C) is now converted into where
not(A) and not(B) and not(C) before this redistribution of predicate terms is attempted.

A simple set of rewrites for boolean expressions have been introduced: (A and true()) is rewritten as
(A), while (A or false()) is rewritten as (A). Of course the importance of these is that they simplify the
expression making it a candidate for further more powerful optimizations, such as indexing.

Global variables can now be indexed in Saxon-EE. Previously this was done only for local variables. A
global variable V will be indexed if there is any filter expression of the form $V[@X = Y] where @X
represents any expression whose value depends on the context node, and Y represents any expression
whose value does not depend on the context node. (Variations are possible, of course: the operands
can be in either order, and the operator can be "eq" rather than "=".)

When Saxon-EE extracts expressions from templates and functions into new global variables, it
now ensures that if an expression appears more than once, only a single global variable is created.
(This depends on the expressions being recognized as equal, which does not happen in all cases.) A
particular benefit occurs with stylesheets that make heavy use of attribute sets (typically, XSL-FO
stylesheets): any attribute set whose value has no context dependencies is now computed once as a
global variable (its value being a sequence of attribute nodes, which are copied each time the attribute
set is referenced).

The functions concat() and string-join() are now capable of operating in push mode. This
means that with a query such as <a>{string-join(//a, '-')}, the output of the
string-join() function is streamed directly to the serializer, rather than being constructed as a

Changes in this Release

49

string in memory. The same applies to the select expression of xsl:value-of; for example the
expression <xsl:value-of select="1 to $n"/> now streams its output to the serializer
without allocating memory for the potentially-large string value.

An optimization for translate(), using a hashmap rather than a serial search to map individual
characters, was present in earlier releases but only activated if the second and third arguments were
string literals. The optimization is now activated for run-time lookups as well, provided the product
of the lengths of the first and second arguments exceeds 1000 (a threshold obtained by doing some
simple measurements).

Some changes have been made to the NamePool (and the way it is used) to reduce contention.
Whenever a nameCode is allocated, a corresponding namespaceCode is now allocated at the same
time, which means that users of this nameCode can be confident that the namespaceCode is already
in the NamePool, avoiding the need for another synchronized method call (which was often being
done at run time).

Internals
The move to J2SE 5 has enabled a number of internal changes:

• It has enabled simplification of the code in a number of areas; Saxon can now assume the existence
of classes such as javax.xml.namespace.QName and other newer features of JAXP, and it
can exploit methods in BigDecimal that were not available in JDK 1.4.

• The JDK 1.4 regular expression handler has been dropped.

• Many uses of the Java collection classes within the Saxon code have been converted to use generics.

• Saxon no longer includes its own tables of character sets. Instead, if an encoding other than ASCII,
UTF8, UTF16, or ISO-8859-1 is requested for serialization, Saxon relies on the character encoding
data in the java.nio package to determine which characters are available (unavailable codepoints
are represented as character references if they appear in element or attribute values, and cause
serialization errors if they appear in comments, element or attribute names, etc.). As a consequence
of this change, the configuration interfaces to add additional character encodings have been dropped.

• There is no longer a need to support multiple versions of the DOM interface, which means that it
has become possible to bring the DOM support code back into the main JAR file.

• The s9api interface code was always compiled under JDK 1.5, and was shipped in a separate JAR
file to enable the rest of the code to work with JDK 1.4. This separation is no longer necessary, so
s9api is available in the same JAR file as everything else.

Version 9.1 (2008-07-02)
• Highlights

• XQuery Updates

• XML Schema 1.1

• XML Schema 1.0

• XSLT 2.0

• XQuery 1.0

• XQJ (XQuery API for Java)

• S9API

• JAXP

Changes in this Release

50

• Extensibility

• Extensions

• Diagnostics and Tracing

• Saxon on .NET

• Internal APIs

• Serialization

• Optimization

Highlights
This page lists some of the most important new features introduced in Saxon 9.1.

The following apply to Saxon-SA only:

1. Streaming extensions: more streaming capabilities in XSLT, and addition of streaming capabilities
to XQuery.

2. XQuery Updates: Saxon now implements the (draft) XQuery Updates specification.

3. XML Schema 1.1 support: Saxon 9.1 implements many of the more significant features from the
draft XML Schema 1.1 specifications, including Assertions, Conditional Type Assignment (co-
occurrence constraints), and xs:all groups with flexible occurrence limits.

4. Schema implementation now uses counters

In Saxon-B, the most significant feature is probably support for the latest (almost-final) draft of the
XQJ specifications (Java API for XQuery).

XQuery Updates
Saxon 9.1 introduces support for XQuery Updates.

To run an updating query from the command line, use the option -update:on on the
command line. From Java, compile the query in the normal way, and use the method
XQueryExpression.runUpdate() to execute the query. At present it is not possible to run
updates using the higher-level interfaces in XQJ or S9API, or using the .NET API.

To enable updating internally, an extension of the NodeInfo interface has been introduced, called
MutableNodeInfo. Currently the only tree implementation that supports this interface is the
linked tree (formerly called the standard tree). In principle updating should work with any tree model
that supports this interface, though at present there are probably some dependencies on the specific
implementation.

The linked tree has been improved so that it can now handle schema type annotations, and there have
been improvements to the way in which line number information is maintained.

Saxon does not currently include any locking code to prevent concurrent threads attempting to update
the same document. This is something that applications must organize for themselves.

At the Java API level, updated documents are not automatically written back to disk. Rather, the
runUpdate() method returns a set containing the root nodes of documents that have been updated.
This may include documents that were read using the doc() or collection() functions as well as
documents supplied as the context node of the query or by binding external variables. It may also
include documents (or elements) that were created by the query itself - but only if they have been
updated after their initial construction. There is a helper method QueryResult.rewriteToDisk
allowing such documents to be written back to disk if required, at the URI determined by their

Changes in this Release

51

document-uri() property, but this must be explicitly invoked by the application. Clearly if the
application does not have write access to the URI, this operation will fail.

Alternatively, updated documents may be written back to disk using the put() function. Note that
because put() delivers no result, there is a danger that it will be "optimized out" of the query. Saxon
implements put() using the runtime code for xsl:result-document, and the implementation
currently imposes similar restrictions: in particular, it must not be called while evaluating a variable
or function.

Applications should access the updated document via the root nodes returned by the runUpdate()
function. Use of NodeInfo objects that were obtained before running the update is in general unsafe;
while it will probably work in most cases, there are some cases (particularly with attributes) where
the NodeInfo object returned to the application is a snapshot created on demand, and this snapshot
will not be updated when the underlying tree is changed.

Updates are not currently atomic, as required by the specification. In particular, if the update fails
revalidation against the schema, it is not rolled back.

XML Schema 1.1
There is now a configuration flag to enable use of XML Schema 1.1 syntax; if this flag is
not set, all new XML Schema 1.1 features will be disabled. The flag can be set using -
xsdversion:1.1 on the command line (of Query, Transform, or Validate), or by calling
configuration.setConfigurationProperty(FeatureKeys.XSD_VERSION,
"1.1").

(often called co-constraints) is implemented. Any XPath expression may be used to define the
condition, so long as it only accesses the attributes and namespaces of the element in question. Rules
on type subsumption not yet implemented.

The attribute is supported for both xs:assert and xs:alternative (but not yet for xs:field
or xs:selector). The xpathDefaultNamespace attribute on xs:schema is also recognized.

A model group defined with an <xs:all> compositor may now have arbitrary minOccurs and
maxOccurs values on the element particles within the group. Much more analysis is now done to
determine whether a sequence of choice group is a valid restriction of a type that uses an xs:all
compositor; some of this will also apply to XSD 1.0 schemas. For example, substitution groups are
now taken into account, and the derived type is allowed to have an xs:choice content model (each
branch of the choice must be a valid restriction of the base content model.)

Element wildcards (<xs:any>) are now allowed in an a model group defined using <xs:all>.

Local element and attribute declarations can now have a targetNamespace attribute, provided
that they appear within an xs:restriction element that restricts a complex type. This makes it
easier to define a restriction of a complex type that has been imported from another namespace, since
it is now possible for the restricted type to declare local elements and attributes having the same names
as those from the base type.

The reporting of validation errors on xs:assert has been improved: if the assertion takes the form
empty(expression) then the validator will not only report an error if the result of the expression
is not empty; it will also identify all the nodes (or atomic values) that were present in the result of the
expression, enabling easier detection and correction of the problem. This also works for the expression
not(exp) provided that exp has a static item type of node().

Saxon 9.1 also allows assertions on simple types. The assertion is defined by means of an xs:assert
element acting as a facet, that is, it is a child element of the xs:restriction child of the
xs:simpleType element. This can be any kind of simple type (atomic, list, or union). The value of
the test attribute must be an XPath expression. The expression is evaluated with no context item, but
with the variable $value set to the typed value of the element or attribute. The assertion is satisfied
if the effective boolean value of the expression is true. For example, for an atomic type that restricts

Changes in this Release

52

xs:date, the assertion <xs:assert test="$value lt current-date()"/> indicates that
the date must be in the past. For a list-valued type, the following assertion indicates that all items
in the list must be distinct: <assert test="count($value) eq count(distinct-
values($value))"/>. The XPath expression is allowed to invoke external Java functions,
allowing full procedural validation logic. The XPath expression has access only to the value being
validated, it cannot access any nodes in the document. For further details see Assertions on Simple
Types.

XML Schema 1.0
Saxon now implements enumeration facets on union and list types as the authors of the specification
intended. Although the spec as written has problems (bug 5328 has been raised), the intent is that
the enumeration facet as written should be interpreted as an instance of the type being restricted.
Previously enumeration facets on union and list types were doing a string comparison on the lexical
value.

The reporting of keyRef validation errors has been improved. Multiple errors can now be reported in
a single schema validation run, and the line number given with the error message reflects the location
of the unresolved keyRef value, rather than the end of the document as before.

A new configuration option is available to control whether the schema processor takes notice (and
attempts to dereference) xsi:schemaLocation and xsi:noNamespaceSchemaLocation
attributes encountered in an instance document that is being validated. This is available as the named
property FeatureKeys.USE_XSI_SCHEMA_LOCATION on the TransformerFactory and
Configuration classes, via methods on the S9API and .NET SchemaValidator classes, and
the XQJ class SaxonXQDataSource, and via the -xsiloc option on the command line interfaces
Validate, Transform, and Query.

New methods have been added to class com.saxonica.schema.SchemaCompiler to allow
setting of "deferred validation mode". In this mode a sequence of calls on readSchema() can be
made, followed by a single call on compile(). The effect is to defer all generation of the finite state
machines used for run-time validation until compile() is called. This avoids repeated (and wasted)
recompilation of complex types every time new elements are added to a substitution group, or every
time a new complex type is derived by extension from an existing type. This facility was developed
with XBRL as the primary use case, and has the effect of reducing compilation time for this collection
of schema documents from 400 seconds to 560 milliseconds.

When minOccurs and numeric maxOccurs constraints (other than 0, 1, or unbounded) appear on
an element or wildcard particle, Saxon now implements a finite state machine using simple counters
to count the number of occurrences, rather than "unfolding" the FSM as previously. This removes the
limits on the values of minOccurs and maxOccurs, as well as the cost in time and memory of
handling large finite values of minOccurs and maxOccurs. The unfolding technique is still used
when minOccurs and maxOccurs appear on other kinds of particle, specifically on sequence or
choice groups, or when "vulnerable" repeated element and wildcard particles appear within a model
group that can itself be repeated (a particle is vulnerable if all the other particles in the model group
are optional). A side-effect of this change is that the diagnostics are more specific when a validation
failure occurs.

XSLT 2.0
The warning that is issued when a stylesheet that specifies version="1.0" is now suppressed by
default when the transformation is run via an API rather than from the command line. The default
can be changed by calling Configuration.setVersionWarning(true). User feedback
suggests that this warning is often an irritant and there are environments where it is hard to suppress
it. The XSLT specification says that the warning SHOULD be produced unless the user has requested
otherwise; therefore be informed that calling the Saxon API without setting this switch counts as
"requesting otherwise".

Changes in this Release

53

Tail call optimization is now implemented for xsl:next-match as well as xsl:call-
template and xsl:apply-templates. This caters for mutual recursion involving a mixture of
these three instructions.

The type-available() function can now be used to check for the availability of Java classes.
For example type-available('jt:java.util.HashMap') returns true, where the prefix
jt is bound to the URI http://saxon.sf.net/java-type.

The system property xsl:supports-namespace-axis, introduced in erratum E14, is now
recognized (and returns the value "yes").

In xsl:number, the specification classifies characters as alphanumeric if they are in one of
the Unicode categories Nd, Nl, No, Lu, Ll, Lt, Lm or Lo. Saxon was previously using the Java
method Character.isLetterOrDigit() which turns out not to be precisely equivalent to this
definition. This has been corrected.

An additional option -xsd:schemadoc1.xsd;schemadoc2.xsd... is available on the
command line. This supplies a list of additional schema documents to be loaded. These are not
automatically available in the static context of the stylesheet, but they are available for use when
validating input documents (or result documents). The argument can also be used to supply the schema
location of a schema document imported by the stylesheet, in the case where the xsl:import-
schema declaration refers only to the target namespace of the schema and not to its location.

An additional command line option -traceout allows the output from the trace() function
to be directed to a file, or to be discarded. A corresponding option is available in the API (classes
Controller and XsltTransformer).

A new extension instruction saxon:iterate is available experimentally, with subsidiary
instructions saxon:continue, saxon:break, and saxon:finally. This is designed partly
for easier coding of operations that otherwise require explicit recursion, but mainly to enable streamed
processing of input files. For details see saxon:iterate.

The code supporting the creation and testing of patterns, as defined in XSLT, has now been
decoupled from the XSLT engine, allowing patterns to be used in a non-XSLT environment (for
example, in an XProc processor). Java APIs for invoking this functionality have been added to
the sxpath.XPathEvaluator and s9api.XPathCompiler classes. These APIs compile the
pattern into an object that masquerades as an XPath expression; when evaluating this expression, the
result is true if the pattern matches the context node, false if it does not.

The AntTransform task, a customized Ant task for invoking Saxon XSLT transformations, is no longer
issued as an intrinsic part of the Saxon product, but can be downloaded as a separate package from
SourceForge: see https://sourceforge.net/project/showfiles.php?group_id=29872.

XQuery 1.0
The change defined by bug 5083 is implemented: namespace URIs declared in a direct element
constructor may contain doubled curly braces ("{{" or "}}") to represent single curly braces, and must
not contain curly braces unless they are so doubled.

The streaming copy optimization, previously available only with XSLT, is now available also with
XQuery. This allows a subset of XQuery expressions to be evaluated in streaming mode, that is,
without building the tree representation of the source document in memory. The facility is available
only in Saxon-SA. It can be invoked either using the extension function saxon:stream() or by
means of the pragma (# saxon:stream #){ expr }. Use the -explain switch on the
command line to check whether the optimization is successful.

An additional option -xsd:schemadoc1.xsd;schemadoc2.xsd... is available on the
command line. This supplies a list of additional schema documents to be loaded. These are not
automatically available in the static context of the query, but they are available for use when validating

https://sourceforge.net/project/showfiles.php?group_id=29872

Changes in this Release

54

input documents (or result documents). The argument can also be used to supply the schema location
of a schema document imported by the query, in the case where the query refers only to the target
namespace of the schema and not to its location.

For consistency, the command line now allows the file name containing the query text to be specified
using the option -q:filename, and an inline query can be specified using -qs:querytext (place
the option in quotes if the query text contains spaces). The existing convention of specifying the query
file as the last option before any query parameters will continue to work.

An additional command line option -traceout allows the output from the trace() function
to be directed to a file, or to be discarded. A corresponding option is available in the API (classes
DynamicQueryContext and XQueryEvaluator).

The native API for XQuery, specifically the StaticQueryContext object, now allows external
variables to be declared, as an alternative to declaring them in the Query prolog. This facility has not
yet been added to S9API, pending user feedback.

The extension saxon:validate-type now allows validation of attribute nodes (the expression
may be a computed attribute constructor). This was previously accepted in the syntax, but had no effect.

The ability to compile queries into Java source code has been extended, in that some constructs
that were not previously supported can now be compiled. Some restrictions remain. One important
enhancement is that many calls to Java extension functions can now be compiled. This is particularly
beneficial because it means that these calls no longer rely on Java reflection, which gives the
opportunity for a substantial performance improvement.

XQJ (XQuery API for Java)
Saxon's implementation of XQJ has been brought into line with the 1.0 "final draft" released on 20
Nov 2007. The final draft includes a set of compatibility tests, and Saxon now passes all these tests,
with the exception of four tests whose results have been queried as they appear inconsistent with the
documentation.

This change means that the XQJ interfaces now have their proper package names
(javax.xml.query.* in place of net.sf.saxon.javax.xml.query.*, and applications
will need to be updated accordingly. The interfaces together with the implementation classes are in
the JAR file saxon9-xqj.jar .

To pass the test suite, quite a few changes were necessary, but few of these will affect applications.
Many of them concern the error behaviour when null arguments are passed to methods, or when
operations are attempted on a connection that has been closed - neither of which are things that real
applications are likely to do.

One more noticeable change is that the rules for processing a forwards-only sequence are now strictly
enforced. These rules prevent you accessing the same item in the result of a query more than once,
unless you save a local copy using the getItem() method.

As required by the licensing conditions for XQJ, a conformance statement is provided.

The XQJ implementation now allows a Java object to be supplied as an "external object", whose
instance methods can be invoked as external functions within the query. TestL in the sample
application XQJExamples.java provides an illustration of how to do this. It is necessary to create
an XQItemType representing the type of the item: this will always have a name whose URI is
http://saxon.sf.net/java-type and whose local name is the qualified name of the Java
class. The standard XQJ method createItemFromObject() will recognize a type name in this
form and handle the object accordingly.

A number of named properties have been implemented to allow Saxon's behavior to be configured
via the setProperty() method of XQDataSource; for details see the Javadoc of the Saxon

Changes in this Release

55

implementation class SaxonXQDataSource. For configuration settings that are not in this list,
SaxonXQDataSource provides a method getConfiguration() that allows access to the
underlying Configuration object.

A Saxon-specific method has been added to the SaxonXQConnection class, which is Saxon's
implementation of XQConnection. The method copyPreparedExpression() allows an
XQPreparedExpression created under one connection to be copied to a different connection.
This makes it much easier to compile a query once and run in concurrently in multiple threads, a
facility that is notoriously absent from the XQJ specification. When a prepared expression is copied
in this way, the compiled code of the query and the static context are shared between the two copies,
but each copy has its own dynamic context (for query parameters and suchlike).

There have been changes to the implementation of XQJ methods involving input or delivery of results
using the Stax XMLStreamReader interface. These methods are now implemented using the "pull
events" mechanism introduced in Saxon 9.0, replacing the older PullProvider interface.

A new EventIterator is available for use in the event-pull pipeline, namely
NamespaceMaintainer. This maintains the namespace context (it acts as a
NamespaceResolver). This is used by XQJ when delivering results in the form of a StAX
XMLStreamReader, underpinning the methods on the XMLStreamReader interface that allow
namespace prefixes to be resolved.

S9API
A new method Processor.writeXdmValue(XdmValue, Destination) has been added,
allowing any XDM value (for example, a document node) to be written to any Destination
(for example, a Serializer, a Validator, or a Transformer). For usage examples, see the
S9APIExamples demonstration program.

A new constructor has been added to XdmValue allowing an XdmValue to be constructed from a
sequence of items.

A new interface MessageListener is available. A user-written implementation of
MessageListener may be registered with the XsltTransformer to receive notification of
xsl:message output. The class has a single method message(), which is called once for
each message; the parameters include the message content (as an XML document), a boolean
indicating whether terminate="yes" was requested, and a SourceLocator to distinguish
which xsl:message instruction generated the output.

New methods have been added to ItemTypeFactory to allow creation of ItemTypes and
XdmAtomicValues representing external Java objects, which can be passed to a stylesheet or query
for use in conjunction with external functions (extension functions). An example of how to achieve
this has been added to the sample application S9APIExamples.java (test QueryF).

New methods are provided on the XQueryCompiler allowing the query to be supplied as a File,
as a Reader, or as an InputStream. Methods are also provided to specify the encoding of the
query source text.

New methods are available on classes XQueryEvaluator and XsltTransformer to allow the
output from the trace() function to be directed to a specified output stream, or to be discarded.

A new method is available on the XPathCompiler class to import a schema namespace for reference
within the body of the expression.

New methods are available on XQueryExecutable and XPathExecutable to obtain the result
type of the query or expression, as determined by static analysis.

New methods are available on ItemType and OccurrenceIndicator to determine whether one
type subsumes another.

Changes in this Release

56

These methods make it easier to write application code that can handle query results when the type
of the result is not known .

A new method is available on XPathCompiler allowing XSLT patterns to be compiled. A pattern
is treated as an expression that returns true if the pattern matches the context node, false otherwise.

A new method is available on XPathSelector to return the effective boolean value of the XPath
expression.

JAXP
Saxon now supports the nextSibling property of a DOMResult, introduced in JDK 1.5. This
property allows you to specify more precisely the insertion point for new data into an existing DOM
tree.

All TransformerFactory features that accept a Boolean value now also accept the string values
"true" and "false". This is useful when the value is set from a configuration file that only permits
strings to appear. Many properties that expect the value to be a user-written callback now have an
alternative that allows the class name to be supplied as a string, rather than supplying the instance
itself. Other properties that expected a symbolic constant have been supplemented by a method that
accepts a string. This change also affects the underlying methods in the Configuration class.

In Saxon's implementation of the JAXP Validator and ValidatorHandler interfaces,
validation errors (failure of an instance to conform to a schema) are now reported using the error()
method of the ErrorListener, rather than the fatalError() method as previously. This means
it is normally possible to report more than one error during a single run. Although JAXP does not
specify this behavior explicitly, it brings Saxon into line with the reference implementation. (However,
one difference with the reference implementation remains: at the end of the validation run, Saxon
throws an exception if any validation errors have been reported, whereas Xerces exits as if validation
were successful.)

The Configuration property FeatureKeys.STRIP_WHITESPACE now affects the result of an
IdentityTransformerHandler. Previously the setting ignorable affected the result, but
the setting all did not.

A new kind of Source is available, the EventSource. This represents a source of Receiver
events, in much the same way as a SAXSource represents a source of SAX events; except that it is the
EventSource itself that supplies the events, not some parser contained in the Source object. This is
an abstract class that can be subclassed by user applications; it defines a method send(Receiver
out) that is called to generate the Receiver events. The particular use case motivating the introduction
of this class was a streaming transformation where the input was programmatically generated by the
application; this was achieved by having the URIResolver return an EventSource to generate
the events, which the streaming transformation then filtered. Generating Receiver events directly
proved to be 10-20% faster than generating SAX events.

Extensibility
In addition to the recommended and documented URI format
java:com.package.name.ClassName for use when calling Java extension functions, Saxon
has always supported other formats for compatibility with other XSLT processors. Specifically,
Saxon accepted any URI containing the package and class name after the last "/", or the entire
URI if there is no "/". On XQuery in particular this causes unnecessary failed attempts to locate
corresponding classes on the classpath when in fact the namespace URI of a function is that of an
imported module. Two changes have been made to solve this problem: firstly, imported modules are
now searched before attempting to dynamically load a Java class. Secondly, when running XQuery or
XPath, the only URI format now recognized for Java extension functions is the recommended form
java:com.package.name.ClassName. Other formats remain available in XSLT to allow a
level of compability with other Java-based XSLT processors.

Changes in this Release

57

The rules for type conversions when calling extension functions have been aligned more closely with
the XPath 2.0 rules, rather than the more flexible XPath 1.0 rules. For example it is no longer possible
to supply a string as an argument value when calling a method that expects an integer or a boolean (but
supplying an untypedAtomic is fine). Similarly, it is not possible to supply a boolean when a string
is expected. Instead, such conversions must now be done explicitly. The implementation now does
more static type checking, resulting in more errors being detected at compile time and in greater run-
time efficiency as in many cases decisions on which conversions to perform are now made at compile
time rather than at run-time.

There may be cases where this type checking causes things to fail that previously worked. One example
is where an extension function declares a return type of java.lang.Object, and the application
then tries to use the returned object in a context where a string (say) is required. In this situation an
explicit cast to string (or a call to the string() function) may be required.

It is now possible in XQuery to compile queries (generating Java source code) that contain calls to
extension functions. There are still some restrictions (not all argument and result types are handled).

As part of these changes, the ExternalObjectModel interface has been redesigned; developers
of integration modules for third-party object models (like JDOM, XOM etc) will need to implement
a couple of additional methods and can delete a number of existing methods that are no longer used.

It is now possible to call Java methods that expect a JDOM or DOM4J node as their argument, provided
that the actual node passed as a parameter from the query or stylesheet is a wrapper around a JDOM
or DOM4J node respectively. Returning JDOM or DOM4J nodes from an extension function remains
unsupported.

Extensions
An optional second argument is available for saxon:expression(). This allows the namespace
context for the XPath expression to be supplied explicitly (by default, it is taken from the namespace
context of the calling query or stylesheet). The namespace context is supplied in the form of an element
node, whose in-scope namespace bindings are used to declare namespace prefixes available for use
within the expression. One way to use this is to supply the element node that actually contains the
XPath expression; another way is to construct an element specially for the purpose.

A new extension function saxon:in-summer-time() is available. It determines whether a given
date/time is in summer time (daylight savings time) in a given country or named timezone, to the
extent that this information is available in the Java timezone database.

Saxon's support for XOM is extended: there is now a net.sf.saxon.xom.XOMWriter class
that allows the output of a query or transformation to be captured directly in the form of a XOM
document. The class implements Receiver and Result; an instance of this class can therefore
be used directly as an argument to the JAXP Transformer.transform() method or the
XQueryExpression.run() method.

A new extension function saxon:unparsed-entities() is available, allowing the application
to obtain a list of the names of the unparsed entities declared in a document.

The elements in the SQL extension now by default use the namespace xmlns:sql="http://
saxon.sf.net/sql". They can however be registered under a different namespace if required.
The extension is not available unless it is registered with the Configuration, either using the
API Configuration.setExtensionElementNamespace(), or using a configuration file.
Either way, Saxon-PE or higher is required (although the extension itself is open source code).

The implementation of the sql:insert and sql:update extension instructions has been
simplified. This may result in some error conditions being detected that were not detected before. The
names of tables and columns supplied to these instructions are now validated against SQL rules; if
the names are not valid against SQL rules and are not already quoted then they will be enclosed in
double-quotation marks.

Changes in this Release

58

The saxon:path() extension function now accepts a node as an argument. Previously it worked
only on the context node.

Diagnostics and Tracing
If requested using the -l (letter ell) option on the command line (or the equivalent in the API), Saxon
now maintains column numbers as well as line numbers for source documents. The information is
available to applications using a new extension function saxon:column-number(), or at the level
of the Java API via a new method on the NodeInfo interface, getColumnNumber(). (Third-party
implementations of NodeInfo will need to implement this method; by default it can return -1). Note
that the information is only as good as that supplied by the XML parser: SAX parsers report for an
element the line and column of the ">" character that forms the last character of the element's start tag.

Errors that occur during schema validation of an input document now display both line number
and column, as do static errors detected in a stylesheet or schema. Dynamic errors occurring during
expression evaluation still contain a line number only.

After a dynamic error, Saxon now outputs a stack trace - that is, a representation of the XSLT or
XQuery call stack. This feature is now available in Saxon-B, it was previously only in Saxon-SA. The
stack trace has been improved at the same time (it now shows changes to the context item made by
xsl:apply-templates or xsl:for-each).

The information in the stack trace is also available programmatically through the method
iterateStackFrames() on the XPathContext object.

The formatted print of the stack trace can be retrieved as a string from within a query or stylesheet
using the new extension function saxon:print-stack().

There are some internal changes as a result of this development, which may be noticeable to
applications that do debugging or tracing. The InstructionInfoProvider interface has
disappeared; instead all expressions (including instructions) now implement InstructionInfo
directly, as do container objects such as UserFunction and Template. Generally the
getProperties() method of InstructionInfo is not so well supported; applications
requiring properties of expressions should cast the InstructionInfo to the required class and get
the information directly from the expression tree.

The InstructionInfo object no longer contains a NamespaceResolver - it is no longer
needed because all names are now represented as expanded names.

New methods are available to allow the output from the trace() function to be directed to a specified
output stream, or to be discarded.

A new option FeatureKeys.TRACE_LISTENER_CLASS allows the TraceListener to be
nominated as a class name, rather than as an instance of the class. This is useful in environments such
as Ant where the values of configuration properties must be supplied as strings. A new instance of
the class is created for each query or transformation executed under the Configuration. The existing
option FeatureKeys.TRACE_LISTENER remains available.

Saxon on .NET
Saxon on .NET is now built using version 0.36.0.11 of IKVMC. The main difference this makes is
that the class library used is now the OpenJDK class library rather than the GNU Classpath library.
This in turn has different licensing conditions.

There is now an option processor.SetProperty("http://saxon.sf.net/feature/
preferJaxpParser", "true") whose effect is to cause Saxon to use the XML parser in the
OpenJDK class library in preference to the (Microsoft) System.Xml parser. This is useful when the
stylesheet or query uses the id() or idref() function when attribute types are defined in a DTD:
the Microsoft XML parser does not report attribute types to the application, so these functions fail

Changes in this Release

59

to find anything when the source document was built using this parser. Using the JAXP parser gets
around this problem.

Saxon on .NET is now built and tested on .NET 2.0. It should be compatible with .NET 1.1 or .NET
3.5, but this cannot be guaranteed. Saxon is not tested on Mono, though users have reported running
it successfully.

New constructors have been added to the class DomDestination, allowing new content to be
attached to an existing document, document fragment, or element node.

A new method is available on the XPathCompiler class to import a schema namespace for reference
within the body of the expression.

A new method Processor.WriteXdmValue(XdmValue, XmlDestination) has been
added, allowing any XDM value (for example, a document node) to be written to any
XmlDestination (for example, a Serializer, a Validator, or a Transformer).

The WriteTo method on XdmNode has been changed so it will write to any XmlWriter, not only
an XmlTextWriter as before.

A new property MessageListener has been added to the XsltTransformer object. This
allows the output of <xsl:message> instructions to be intercepted. Each call of <xsl:message>
generates a document node, which is passed in the form of an XdmNode to the supplied
message listener. Additional parameters indicate whether the <xsl:message> instruction specified
terminate="yes", and the location in the stylesheet of the originating <xsl:message> instruction.

The XmlResolver supplied as a property of various classes including the DocumentBuilder,
the XsltCompiler, the XsltTransformer, and the XQueryEvaluator, is now used not
only when resolving URIs at the Saxon level (for example in calls to the doc() function or in
xsl:import and xsl:include), but also by the XML parser in resolving URIs referring to
external entities, including an external DTD. Note that this means it is unwise to return anything other
than a Stream from the GetEntity() method, since this is the only return value that the Microsoft
XmlTextReader can handle.

Extension functions (external functions) may now use System.Xml.XmlNode as an argument type,
provided that the node that is actually passed in the call is a Saxon wrapper around an XmlNode.
Similarly, an XmlNode may also act as the return type. This also applies to subtypes of XmlNode, and
to arrays of XmlNode. However, this facility is only available when Saxon is invoked via the .NET
API, not when it is invoked from the command line. Note that returning XmlNode values may be
expensive if the extension function is called frequently, as new wrappers are created each time; the
calling stylesheet or query should also not rely on the identity of nodes that are returned in this way.

Extension functions (external functions) may also use the types Saxon.Api.XdmValue and its
Saxon-defined subtypes as an argument or return type. This facility is only available when Saxon is
invoked via the .NET API, not when it is invoked from the command line.

New methods are available to allow the output from the trace() function to be directed to a specified
output stream, or to be discarded.

The sample applications for .NET have been rewritten, and the test drivers for the W3C XQuery
and XSLT test suites have been repackaged within a simple forms-based application called
TestRunner.exe.

In previous releases the documentation stated that the SQL extension was untested on .NET. This time
I tried it and found it wasn't working, probably due to the absence of JDBC drivers in the OpenJDK
class library. In Saxon 9.1 I have therefore excluded the relevant classes from the .DLL build. It would
make more sense on .NET to implement this extension directly over the .NET data access classes.

The tooling for creating the API documentation on .NET has changed. The NDOC tool, which
was used in previous releases, is no longer maintained (or usable), while the promised Microsoft
replacement, SandCastle, is unfinished and poorly documented, and I couldn't get it to work. I ended

Changes in this Release

60

up writing my own documentation generator in XSLT, taking the C# source code and the generated
apidoc.xml documentation as input. There are few things missing in the resulting HTML, for example
there is little information about inherited methods, but I think that what is there is more easily
accessible (it follows the Javadoc style of putting all the information about one class on one page).

Internal APIs
The three methods isId(), isIdref(), and isNilled() have been moved from the
ExtendedNodeInfo interface into NodeInfo, which means they must now be implemented by all
concrete classes implementing NodeInfo. The ExtendedNodeInfo interface has been dropped.

The SequenceIterator interface now has a close() method. This should be called by any
consumer of iterator events if the iterator is not read to completion. Currently the only effect is where
the events derive from streamed processing of an input document; in this case the close() call
causes the parsing of the input document to be abandoned. This means for example that an expression
such as exists(saxon:stream(('doc.xml')//x)) will stop parsing the input document
as soon as an <x> element is found. Any user-written implementations of SequenceIterator
must be changed to provide an implementation of this method; it can safely do nothing, but if the
SequenceIterator uses another SequenceIterator as input, the call to close() should
be passed on.

To allow further application control over dynamic loading in environments with non-standard class
loaders or other specialist requirements, dynamic loading of classes (and instantiation of these classes)
is now delegated to a new DynamicLoader class owned by the Configuration. This allows
the application to substitute a subclass of its own to intercept the calls that cause classes to be loaded
dynamically.

The classes used to represent path expressions have been refactored (leading to some change
in -explain output). The two classes PathExpression and SimpleMappingExpression,
which contained a lot of repeated code, have been replaced by a structure in
which the general class SlashExpression has two subclasses, PathExpression and
AtomicMappingExpression, for use when the rhs operand of "/" is known to deliver nodes or
atomic values respectively. The expression parser initially generates a SlashExpression, and this
is replaced by a PathExpression or AtomicMappingExpression if possible during the type
checking phase. If the type of the rhs cannot be determined, the SlashExpression is retained as
a concrete class and is evaluated at run-time. The new PathExpression class is not responsible
for sorting and deduplicating nodes; when a PathExpression is created, it is always wrapped
in a DocumentSorter that has this responsibility, and the DocumentSorter is subsequently
removed if the path expression is found to be presorted, or if sorting is found to be unnecessary because
of the context where the path expression is used.

Serialization
A new serialization attribute saxon:double-space is available. The value is a space-separated
list of element names; the effect is to cause an extra blank line to be inserted in the output before the
start tag of these elements. The option has no effect unless indent="yes" is set.

Saxon now honours a request to output using UTF-16 with no byte-order-mark. Perviously a byte-
order-mark was inserted (by the Java IO library) whether requested or not.

Optimization
The XQuery expression for $x at $p in EXPR return $p is now rewritten as 1 to
count(EXPR).

A filter expression that filters a constant sequence is now evaluated at compile time, provided the
predicate does not use any variables and has no dependencies on the dynamic context other than the
context item, position, and size.

Changes in this Release

61

"Loop-lifting" (extraction of subexpressions to prevent them being repeatedly evaluated within a loop)
is now extended to XQuery for expressions that have a position variable.

Adjacent literal text nodes in the content of an element or document constructor are now merged at
compile time. (These can arise as a result of early evaluation of expressions in the content sequence.)

The AttributeValidator, which checks whether required attributes are present and expands
default values during schema validation, has been rewritten for efficiency, to do most of the work of
setting up the necessary data structures at schema compile time rather than on a per-element basis at
validation time. It also uses two different implementations of the main data structure to handle the
typical case with a small number of attributes, and the more difficult but unusual case where large
numbers of attributes are declared.

When an attribute has an enumeration type, space is saved on the instance tree by using references to
the attribute value as held in the compiled schema, avoiding holding multiple copies of the same string.

In XSLT, multiple identical key definitions are now merged. These can arise when the same stylesheet
module is imported several times in different places. Previously, this led to the construction of multiple
indexes, whose results were merged at run-time.

The set of XPath expressions for which streamed evaluation is possible (using saxon:stream()
or equivalent interfaces) has been slightly extended. It can now include expressions that return a union
of elements and attributes; previously it was required to return exclusively elements, or exclusively
attributes. It now allows multiple predicates (previously only a single predicate was allowed).

In XSLT, tail-call optimization is now performed for a call on xsl:call-template that appears
within an xsl:for-each instruction, provided that it can be statically determined that the select
expression of the xsl:for-each returns at most one item.

Version 9.0 (2007-11-03)
• Highlights

• New Java API

• Command line changes

• XSLT changes

• XPath changes

• Extensions

• Schema-related changes

• Changes to existing APIs

• Pull processing in Java

• Serialization

• Localization

• Optimization

• Diagnostics

• NamePool changes

• Expression tree changes

Changes in this Release

62

Highlights
This page lists some of the most important new features introduced in Saxon 9.0

1. There is a new Java API, called . Existing APIs remain supported.

2. The interfaces have received a revamp, while retaining backwards compatibility for most options.

3. The schema processor now supports , as defined in XML Schema 1.1.

4. A new extension function allows in XQuery.

5. It is now possible to (the schema component model) as XML.

6. There is a new model for of queries., improving the ability to integrate into a pull-based pipeline
architecture.

7. The latest draft of the specification (XQuery API for Java) is implemented

8. Number and date formatting has been added for a number of including Belgian French, Flemish,
Dutch, Danish, Swedish, and Italian

9. A number of new have been introduced. These include function and variable inlining, wider use of
automatic indexing, wider use of tail call optimization, hashing for large xsl:choose expressions,
and a speed-up of the DOM interface.

10.analyzes a query and discards the parts of the source tree that are not needed to answer the query,
giving a significant saving in tree-building time and memory.

11.Optimized can now be output ("explained") in an XML format, making it amenable to processing
or graphical rendition.

Please note that queries compiled into Java code are not backwards-compatible at this release; they
must be recompiled.

New Java API
A brand new Java API is available in package net.sf.saxon.s9api (pronounced "snappy",
stands for Saxon 9 API). This is closely modelled on the successful .NET API. The design aims were
to:

• Provide an API that is well documented and uncluttered by implementation detail

• Provide uniformity across XSLT, XPath, and XQuery (for example, allowing XSLT and XQuery
to be combined naturally in a single pipeline)

• Maximise the ability to create compiled objects that are reusable across multiple threads

• Reuse existing JAXP classes and interfaces where appropriate, but abandon them when they no
longer deliver the right functionality

• Provide an accurate representation of the XDM data model

• Provide access to all mainstream Saxon functionality needed by typical users

• Provide escape hatches to underlying implementation classes and methods for power users

• Exploit new Java 5 features such as type-safe enumerations, generics, and iterables, while retaining
support for JDK 1.4 users

Changes in this Release

63

The new API does not replace any existing APIs: it is a separate layer on top of the Saxon product. It
is provided in a separate JAR file, saxon9-api.jar, and can be used only with Java 5. The main Saxon
jar files, however, continue to work with JDK 1.4.

For details see the Javadoc: go to package net.sf.saxon.s9api and start with the Processor
class.

Saxon will continue to support standardized interfaces such as JAXP and XQJ. However, JAXP has
become cluttered and inconsistent, and is still missing support for many XSLT 2.0 features. XQJ
has been designed with a client-server architecture in mind, and while it is usable with Saxon, it is
not really optimized for the kind of applications where Saxon is deployed. For users who want to
exploit Saxon fully in their applications, rather than retaining portability across XSLT/XPath/XQuery
implementations, the new API offers a much cleaner choice.

Command line changes
There has been a significant reorganization of the command line parameters for the commands used to
control XSLT and XQuery, though all commonly-used options should continue to work unchanged.
Options now generally take the form -keyword:value, with the values "on" and "off" for boolean
options. Groups of related options have been combined, so -ds and -dt are now -tree:linked
and -tree:tiny. For options that were previously in the form "-keyword value", the old form (with
a space) is still accepted for the time being. Details of the commands are at Running XSLT from the
Command Line and Running XQuery from the Command Line.

The option -x:classname has been added for XQuery to set the parser class name used for source
files, this is to allow use of a catalog resolver.

XSLT changes
The standard URI resolver for the unparsed-text() function now follows the spec more closely by
examining the media type of the retrieved resource (which will typically be available only if it is
obtained via an HTTP connection). In this case, if the media type indicates XML, the encoding is
inferred as described in the XML specification, ignoring any encoding that was requested in the second
argument. The URI resolver now also has a debug flag allowing tracing of the process of connection,
examination of HTTP headers, and inference of an encoding.

The system-property() function has changed so that, with the exception of properties in the XSLT
namespace, the function is always evaluated at run-time rather than at compile time. This is because
the values of system properties in the execution environment may differ from their values at compile
time. When the configuration property ALLOW_EXTERNAL_FUNCTIONS is set to false access
to system properties is now disabled: this is because some of them, such as user.dir, could be
considered to compromise security.

The implementation of format-dateTime() and similar functions has changed in the way it handles
the [ZN] component. This requests the time-zone as a named timezone. This is problematic, because
the information is not really available: the data type maintains only a time zone offset, and different
countries (time zones) use different names for the same offset, at different times of year. If the value
is a date or dateTime, and if the country argument is supplied, Saxon now uses the Java database of
time zones and daylight savings time (summer time) changeover dates to work out the most likely
timezone applicable to the date in question. This is still a guess, but it is now more likely to be right.

If the timezone is formatted as [ZN,6] (specifically, with a minimum length of 6 or more) then the
Olsen timezone name is output (again, this requires the country to be supplied). The Olsen timezone
name generally takes the form Continent/City, for example "Europe/London" or "America/
Los_Angeles". If the date/time is in daylight savings time for that timezone, an asterisk is appended
to the Olsen timezone name.

The formatting of noon/midnight in the 12-hour clock has been changed. Although in the USA it
seems to be fairly common (though not universal) to represent noon as "pm" and midnight as "am",

Changes in this Release

64

this usage does not appear to be widely accepted in the UK. Therefore, if a maximum width of 8 or
more characters is specified (thus: [Pn,*-8]), noon and midnight will now be written in full.

Saxon now implements the rule that within a single stylesheet module, all the use-when expressions
will see stable values for functions such as current-dateTime().

The implementation of xsl:copy-of has changed so that when a document or element node is
copied, if line numbering was requested at the configuration level, then line numbers of element
nodes are copied from the source document to the result document. For other instructions that create
elements, the line number of the resulting element will reflect the position in the stylesheet or query of
the instruction that created the element. The line number is accessible using the saxon:line-number()
function. When running from the command line, this works only if the -l option is specified, or if
a trace listener is in use.

The custom Ant task for running Saxon has been fleshed out with additional attributes to give greater
control over the transformation process. Detail are here.

XPath changes
Static type checking has become a little stronger. One change is that in a conditional expression (which
includes xsl:choose in XSLT and typeswitch in XQuery, each branch of the conditional must
satisfy the required type, as must the default branch if there is a default.

In regular expressions, a back-reference can no longer appear within a character class expression (thus
"(abc|def)[\1]" is now illegal). This change has been agreed as an erratum by the W3C working groups,
on the grounds that such an expression is meaningless.

In regular expressions, the interpretation of the character class escapes [\c] and [\i] is now sensitive to
the selected version of XML in the configuration: if the configuration is set to XML 1.1, then the XML
1.1 definitions of Letter and NameChar are used in place of the XML 1.0 definitions. Internally,
the routines for classifying characters according to their validity in different contexts in XML 1.0 and
XML 1.1 have been reorganized: the data tables for XML 1.0 and XML 1.1 have been merged into
a single table, and this is now used also by the regular expression routines to support the \c and \i
character class escapes. One side-effect of this change is that Saxon now includes no Apache code,
which slightly simplifies the license conditions.

The implementation of durations has changed to use a two-component model (months and seconds)
rather than a six component model (years, months, days, hours, minutes, seconds). Previously Saxon
was capable of maintaining unnormalized durations (for example 18 months) but there were no longer
any XPath functions or operators that relied on this. The change raises some implementation-defined
limits. Some operations that break the implementation-defined limits may now be detected rather than
causing incorrect results. The change may also affect Java applications that relied on maintaining
durations in unnormalized form.

The implicit timezone is now a genuine part of the dynamic context. In previous releases, it was a
property of the Configuration, which meant it was known at compile time. The effect of this
is that a compiled query or stylesheet can now be used across a change of timezone. As a result,
operations that depend on the implicit timezone can no longer be evaluated statically, even if the
operands are known.

The rule in min() and max() that the returned value should be an instance of the lowest
common supertype of the values in the input sequence is now correctly implemented. For example,
max((xs:unsignedInt(3), xs:positiveInteger(2))) returns the value 3 with type
label xs:nonNegativeInteger.

When casting from a value other than xs:string to a user-defined type on which a pattern facet is
defined, the specification requires the canonical lexical representation of the target value to be valid
against the facet. In previous releases Saxon was checking not the canonical lexical representation
as defined in XML Schema, but the result of casting to a string as defined in XPath. This has now

Changes in this Release

65

been fixed. Cases where the two are different include: xs:decimal when the value is a whole number;
xs:double and xs:float; xs:dateTime and xs:time when the value is in a timezone other than Z; xs:date
with a timezone outside the range -12:00 to +11:59.

Extensions
When an extension function has a declared return type of java.lang.Object in Java, or
System.Object in .NET, the inferred static type is now xs:anyAtomicType rather than
external object. This means that if the value actually returned at run-time is, say, an integer,
and the value is used where an integer is required, then the call will not be rejected as a compile-
time type error.

The extension function saxon:transform() has changed: in the third argument, which is used
to pass parameters to the stylesheet, the argument must now be a sequence of element nodes, attribute
nodes, or document nodes. If a document node is supplied, it is treated as equivalent to passing its
element children.

Two new extension functions saxon:compile-query() and saxon:query() are available.
They allow a query to be constructed dynamically as a string, compiled, and repeatedly executed. The
input to the function can (if required) be created using the new saxon:xquery output method.

A new extension function saxon:result-document() is available in Saxon-SA, for the benefit
of XQuery users. Modelled on the xsl:result-document instruction, it allows a query to
generate multiple output documents and serialize them to filestore.

The implementation of the EXSLT math:power() function has been extended to cater for numeric
data types other than xs:double. For example, the result of math.power(2, 128) is now calculated
using integer rather than double arithmetic, and the result is an integer. For the full rules, see EXSLT

In Saxon's implementation of the EXSLT dates-and-times library, the current date/time that is used is
now aligned with the XPath 2.0 current-dateTime() function, and thus returns the same value
for the duration of a query or transformation.

The extension function saxon:typeAnnotation() now accepts any item. For a node it returns
the type annotation; for an atomic value it returns the type label. The return type is now xs:QName (it
was previously a lexical QName returned as a string).

The extension functions yearMonthDurationFromMonths() and
dayTimeDurationFromSeconds(), which have been undocumented since Saxon 8.1, have
finally been dropped. The same effect can be achieved by multiplying a duration of one month or one
second by the appropriate integer.

The extension function saxon:tokenize(), also undocumented since Saxon 8.1, has been
dropped. Use fn:tokenize() instead.

Three new extension functions are available to find when a file was last modified. Two variants of
saxon:last-modified() test the last modified date of the file from which a node was obtained;
the function saxon:file-last-modified() takes an absolute URI as its argument.

Schema-related changes
The command line interface com.saxonica.Validate has been completely redesigned,
allowing multiple schema documents to be loaded and multiple instance documents to be validated.

This release of Saxon introduces preliminary support for assertions in a schema, based on the current
(31 August 2006) draft of XML Schema version 1.1. This allows a complex type to contain an assertion
about the content of the corresponding element expressed as an arbitrary XPath 2.0 expression. Please
note that this facility in the Working Draft is likely to change, and the Saxon implementation will
change accordingly. For further details see Assertions.

Changes in this Release

66

The XML Schema specification imposes a rule that when one type R is derived from another type B
by restriction, then every element particle ER in the content model of R must be compatible with the
corresponding element particle EB in B. One aspect of this is that the identity constraints defined in
the declaration of ER (that is, unique, key, and keyref) must be a superset of the constraints defined
for EB. The specification doesn't say how to decide whether two constraints are equivalent for this
purpose, and Saxon has previously ignored this requirement. At this release a check is introduced
which partially implements the rule. Specifically, Saxon will count the number of constraints that are
defined, and will report an error if EB has more constraints of any particular kind (unique, key, or
keyref) than ER has. If EB has at least one constraint and ER has one or more, then Saxon will output
a warning saying that it was unable to check whether the constraints were compatible with each other.

It is now possible when requesting validation of an instance to specify the required name of
the top-level element in the document being validated. This is possible through the option -
top:clarkname on the com.saxonica.Validate command, or via a new property on the
AugmentedSource object. The property is also available on the DocumentBuilder in the .NET
API and in the new s9api Java API. A validation error occurs if the document being validated has a
top-level element with a different name.

I discovered that Saxon allows you to use the types xs:dayTimeDuration and
xs:yearMonthDuration in a schema as built-in types. XML Schema 1.0 doesn't recognize these
types (though I can't find a rule that says it is absolutely non-conformant to accept them). I have
changed the code to give an interoperability warning if they are used. I have also disallowed the use
of the type xs:anyAtomicType, which has no defined validation semantics.

The mechanisms for comparing values in the course of schema validation and processing have
now been separated completely from the mechanisms used when implementing XPath operators.
This means that the semantics of comparison and ordering should now follow the XML Schema
specification precisely. Previously some operations were implemented according to the XPath
semantics.

A duplicate xsi:schemaLocation or xsi:noNamespaceSchemaLocation attribute is now
ignored (previously it was rejected under the rule that such an attribute cannot appear after the first
element in the relevant namespace). Duplicates can arise naturally from XInclude processing, so they
are now accepted and ignored. The schema specification permits this but does not require it. To
be considered duplicates, the declarations must match in the namespace URI and in the absolutized
schemaLocation URI.

Result tree validation

Saxon now does more extensive compile-time checking where an xsl:document or
xsl:result-document instruction requests validation of the result tree. This means that
validation errors that were previously detected at stylesheet execution time are now sometimes
detected at compile time. Previously these checks were only done when validation was requested on
an element-constructor instruction.

Expansion of attribute and element defaults

When the input or output of a query or transformation is validated, it is now possible to request
that fixed and default element and attribute values defined in the schema should not be expanded.
This is done using the option -expand:off on the command line, or equivalent options in the
TransformerFactory and Configuration APIs.

The same option also applies to DTD-based attribute default expansion, provided that the XML parser
reports sufficient information to the application.

Serializing a Schema Component Model

It is now possible to export the contents of the schema cache held in the Configuration object
to an XML file (with the conventional extension .scm for Schema Component Model). The contents

Changes in this Release

67

can subsequently be reloaded. This is faster than reloading the original source schema documents,
because it allows most of the validation to be skipped, along with the sometimes expensive operation of
constructing and determinizing finite state machines. This facility is intended to be used in conjunction
with XQuery Java code generation: it allows the schemas that were imported by a compiled query to
be saved on disk alongside the compiled query itself, for rapid reloading at run time.

The serialized SCM file is also designed to be easy for applications to process. The representation
of schema components is more uniform than in source .xsd documents (there are fewer defaults, and
fewer alternative ways of expressing the same information). This makes it a suitable representation
for applications that need to process or analyze schema information, as an alternative to using the
Java API.

This has proved useful within Saxon itself. Saxon's schema analyzer was previously written
using ad-hoc parsing techniques to validate schemas against the rules defined in the schema-
for-schemas. The addition of assert and report elements threatened to make this even
more complex. So a simple XSLT transformation was written to take the finite state machines
in the SCM version of the schema-for-schemas and generate Java code from them. This means
that Saxon's schema validation logic is now derived directly from the published schema-for-
schemas, while retaining the efficiency of hard-coded Java.

Changes to the Schema Component Model API

Changes have been made to the API for the schema component model (package
com.saxonica.schema) to align it more closely with the abstract model defined in the W3C
specifications.

All named components now consistently expose methods getName() and
getTargetNamespace() to provide access to the local part of the name and the namespace URI
respectively. The wide variety of existing names for these accessors have been retained for the time
being as deprecated methods. The new names are chosen because they correspond to the names used
for these properties in the W3C schema component model.

The class FacetCollection has disappeared; its functionality has been merged into
UserSimpleType.

The class Compositor has been renamed ModelGroup, and its subclasses such as
ChoiceCompositor have been renamed accordingly. In the W3C schema model, the compositor
(all, choice, sequence) is one of the properties of the ModelGroup. This is now available using the
method getCompositorName() on the ModelGroup object.

Particle is now an abstract class rather than an interface, and the previous abstract class
AbstractParticle no longer exists. There are three subclasses of Particle, namely
ElementParticle, ElementWildcard, and ModelGroupParticle. This means there
is now a destinction between the ModelGroupParticle, which represents a reference to
a ModelGroup, and the ModelGroup itself. The class ModelGroupDefinition (which
represents a named model group) no longer implements Particle; it is now a subclass of
ModelGroup.

The class ModelGroupParticle replaces GroupReference; it is no longer necessarily a
reference to a (named) ModelGroupDefinition, but now can be a reference to any (named or
unnamed) ModelGroup.

ElementWildcard and AttributeWildcard are no longer subclasses of Wildcard; instead
Wildcard is now a helper class to which these two classes delegate. Instead, ElementWildcard
is now a subclass of Particle. The getTerm() method of ElementWildcard returns the
Wildcard object (previously it returned the ElementWildcard object itself).

Changes in this Release

68

The use of exceptions SchemaException and ValidationException has been made more
consistent. A SchemaException indicates that the schema is invalid, and should occur only
while the schema is being loaded and validated. A ValidationException indicates that an
instance document is invalid against the schema, and should occur only during instance validation.
Errors relating to the consistency of a stylesheet or query against a valid schema should result in an
XPathException being thrown. An inconsistency in the schema found during instance validation
is an internal error, and should result in an IllegalStateException, except for unresolved
references to missing schema components (which is defined in the schema spec not to constitute
a schema invalidity), which results in an UnresolvedReferenceException. Because it can
occur almost anywhere, UnresolvedReferenceException is an unchecked exception.

Changes to existing APIs
The behavior of configuration.buildDocument() has changed for cases where the supplied
Source object is a tree. In particular, if it is a DOMSource then the DOM Document node will
normally be wrapped in a Saxon wrapper object rather than being copied to a TinyTree. This has the
effect of reinstating the pre-8.9 behaviour of methods in the XPath API that are given a DOMSource
as an argument; the XPath expressions will now return nodes in the original DOM tree rather than
copies of these nodes.

Support for DOM Level 2 implementations has been reinstated; however Saxon no longer attempts to
detect whether the DOM supports level 3 interfaces; instead, when a Level 2 DOM implementation is
used, the configuration setting config.setDOMLevel(2) must be used. (Saxon now has compile-
time references to DOM level 3 methods, but will not call such methods if this configuration setting
is in force.)

The class StaticQueryContext has been split into two: user-facing methods used to initialize the
context for a query are still in StaticQueryContext, but methods intended for system use, which
update the context as declarations in the query prolog are parsed, have been moved to a new class
QueryModule. The class StaticQueryContext no longer implements the StaticContext
interface.

As part of the above change, some methods on StaticQueryContext have been dropped. This
notably includes the method declareVariable() which never worked in a satisfactory way
because the variable was not reusable across multiple queries. External variables should always be
declared from the query prolog.

A new factory method Configuration.makeConfiguration() is available. This creates
a schema-aware configuration if Saxon-SA is installed and licensed, otherwise it creates a non-
schema-aware configuration. This option is useful for applications that want to take advantage of the
enhanced Saxon-SA optimizer in cases where it is available, but do not otherwise depend on Saxon-
SA functionality.

A new method on Configuration is introduced to copy a Configuration. The main
motivation for this is to eliminate the high cost of repeatedly checking the Saxon-SA license key in
applications that create many separate Configurations.

The rule that all documents used within a single query, transformation, or XPath expression must be
built using the same Configuration has been relaxed slightly, so the requirement is only that they
must be "compatible" Configurations, which means in practice that they must use the same NamePool
and DocumentNumberAllocator. Although the rule has been relaxed slightly, it is also now
enforced on a number of interfaces where previously no checking took place (which could lead to
unpredictable failures later). This applies in particular to XPath APIs.

A new option is available in the Configuration to indicate that calls to the doc() or
document() functions with constant string arguments should be evaluated when a query
or stylesheet is compiled, rather than at run-time. This option is intended for use when a
reference or lookup document is used by all queries and transformations. Using this option
has a number of effects: (a) the URI is resolved using the compile-time URIResolver rather

Changes in this Release

69

than the run-time URIResolver; (b) the document is loaded into a document pool held by
the Configuration, whose memory is released only when the Configuration itself
ceases to exist; (c) all queries and transformations using this document share the same copy;
(d) any updates to the document that occur between compile-time and run-time have no
effect. The option is selected by using Configuration.setConfigurationProperty()\
or TransformerFactory.setAttribute() with the property name
FeatureKeys.PRE_EVALUATE_DOC_FUNCTION. This option is not available from the
command line because it has no useful effect with a single-shot compile-and-run interface.

A convenience method QueryResult.serialize(NodeInfo node) has been provided,
allowing a node to be serialized as XML; the result is returned as a String.

There is also a convenience method Navigator.getAttributeValue(NodeInfo node,
String uri, String localName) making it easier for Java applications to get an attribute
of an element.

In the NodeInfo interface, the rules for the copy() method have changed so that when an element
is copied, its namespaces must be output without duplicates (or without a declaration being cancelled
by an undeclaration). The method no longer relies on the recipient removing such duplicates.

The method NodeInfo#sendNamespaceDeclarations has been deleted.

The class NameTest has a new constructor taking a URI and local name as strings, making it
easier to construct a NameTest for use in calls to iterateAxis(). In addition, the abstract class
NodeTest now has only one abstract method, making it easier to write a user-defined implementation
of NodeTest for filtering the nodes returned by iterateAxis().

Methods that construct or convert atomic values no longer return ValidationErrorValue in the event
of a failure. There were a couple of problems with this mechanism: although it was designed to
eliminate the costs of throwing an exception, it failed to take into account the cost of creating the
exception before throwing it, which is surprisingly expensive as it involves capturing a stack trace.
Secondly, the mechanism wasn't type safe as it didn't force callers to check the return value for an error.
These methods (and a number of others) now return a ConversionResult which is essentially a
union type of AtomicValue and ValidationFailure. Code calling these methods therefore
has to consciously cast the result to AtomicValue, preferably after checking that the result is not
a ValidationFailure.

The two exception classes StaticError and DynamicError are no longer used: instead, their
common base class XPathExpression is now a concrete class and is used to represent both
static and dynamic errors. It includes a field to distinguish the two cases, though in fact there
is very little code that cares about the difference (the only time the difference is significant is
when dynamic errors occur during early compile-time evaluation of constant subexpressions). Any
application code that contains a catch for StaticError or DynamicError should be changed to
catch XPathException instead. Since nearly all API methods declared "throws XPathException"
already, this is unlikely to be a major issue.

There has been some tidying up of methods on the AtomicValue class, especially methods for
converting values between types and for setting the type label.

The .NET API

In the .NET API, the class XsltCompiler now has an overload of the Compile() method that
takes input from a TextReader (for example, a StringReader).

The class XdmAtomicValue now has a static factory method that constructs an "external object",
that is, an XPath wrapper around a .NET object. This can be passed as a parameter to a stylesheet or
query and used as an argument to extension functions.

The class TextWriterDestination (despite its name, which is unchanged) now wraps any
XmlWriter. It was previously restricted to wrap an XmlTextWriter.

Changes in this Release

70

The XQJ API

Saxon's implementation of the XQuery API for Java (XQJ) (jsr-225) has been upgraded to conform
to the version 0.9 specifications released on 12 June 2007. The specifications can be downloaded
at http://jcp.org/en/jsr/detail?id=225. There are some incompatibilities: applications will need to be
changed, though probably not extensively.

Please note that this API is still a draft, and Saxon's implementation will change when the specifications
change.

Pull processing in Java
The internal mechanisms and API for pull processing have been substantially rewritten in this release.

There is a new method iterateEvents() on the Expression class, which evaluates the
expression and returns its result as a sequence of PullEvent objects. A PullEvent can be
an Item (that is, a NodeInfo or AtomicValue). It can also be a StartElement, EndElement,
StartDocument, or EndDocument event. Within the content of a document or element, the child nodes
can be represented either as complete nodes (including element nodes, and potentially even document
nodes, in which case the document wrapper should be ignored) or as nested event sequences using
further StartElement and EndElement events.

An EventIterator is also a PullEvent, so a stream of events can contain nested streams. If
you want to process the events without having to handle this nesting, you can flatten the sequence by
calling the static method EventStackIterator.flatten().

To serialize the results of a query, there is a static method EventIteratorToReceiver.copy()
which reads the events from a pull pipeline (an EventIterator), and pushes them to a push pipeline
(a Receiver). However, if you are serializing the results then it probably makes sense in most cases
to evaluate the query in push mode to start with.

A sequence in which all the PullEvents are Item objects is called a sequence. A sequence in
which all document and element nodes are split into their constituent events is called a sequence.
You can turn any sequence of PullEvents into a fully composed sequence by wrapping it in a
SequenceComposer. This will physically construct any document or element nodes that were
represented in the sequence in decomposed form. Similarly, you can turn any sequence into a fully
decomposed sequence by wrapping it in a Decomposer.

Serialization
The serialization property byte-order-mark="yes" is now honored when the selected encoding
is utf-16le or utf-16be.

The HTML serialization method now uses named entity references in preference to decimal character
references for characters outside the specified encoding, where an entity reference is known. Since
the list of known entity references is confined to characters in the range xA0 to xFF, this only
really affects the outcome when encoding="us-ascii". More detailed control is available using
saxon:character-representation, though this may have to be changed in future since it
is technically non-conformant - vendor-defined serialization attributes are no longer allowed to cause
behaviour that contradicts the provisions of the serialization specification.

Saxon now implements the change to the specification made as a result of bug 3441 [http://
www.w3.org/Bugs/Public/show_bug.cgi?id=3441]: with the HTML and XHTML output methods,
any generated <meta> element is now produced earlier in the serialization pipeline, which has the
effect that characters in this element are subject to substitution by means of character maps.

A new serialization method saxon:xquery is available. This is intended to be useful when
generating an XQuery query as the output of a query or stylesheet. This method differs from the XML

http://jcp.org/en/jsr/detail?id=225
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3441
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3441
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3441

Changes in this Release

71

serialization method in that "<" and ">" characters appearing between curly braces (but not between
quotes) in text nodes and attribute nodes are not escaped. The idea is to allow queries to generated,
or to be written within an XML document, and processed by first serializing them with this output
method, then parsing the result with the XQuery parser. For example, the document <a>{$a <
'<'} will serialize as <a>{$a < '<'}.

With the XML output method, indentation is now suppressed for any element that is known to have
mixed content: specifically, any element that is validated against a user-defined type (not xs:anyType
or xs:untyped) that specifies mixed="true" in the schema. No whitespace will be added to the
content of such an element. For simplicity, the option applies to all the descendants of the element,
even if there are descendants that do not allow mixed content.

A new serialization parameter saxon:suppress-indentation is introduced for the XML
output method. (It does not affect the HTML or XHTML output methods.) The value of the attribute
is a whitespace-aeparated list of element names, and it works in the same way as cdata-section-
elements (for example, values in xsl:output and xsl:result-document are cumulative).
Its effect is that no indentation takes place for the children or descendants of any of the named elements
(just as if they specified xml:space="preserve". This option is useful where parts of the output
document contain mixed content where whitespace is significant.

Localization
Number and date formatting has been added for Danish (da), Dutch (nl), Swedish (sv), Italian (it),
Belgian French (fr-BE), and Flemish (nl-BE). Thanks to Karel Goossens of BTR Services, Belgium,
for supplying these.

The class hierarchy has been changed so that non-English numberers no longer inherit from
Numberer_en, but from a new AbstractNumberer class; the functionality that is intended to
be generic across languages (but overridable) has been separated from the functionality that is specific
to English.

Optimization
When the descendant axis is used in a schema-aware query or stylesheet, and the type of the context
node is statically known, the step that uses the descendant axis is now replaced by a sequence of steps
using the child axis (and the descendant or descendant-or-self axes, if necessary) that restricts the
search to the parts of the tree where the required element can actually be found. If it is not possible for
the descendant element to exist within the subtree, a compile-time warning is produced (in the same
way as previous releases do for the child and attribute axes).

Expressions using the axis step child::* now have their static type inferred if the schema only
allows one possible element type in this context. This may lead to warnings being produced when a
path expression using such a construct cannot select anything.

In previous releases of the Saxon-SA join optimizer, document-level indexes (keys) were not used to
index expressions that required sorting into document order, for example doc('abc.xml')//b/
c[@d=$x]". This restriction has been removed.

Saxon-SA is now better at detecting when there is an indexable term in a predicate masked by other
terms that are not indexable, for example doc('abc.xml')/a/b/c[@d gt 5 and @e=$x]"
which will now be indexed on the value of @e

Saxon has always gone to some efforts to ensure that the result of a path expression is not sorted at
run-time if the path is , that is, if the nested-loop evaluation of the path expression will deliver nodes in
document order anyway. One situation where this is not possible is with a path of the form $v/a/b/c/d,
in the case where Saxon cannot determine statically that $v will be a singleton. In this situation Saxon
was effectively generating the expression sort($v/a/b/c/d). This has now changed in Saxon-SA so that
in the case where the tail of the path expression (a/b/c/d) is naturally sorted, Saxon now generates a

Changes in this Release

72

conditional sort expression, which performs the sort only if the condition exists($v[2]) is true.
(Note: it is not possible to rewrite the expression as sort($v)/a/b/c/d, because this can result
in duplicates if $v is not a peer node-set, that is, if it contains one node that is an ancestor of another.)

This optimization (which is available only in Saxon-SA) benefits many queries of the form:

let $x := doc('abc.xml')//item[@code='12345']
return $x/price, $x/value, $x/size

Where the expression EXP1 in for $i in EXP1 return EXP2 is known to be a singleton,
the expression is rewritten let $i := EXP1 return EXP2. This creates the opportunity for
further simplifications.

Local variables are now inlined if they are bound to a constant value. Previously variables were inlined
only in cases where there is just one reference to the variable. This creates the opportunity for further
static evaluation of constant subexpressions.

In Saxon-SA, function calls are now inlined, provided certain conditions are met. These conditions
are currently rather conservative. The function that is inlined must not call any user-defined functions,
and it must not exceed a certain size (currently set, rather arbitrarily, to 15 nodes in the expression
tree). It must also not contain certain constructs: for example, various XSLT instructions such as
xsl:number and xsl:apply-templates, any instruction that performs sorting, or a "for" expression with
an "at" variable.

When a function call is inlined, the original function remains available even if there are no further
calls to it. This is because there are interfaces in Saxon that allow functions in a query module to be
located and invoked dynamically.

If a subexpression within a function or template body does not depend on the parameters to the
function, does not create new nodes, and is not a constant, then it is now extracted from the function
body and evaluated as a global variable. This might apply to an expression that depends on other global
variables or parameters, or to an expression such as doc('abc.xml') that is never evaluated at compile
time. This optimization applies only to Saxon-SA. However, during testing of this optimization a
considerable number of cases were found where Saxon was not taking the opportunity to do "constant
folding" (compile-time evaluation of expressions) and these have been fixed, benefitting both Saxon-
B and Saxon-SA.

Static type checking when applied to a conditional expression is now distributed to the branches of
the conditional. ("Static type checking" here means checking that the static type of an expression is
compatible with the required type, and generating run-time type checking code where this proves
necessary). This means that no run-time checking code is now generated or executed for those branches
of the conditional that are statically type-safe. This in turn means that if one branch of the conditional is
a recursive tail call, tail call optimization is no longer inhibited by the unnecessary run-time type check
on the value returned by the recursive call. Another effect of the change is that a static type error may
now be reported if any branch of the conditional has a static type that is incompatible with the required
type; previously this error would have been reported only when this branch was actually executed.
This change affects XPath if/then/else, XSLT's xsl:if and xsl:choose, and XQuery typeswitch.

Tail-call optimization on xsl:call-template has also been improved. In the past this
optimization was never applied if the named template declared a return type. This restriction is
removed. To enable this, the static type inferencing on xsl:call-template has been improved. (Note
however that declaring a return type on a match template will still generally inhibit tail call
optimization, because calls on xsl:apply-templates cannot be statically analyzed.)

Saxon-SA now optimizes certain multi-branch conditional expressions into an efficient switch
expression. The expressions that qualify are XSLT xsl:choose instructions or multi-way XPath/
XQuery if () then ... else if () then ... expressions where all the conditions
take the form of singleton comparisons of the same expression against different literal constants, for

Changes in this Release

73

example @a = 3, @a = 7, @a = 8. The expression on the left must be identical in each case,
and the constants on the right must all be of the same type. The expression is optimized by putting
the constant values (or collation keys derived from them) in a hash table and doing a direct lookup
on the value of the expression.

There has been some tuning applied to the DOM interface, specifically the wrapper code which
implements the NodeInfo interface on top of org.w3.dom.Node. The frequently-used iterator
for the child axis was creating nodes for all the children in a list, to ensure that adjacent text nodes
were properly concatenated. This has changed so that the creation of nodes is now incremental.

Saxon now tries more aggressively to precompile regular expressions that are known at compile time,
where these are used in the XPath functions matches(), tokenize(), and replace(), or in
the xsl:analyze-string instruction. Previously, this was only done (in general) when the regex
was written as a string literal or a constant subexpression. It is now done also when the regex can be
reduced to a string literal during earlier stages of optimization. In particular, it now handles the case
where the expression is written in the content of an XSLT variable, as this is a popular coding idiom
because it avoids problems with escaping curly braces and other special characters.

There are some improvements in the optimization of expressions used in a context where the effective
boolean value is required. These now all use the same logic (implemented as a static method in class
BooleanFn). Expressions known to return nodes are now wrapped in a call of exists(), which takes
advantage of the ability of some iterators to report whether any nodes exist without materializing the
node. Expressions of the form A | B appearing in a boolean context are rewritten as exists(A) or
exists(B), which eliminates the costs of sorting into document order and checking for duplicates.
Calls to normalize-space() in a boolean context are optimized to simply test whether the string contains
any non-whitespace characters.

There has been a complete redesign of the optimization of expressions such as SEQ[position()
gt 5] - specifically, filter expressions that perform an explicit test on the position() function. These
are generally rewritten into a call of subsequence(), remove(), or the new internal function
saxon:item-at(), or (typically for S[position() != 1]) into a TailExpression.
Where necessary, conditional logic is added to the call to handle the case where the expression being
compared to position() is not guaranteed to be an integer, or might be an empty sequence. This
redesign eliminates the need for the expression types PositionRange and SliceExpression.

Compile-time performance has been improved for expressions containing long lists of subexpressions
separated by the comma operator. Lists longer than 5000 or so items were blowing the Java stack, and
the compile time was also quadratic in the number of subexpressions.

Document Projection

Document Projection is a mechanism that analyzes a query to determine what parts of a document it
can potentially access, and then while building a tree to represent the document, leaves out those parts
of the tree that cannot make any difference to the result of the query.

In this release document projection is an option on the XQuery command line interface. Currently it
is only used if requested.

Internally, the class PathMap computes (and represents) the set of paths within a document that are
followed by an expression, that is, for each document accessed by an expression, the set of nodes
that are reachable by the expression. A PathMap can be set on an AugmentedSource supplied
to the Configuration.buildDocument() method to request filtering of the document while
constructing the tree. If -explain is specified, the output includes feedback on the use of document
projection.

Diagnostics
The format of the "explain" output which displays a compiled and optimized expression tree has
changed. The format is now XML, making the raw output amenable to further processing, for example

Changes in this Release

74

filtering or graphical display. The -e flag on the Query command line is extended to allow -
explain:filename, so that the output can more easily be captured in a file.

The options -explain and -explain:filename have been added to the Transform command
line allowing an expression tree to be generated for an entire stylesheet. The extension attribute
saxon:explain remains available for more selective reporting.

Because the explain output is now XML, it is amenable to analysis using XQuery or XSLT. The
Saxon XQuery test driver now allows the test catalog to contain assertions (in the form of XPath
expressions) about the content of the expression tree. This allows tests to be written that check
not only that the query produces correct results, but that the expected optimizations are applied.

From the Java level, explain output is available via a new method on the Expression class. The
old display() method is retained (for the time being) for compatibility, but produces output in the
new format.

NamePool changes
The NamePool is no longer used for names such as variable names which are not used at run-
time. This change is made to ease pressure on the NamePool as a shared resource which can become
a bottleneck for some high-throughput applications, and which can gradually fill for long-running
applications. The problem can arise particularly because the Saxon optimizer generates variable names
at random for internal variables, meaning that there is a slow but steady increase in the number of
entries in the NamePool even under a very stable workload. The name of a variable is now held
internally in a StructuredQName object, which holds the prefix, URI, and local name in a structure
that is designed for economy in space usage combined with an efficient equals() test.

The same change has been made for other kinds of name such as function names, template names,
attribute set names, character map names, mode names, output format names, decimal format names,
and key names. In the vast majority of cases these names are resolved at compile time so there was
little benefit from using the shared name pool.

Local parameters to XSLT templates, which are matched by name at run-time, still use numeric
identifiers for efficient matching, but these are no longer fingerprints allocated from the namepool,
they are numbers allocated by the stylesheet compiler locally to a stylesheet.

User applications are unlikely to be affected by the change unless they probe rather deeply into
Saxon system-programming interfaces, for example interfaces provided for debuggers, or for defining
your own extension function binding factories. But if you provide your own implementation of the
StaticContext interface, you will need to change the method bindVariable() to accept a
StructuredQName rather than an integer fingerprint.

Expression tree changes
There have been changes to the internal structure of the expression tree generated by the XSLT,
XQuery, and XPath processors, and to the way it is navigated. Most notably, the tree no longer
contains any parent pointers linking a subexpression to its containing expression. These have been
removed primarily because the code for maintaining the parent pointers was complex and prone
to bugs. To compensate for the absence of these pointers, the various traversals of the expression
tree (simplify, typeCheck, and optimize), now make use of an ExpressionVisitor object that
maintains references to all the containing expressions in the form of a stack.

Expressions now have a link to a Container object that provides access to the outside world,
for example to the Configuration and NamePool. However, this is used only for diagnostics,
because it is not guaranteed to be available in 100% of cases, especially while the tree is under
construction.

Changes in this Release

75

There is now an internal diagnostic switch allowing tracing of the decisions made by the optimizer.
Not all rewrites are yet traced in this way.

The class IfExpression no longer exists; all conditional expressions including xsl:if,
xsl:choose, XPath if-then-else, and XQuery typeswitch are now compiled to a
(potentially multi-way) Choose expression.

76

Chapter 3. Licensing
Introduction

This section of the documentation provides information about Saxon licensing, including required
notices for open-source components that have been incorporated into Saxon, and acknowledgments
of contributors.

This documentation relates both to the open source Saxon-HE product and to the commercial products
Saxon-PE and Saxon-EE. The conditions of use are of course different in the two cases.

The information in this section applies to both the Java and .NET versions of Saxon, unless otherwise
specified.

Saxon-HE
The open-source Saxon-HE product is made available under the Mozilla Public License Version 1.0
(the "License"); you may not use the software except as permitted by the License. You may obtain a
copy of the License at http://www.mozilla.org/MPL/

The source code of Saxon-HE can be considered for licensing purpose as having three parts:

• Category A consists of code which was written as part of Saxon either by the initial developer, or
by another contributor. All such components are subject only to the MPL 1.0 license. A List of
Contributors is provided, for information.

• Category B code was originally produced as part of some other product and subsequently
incorporated (with varying degrees of modification) into Saxon by way of source code integration.
Many of these components have their own license conditions: these are in all cases licenses similar
in form to either the Mozilla Public License, the Apache license, or the BSD license. All these
licenses are "non-viral": they permit the code to be combined into a commercial product without
requiring the commercial code to become open source. In some cases the license conditions require
the origin of the code to be acknowledged, typically by including a notice in all distributions of the
product. These notices are provided in the notices directory of the Saxon product as distributed,
and the documentation provides a table listing all these Third-party code components.

• Category C code consists of components that are included unchanged in the Saxon distribution in
binary form, for the convenience of users to avoid the need for a separate download. (In the Java
product this includes the ASM library for bytecode generation; in the .NET product it also includes
the IKVMC and OpenJDK runtimes, the Apache Xerces parser, and the TagSoup HTML parser.)
These are listed as Redistributed components

Also distributed with Saxon-HE is a JAR file, saxon9-unpack.jar, which contains proprietary
Saxonica code (non-open-source) for executing a "packaged" stylesheet that has been prepared under
Saxon-PE or Saxon-EE. For details of this feature see Packaged Stylesheets. This JAR file can be freely
redistributed, but in all other respects, the terms and conditions published at http://www.saxonica.com/
paid-license.pdf apply. If you do not want to accept these conditions, please delete this JAR file.

Saxon-EE and Saxon-PE
The Enterprise and Professional editions of Saxon are commercial products released under the terms
and conditions published at http://www.saxonica.com/paid-license.pdf.

These products include the functionality of Saxon-HE as a subset. The source code for Saxon-PE and
Saxon-EE can be considered to be in three parts:

1. Source code for which Saxonica Limited owns the copyright, which Saxonica has chosen to make
available to the public under the Mozilla Public License (around 250K lines of code)

http://www.mozilla.org/MPL/
http://www.saxonica.com/paid-license.pdf
http://www.saxonica.com/paid-license.pdf
http://www.saxonica.com/paid-license.pdf

Licensing

77

2. Source code for which Saxonica Limited owns the copyright, which Saxonica has chosen to retain
as proprietary (around 90K lines of code)

3. Open source code developed and licensed by third parties and used by Saxonica under the terms
of those licenses (around 20K lines of code)

The code in the third category is in most cases also used in Saxon-HE (the only open source code in
Saxon-PE or Saxon-EE that is not also used in Saxon-HE is the ASM bytecode generation library).
In all cases the license under which the code was used permits the creation of commercial products
derived from this code, and does not "infect" such products with open source obligations. In many
cases the relevant license requires a notice to be published; this is satisfied by inclusion of the relevant
notices in this docoumentation and also in the notices directory of the issued product. In many cases
the relevant license also requires any modifications to source code to be published; this is satisfied by
issuing the source code of Saxon-HE, which includes all such modifications.

The Saxon SQL extension
The Saxon SQL extension is available as an open-source plug-in to Saxon-PE or Saxon-EE. It will not
run with Saxon-HE because it relies on XSLT element extensibility, a feature not available in Saxon-
HE. However, the code of the SQL extension itself is open-source and is issued under the Mozilla
Public License, meaning that you are free to extend it and customize it to your needs, even though it
requires Saxon-PE or Saxon-EE to run.

EXSLT extensions
A substantial number of extension functions defined in EXSLT are available as an open-source plug-in
to Saxon-PE or Saxon-EE. These are implemented as reflexive extension functions, and therefore rely
on a mechanism not available in Saxon-HE. However, the code of the these extension functions itself
is open-source and is issued under the Mozilla Public License, meaning that you are free to extend it
and customize it to your needs, even though it requires Saxon-PE or Saxon-EE to run.

Redistribution
Redistribution of Saxon-HE is freely permitted under the terms of the Mozilla Public License. Note
that this requires inclusion of all the necessary notices. If any source code changes are made, the
license requires that they be published; but you are not required to publish the source code of your
own application code.

If you produce a product that includes or requires Saxon-HE, please refer to it prominently as "The
Saxon XSLT and XQuery Processor from Saxonica Limited", and include the URL of the home page,
which is at http://www.saxonica.com/. As a courtesy, please take reasonable steps to ensure that your
users know that they are running Saxon.

Redistribution of Saxon-PE or Saxon-EE as a component of a commercial application is possible under
commercial terms; prices are published in the Saxonica online store.

Technical Support (Saxon-HE)
Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY
OF ANY KIND, either express or implied. See the License for the specific language governing rights
and limitations under the License.

There is no guarantee of technical support, though we are usually able to answer enquiries within
a few days. Please subscribe to the mailing list available at http://lists.sourceforge.net/lists/listinfo/
saxon-help [http://lists.sourceforge.net/lists/listinfo/saxon-help] and raise any enquiries there; or use
the saxon-help forum, also available on the SourceForge pages. Also check the Saxon project pages on
SourceForge for details of known errors; all bugs are listed there as soon as there is sufficient evidence
to describe the nature of the problem.

http://www.saxonica.com/
http://lists.sourceforge.net/lists/listinfo/saxon-help
http://lists.sourceforge.net/lists/listinfo/saxon-help
http://lists.sourceforge.net/lists/listinfo/saxon-help

Licensing

78

Contributors
This page lists contributors to the "Category A" source code of Saxon-HE, as defined above. This list is
provided purely for information and does not imply that the contributor has any rights, responsibilities,
or liabilities in respect of the code. Definitive information about contributors to each module is
included in the standard wording of the Mozilla Public License present in each module of the source
code.

The aim is to acknowledge all contributions, however small. The information has been compiled after
the event, so there may be contributions that are not mentioned here. I apologize for any omissions
and will be happy to rectify them. I will also remove any names from this list on request, though the
names cannot be omitted from the source code itself.

All contributors listed in this section explicitly asked or agreed to have their code published as part of
the Saxon open source product and thus explicitly or implicitly agreed to its release under the Mozilla
public license.

If you are interested in becoming a contributor, please contact Saxonica before sending any
code. You will need to sign a written contributor agreement, perhaps countersigned by your
employer; and you will need to discuss technical arrangements such as the format for test
material.

The LOC figure is an estimate of the number of lines of code contributed, including comments.

Table 3.1.

Rick Bonnett 250 Enhancements to
the Saxon code
for accessing
relational
databases (package
net.sf.saxon.sql,
modules
SQLQuery and
SQLClose)

2004?

Erik Bruchez Orbeon 1800 Code to interface
Saxon with
DOM4J. Package
net.sf.saxon.dom4j.

2006

Dominique
Devienne and
Dave Hale

Landmark
Graphics

1000 Utilities for
handling integer
sets and maps.
Package
net.sf.saxon.sort,
modules
IntHashMap,
IntHashSet,
IntToIntHashMap

2005?

Ruud Diterwich 300 Code for efficient
copying of trees.
package
net.sf.saxon.event
module
DocumentSender;
package
net.sf.saxon.tinytree

2004?

Licensing

79

module
TimyElementImpl
method copy()

Efraim Feinstein 100 Number
formatting in
traditional
Hebrew.

2009

Edwin Glaser 1000 Diagnostic code
for tracing
execution of
stylesheets
(package
net.sf.saxon.trace,
various modules;
and calls to these
routines scattered
around the Saxon
code)

2001?

Karel Goossens BTR-Services,
Belgium

1000 Number and date
formatting for
Danish, Swedish,
Italian, Dutch,
Belgian French,
and Flemish.
Package
net.sf.saxon.number,
module
Numberer_XX
where XX is da, sv,
it, nl, frBE, nlBE

2007

Wolfgang
Hoschek

Lawrence
Berkeley [US]
National
Laboratory

1800 Code to interface
Saxon with XOM.
Package
net.sf.saxon.xom,
all modules

2005?

Dmitry Kirsanov 12 Data used for
Cyrillic
numbering.
Package
net.sf.saxon.number,
module
Numberer_en

2002?

Mathias Payer 140 Enhancements to
the Saxon code
for accessing
relational
databases Package
net.sf.saxon.sql,
module
SQLDelete

2002?

Murakami Shinyu 30 Data used for
Japanese
numbering.
Package
net.sf.saxon.number,

2002?

Licensing

80

module
Numberer_en

Luc Rochefort
(with testing by
Laurent Bourbeau
and Grégoire
Djénandji

250 Number and date
formatting in
French. Package
net.sf.saxon.number,
module
Numberer_fr

2005?

Gunther Schadow 20 Enhancements to
Query command
line interface to
allow input from
stdin. Package
net.sf.saxon,
module Query

2004?

Simon StLaurent ; 320 EXSLT math
library. Package
net.sf.saxon.option.exslt,
module Math

2004?

Martin Szugat 140 EXSLT random
library. Package
net.sf.saxon.option.exslt,
module Random

June 2004

Claudio Thomas 290 Enhancements to
the Saxon code
for accessing
relational
databases. Package
net.sf.saxon.sql,
module SQLQuery

2003?

Third Party Source Components
These tables lists components in category B as described above. (Category B is open source code that
has been integrated at source level, without the involvement of the original author.)

Unlike contributed code, this code was not written specifically for inclusion in Saxon, but was
originally published under some other license.

A2 Base64 Encoder/Decoder

Table 3.2.

Origin Netscape Communications Corp

Description Encoder and decoder for Base 64

Approximate LOC 400

Saxon packages / modules Two inner classes within
net.sf.saxon.value.Base64Value

Modifications Minor modifications needed to meet the W3C
XML Schema specification for Base64 lexical
representation

Availability of source Apparently no longer available. Originally
part of Netscape Directory Server, package

Licensing

81

netscape.ldap.util, modules MimeBase64Encoder
and MimeBase64Decoder.

Source version used Unknown. Snapshot taken in 2004.

License Netscape 1.1: see http://www.mozilla.org/MPL/
NPL-1.1.html

A3 Generic Sorter

Table 3.3.

Origin CERN (author Wolfgang Hoschek)

Description Generic sort routines based on published
algorithms

Approximate LOC 500

Saxon packages / modules net.sf.saxon.sort.GenericSorter

Modifications Minimal modifications needed to integrate the
code

Availability of source Currently available as part of Colt
project, http://dsd.lbl.gov/~hoschek/colt/, module
cern.colt.GenericSorting

Source version used Unknown. Snapshot taken in 2004?

License CERN License: see below

Copyright © 1999 CERN - European Organization for Nuclear Research. Permission to use,
copy, modify, distribute and sell this software and its documentation for any purpose is hereby
granted without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation. CERN
makes no representations about the suitability of this software for any purpose. It is provided
"as is" without expressed or implied warranty.

A4 Unicode Normalization

Table 3.4.

Origin Unicode Consortium (author Mark Davis)

Description Routines for Unicode character normalization

Approximate LOC 3500 (including data sets)

Saxon packages / modules net.sf.saxon.sort.codenorm.*

Modifications Core functionality unchanged; rewrote the
module that loads the data tables from
the Unicode character database; removed
dependencies on ICU; fixed a few bugs

Availability of source Specification of algorithm at http://unicode.org/
reports/tr15/, code available via http://
www.unicode.org/reports/tr15/Normalizer.html

Source version used No version number. Snapshot taken in June 2005

License Unicode license: see below:

http://www.mozilla.org/MPL/NPL-1.1.html
http://www.mozilla.org/MPL/NPL-1.1.html

Licensing

82

COPYRIGHT AND PERMISSION NOTICE Copyright © 1991-2007 Unicode, Inc. All
rights reserved. Distributed under the Terms of Use in http://www.unicode.org/copyright.html.
Permission is hereby granted, free of charge, to any person obtaining a copy of the Unicode
data files and any associated documentation (the "Data Files") or Unicode software and any
associated documentation (the "Software") to deal in the Data Files or Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, and/or sell copies of the Data Files or Software, and to permit persons to whom the
Data Files or Software are furnished to do so, provided that (a) the above copyright notice(s)
and this permission notice appear with all copies of the Data Files or Software, (b) both
the above copyright notice(s) and this permission notice appear in associated documentation,
and (c) there is clear notice in each modified Data File or in the Software as well as in the
documentation associated with the Data File(s) or Software that the data or software has been
modified. THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE
LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THE DATA FILES OR SOFTWARE. Except as contained in this
notice, the name of a copyright holder shall not be used in advertising or otherwise to promote
the sale, use or other dealings in these Data Files or Software without prior written authorization
of the copyright holder.

A5 XPath Parser

Table 3.5.

Origin James Clark (www.jclark.com)

Description Top-down parser and lexical tokenizer for XPath

Approximate LOC 1000 (including data sets)

Saxon packages / modules net.sf.saxon.expr.*, modules ExpressionParser,
Tokenizer, Token

Modifications Almost entirely rewritten with enhancements to
handle XPath 2.0/3.0 and XQuery 1.0/3.0 syntax,
improved error reporting, etc.

Availability of source Derives from James Clark's xt product, which
in its original form is at http://www.jclark.com/
xml/xt-old.html. Package com.jclark.xsl.expr,
modules ExprParser and ExprTokenizer

Source version used Unknown. Snapshot taken in 1999.

License James Clark (see below). Apparently copyright
has since been transferred to the Thai Open
Source Center Ltd.

Licensing

83

Copyright (c) 1998, 1999 James Clark Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following
conditions: The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL JAMES
CLARK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. Except as contained in this notice, the name of James Clark shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this Software without
prior written authorization from James Clark.

A6 Regex Translator

Table 3.6.

Origin James Clark (www.jclark.com)

Description Translator from XML Schema regular
expressions to JDK 1.4 regular expressions

Approximate LOC 1000

Saxon packages / modules net.sf.saxon.java, modules
JDK14RegexTranslator and
JDK15RegexTranslator, and net.sf.saxon.dotnet,
module DotNetRegexTranslator

Modifications Significantly enhanced to handle XPath 2.0/3.0
regular expressions as input and to produce JDK
1.5 and .NET regular expressions as output; and
to support Unicode 6.0.0.

Availability of source Available at http://www.thaiopensource.com/
download/xsdregex-20020430.zip

Source version used 20020430

License Thai Open Source Center Ltd.

Licensing

84

Copyright (c) 2001-2003 Thai Open Source Software Center Ltd All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: * Redistributions of source code
must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. * Neither the name of the Thai Open Source Software
Center Ltd nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE
IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Redistributed Components
This page describes Category C components as defined above: components that are redistributed with
Saxon in binary form, without alteration.

Saxon on Java

See http://asm.ow2.org/

Saxon-EE, on both Java and .NET, includes the ASM bytecode generation library. The code is issued
without modification, except that on .NET it is cross-compiled to .NET IL form.

The license can be found at http://asm.ow2.org/license.html

Licensing

85

Copyright (c) 2000-2011 INRIA, France Telecom All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met: 1. Redistributions of source code must retain
the above copyright notice, this list of conditions and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. Neither the name of the copyright holders nor the
names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY
THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Applicable notice: ASM.txt

Saxon on .NET

See http://www.ikvm.net/. Can be downloaded from http://sourceforge.net/project/showfiles.php?
group_id=69637. Saxon links dynamically to this DLL.

License is at http://weblog.ikvm.net/story.aspx/license

Copyright (C) 2002-2007 Jeroen Frijters This software is provided 'as-is', without any express or
implied warranty. In no event will the authors be held liable for any damages arising from the use
of this software. Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely, subject to the following
restrictions: 1. The origin of this software must not be misrepresented; you must not claim that
you wrote the original software. If you use this software in a product, an acknowledgment in
the product documentation would be appreciated but is not required. 2. Altered source versions
must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution. Jeroen Frijters
jeroen@frijters.net

Applicable notice: FRIJTERS.txt

The copy of OpenJDK Classpath released with Saxon on .NET is a derived from the version that is
released as part of IKVM Runtime (see above). This in turn is derived largely from the Sun OpenJDK
distribution, together with some components taken from the Red Hat IcedTea library, compiled into
CIL code using IKVMC. Saxon 9.1 uses IKVM 0.40.0.1, which in turn uses OpenJDK 7 b13.

Saxon distributes only the parts of this library that are actually needed. These parts have been rebuilt
from source code, but no source modifications have been made.

Saxon links dynamically to this DLL.

Licensing

86

The license conditions are at http://openjdk.java.net/legal/gplv2+ce.html. (This is a modified variant
of the GNU Public License version 2, with a special clause allowing it to be used as part of a product
that is not itself open source.)

Applicable notice: GPL+CLASSPATH.txt

Rather than distributing the Sun version of Xerces that comes with the OpenJDK library, Saxon instead
distributes the Apache version of Xerces. (The two versions have diverged considerably. The Apache
version is used because it is considered more reliable and is also easier to integrate because it does not
have unnecessary dependencies on other parts of the JDK library.)

The two Apache JAR files xercesImpl.jar and resolver.jar have been cross-compiled to
IL code using the IKVMC compiler, but are otherwise unmodified.

The license conditions for Xerces are at http://www.apache.org/licenses/LICENSE-2.0

Applicable notices: APACHE-XERCES.txt, APACHE-RESOLVER.txt

Supporting the saxon:parse-html() extension function, the code of TagSoup version 1.2 is
included in the Saxon-PE and Saxon-EE distributions on .NET. Apart from cross-compiling from Java
bytecode to IL code, the code is unmodified.

Information about TagSoup, including links to the download location for source code, is available at
http://home.ccil.org/~cowan/XML/tagsoup/.

The license conditions for TagSoup are at http://www.apache.org/licenses/LICENSE-2.0

Applicable notices: APACHE-TAGSOUP.txt

Published Algorithms and Specifications
The table below lists published specifications and algorithms that formed a significant intellectual
input into the development of the product.

Table 3.7.

Java 2 SE 6 interface specifications Saxon implements many interfaces defined in
the Java 2 SE specifications, notably the JAXP
interfaces

W3C specifications for XML 1.0, XSLT 2.0,
XPath 2.0, XQuery 1.0 and associated documents

Define the language standards that Saxon
implements

Using Finite-State Automata to Implement W3C
XML Schema Content Model Validation and
Restriction Checking. Henry Thompson and
Richard Tobin. XML Europe 2003

The Saxon-EE schema processor implements this
algorithm to validate instance documents

How to Print Floating Point Numbers Accurately.
Guy Steele and Jon White. ACM SIGPLAN 1990

Saxon uses this algorithm to convert floating point
numbers to strings

Amélie Marian and Jérôme Siméon. Projecting
XML Documents. VLDB'2003, Berlin, Germany,
September 2003.

Saxon-EE provides the option of performing
document projection (to eliminate parts a a source
document that a query cannot reach) using an
algorithm similar to the one published in this
paper

XQJ (XQuery API for Java). Java Community
Process JSR-225. The current Public Draft 0.9

The specification includes a license describing
the terms under which an implementation of
the specification may be made or distributed.

http://openjdk.java.net/legal/gplv2+ce.html
http://www.apache.org/licenses/LICENSE-2.0
http://home.ccil.org/~cowan/XML/tagsoup/
http://www.apache.org/licenses/LICENSE-2.0

Licensing

87

Specification is Copyright (c) 2003, 2006, 2007
Oracle.

Saxon contains a provisional implementation of
this specification, provided for users who wish
to gain early exposure to this draft API. This is
distributed under the terms of the license in the
JSR document.

Date calculation algorithms, taken from http://
vsg.cape.com/~pbaum/date/jdalg.htm, http://
vsg.cape.com/~pbaum/date/jdalg2.htm, and
http://www.hermetic.ch/cal_stud/jdn.htm#comp

Saxon implements these published algorithms for
converting dates to Julian day numbers and vice
versa

88

Chapter 4. Saxon Configuration

Introduction
There are many parameters and options that can be set to control the way in which Saxon behaves,
and there are many different ways these parameters and options can be set. This section of the
documentation brings this information together in one place.

• Configuration interfaces

• The Saxon configuration file

• Configuration Features

Configuration interfaces
At the heart of Saxon is the object net.sf.saxon.Configuration [Javadoc:
net.sf.saxon.Configuration]. This contains all the current settings of configuration
options. All Saxon tasks, such as compiling and running queries and transformations, or building
and validating source documents, happen under the control of a Configuration. Many resources
are owned by the Configuration, meaning that related tasks must run under the same
Configuration. Most notably, the Configuration holds a NamePool [Javadoc:
net.sf.saxon.om.NamePool], which is a table allocating integer codes to the qualified names
that appear in stylesheets, queries, schemas, and source documnets, and during the execution of a
stylesheet or query all the resources used (for example, the stylesheet, all its input documents, and any
schemas it uses) must all use the same NamePool to ensure that they all use the same integer codes
for the same qualified names. However, two Saxon tasks that are unrelated can run under different
Configurations.

There are subclasses of Configuration containing resources
associated with the capabilities of the different Saxon editions:
specifically, com.saxonica.config.ProfessionalConfiguration [Javadoc:
com.saxonica.config.ProfessionalConfiguration] and
com.saxonica.config.EnterpriseConfiguration [Javadoc:
com.saxonica.config.EnterpriseConfiguration]. In many cases the
Configuration is used as a factory class to deliver services associated with the different capability
levels, for example the method getOptimizer() returns the query optimizer appropriate to the
loaded Saxon edition.

Many configuration options have direct setter and getter methods on the Configuration object,
for example setAllowExternalFunctions() and isAllowExternalFunctions().
Some other options have setters and getters on objects reachable from the
Configuration, for example defaults for XSLT processing can be controlled
using methods such as getDefaultXsltCompilerInfo().setXsltVersion(),
while defaults for XQuery processing can be controlled using methods such as
getDefaultStaticQueryContext().setLanguageVersion().

The most general mechanism for getting and setting configuration properties,
however, is provided by the methods getConfigurationProperty(name) and
setConfigurationProperty(name, value). In these methods the name of
the configuration property is always a string in the form of a URI (for example,
"http://saxon.sf.net/feature/initialTemplate"), and the strings available are
all defined by constants in the class net.sf.saxon.lib.FeatureKeys [Javadoc:
net.sf.saxon.lib.FeatureKeys] (for example,
FeatureKeys.INITIAL_TEMPLATE). The value is of various types depending on the property.

Saxon Configuration

89

In the vast majority of cases, the property can be supplied as a string, or it has an alternative, equivalent
property that can be supplied as a string. For properties that are essentially boolean in nature the value
can be supplied either as one of the Java constants Boolean.TRUE or Boolean.FALSE, or as one
of the strings "true", "1", "yes", "on", or "false", "0", "no", "off". These choices are designed to suit
the conventions of different APIs in which the configuration options are exposed.

In many APIs for controlling Saxon activities, the Configuration object is not exposed directly,
but is hidden below some similar object acting as the root object for that particular API. Many of these
objects provide a direct way to set the configuration options. These are discussed in the following
sections.

• JAXP Factory Interfaces

• Configuration using s9api

• Configuration using the .NET API

• Configuration from the command line

• Configuration using XQJ

• Configuration when running Ant

JAXP Factory Interfaces

Saxon implements a number of JAXP interfaces, notably the APIs for transformation, XPath
processing, and validation.

For transformation, the root object of the API is the JAXP TransformerFactory. Saxon
provides three implementations of this interface: net.sf.saxon.TransformerFactoryImpl
[Javadoc: net.sf.saxon.TransformerFactoryImpl] for Saxon-HE,
and com.saxonica.config.ProfessionalTransformerFactory [Javadoc:
com.saxonica.config.ProfessionalTransformerFactory] and
com.saxonica.config.EnterpriseTransformerFactory [Javadoc:
com.saxonica.config.EnterpriseTransformerFactory] for Saxon-PE and Saxon-
EE respectively. This interface provides methods getAttribute(name) and
setAttribute(name, value) which correspond directly to the methods
getConfigurationProperty(name) and setConfigurationProperty(name,
value) on the underlying Configuration [Javadoc:
net.sf.saxon.Configuration] object. By casting from the JAXP interface to the Saxon
implementation class it is also possible to call the getConfiguration method which exposes the
Configuration object directly.

The Saxon-PE and Saxon-EE implementations of the TransformerFactory also
allow the configuration property FeatureKeys.CONFIGURATION_FILE [Javadoc:
net.sf.saxon.lib.FeatureKeys#CONFIGURATION_FILE] to be set. The value is a
filename containing the name of a configuration file, which must have the format described in
Configuration file. This causes any previously-initialized configuration to be discarded, and replaced
with a new Configuration object built from the settings in the specified configuration file.

The JAXP XPathFactory interface has a general-purpose configuration mechanism
in the form of the two methods setFeature() and getFeature(). These can
be used to set/get all boolean-valued configuration options in the underlying Saxon
Configuration, as well as the options defined in the JAXP interface itself. To set
configuration options that are not boolean-valued, it is necessary to navigate to the
underlying Configuration object and use its native interfaces. Saxon's implementation class
for the XPathFactory is net.sf.saxon.xpath.XPathFactoryImpl [Javadoc:
net.sf.saxon.xpath.XPathFactoryImpl], regardless which Saxon edition is in use.

Saxon Configuration

90

Note that although Saxon implements the JAXP XPath API, it is rarely possible to use it in a way
that has no dependencies on the Saxon implementation, partly because of the requirement for all
Saxon tasks to run under the same Configuration. When using the XPath API, therefore,
the Configuration object is usually exposed to the application.

Saxon-EE also implements the JAXP SchemaFactory in class
com.saxonica.jaxp.SchemaFactoryImpl [Javadoc:
com.saxonica.jaxp.SchemaFactoryImpl]. The interface offers methods
getProperty(name) and setProperty(name, value) which map to the underlying
methods in the Saxon Configuration; again, it is also possible to cast to the Saxon implementation
class and call configuration-setting methods directly.

Configuration using s9api

In Saxon's s9api interface the root API object is the net.sf.saxon.s9api.Processor
[Javadoc: net.sf.saxon.s9api.Processor] object. This again is a wrapper around a
Configuration [Javadoc: net.sf.saxon.Configuration]. All the configuration
properties are exposed via the Processor methods getConfigurationProperty(name)
and setConfigurationProperty(name, value) which map directly to the same methods
on the underlying Configuration.

The s9api Processor object also has a constructor new Processor(source) which allows
the underlying Configuration to be built from a supplied configuration file. The argument is a
org.xml.sax.Source object, for example a StreamSource, which identifies the configuration
file, which must have the format described in Configuration file.

In many cases with s9api it is more appropriate to set options at a finer level of granularity
than the Processor. For example, options that affect XSLT stylesheet compilation can
be set on the XsltCompiler [Javadoc: net.sf.saxon.s9api.XsltCompiler]
object, and options that affect XQuery compilation on the XQueryCompiler
[Javadoc: net.sf.saxon.s9api.XQueryCompiler]. Some more specialized
configuration options are not exposed directly by these two classes, but can be
tailored by accessing the underlying support objects: CompilerInfo [Javadoc:
net.sf.saxon.trans.CompilerInfo] in the case of XSLT, and StaticQueryContext
[Javadoc: net.sf.saxon.query.StaticQueryContext] in the case of XQuery.

Configuration using the .NET API

In Saxon's Saxon.API interface on .NET the root API object is the Saxon.Api.Processor
object. This again is a wrapper around a Configuration. All the configuration properties
are exposed via the Processor methods getProperty(name) and setProperty(name,
value) which map directly to the methodsgetConfigurationProperty(name) and
setConfigurationProperty(name, value) on the underlying Configuration.

The s9api Processor object also has a constructor new Processor(stream) which allows
the underlying Configuration to be built from a supplied configuration file, which must have the
format described in Configuration file. Configuration files are available only in Saxon-PE and Saxon-
EE.

In many cases with the Saxon.Api interface it is more appropriate to set options at a finer level
of granularity than the Processor. For example, options that affect XSLT stylesheet compilation
can be set on the XsltCompiler object, and options that affect XQuery compilation on the
XQueryCompiler.

Saxon Configuration

91

Configuration from the command line
The main command-line interfaces to Saxon are net.sf.saxon.Transform [Javadoc:
net.sf.saxon.Transform] for running a transformation, net.sf.saxon.Query
[Javadoc: net.sf.saxon.Query] for running XQuery, and com.saxonica.Validate
[Javadoc: com.saxonica.Validate] for validating a document against a schema. These
commands allow many configuration options to be specified by command line options: for example
if XML Schema 1.1 support is wanted, all three commands allow this to be requested using the option
-xsdversion:1.1. Many of these options correspond directly to the configuration properties
available on the Configuration object.

For more specialized options, there is also a fallback mechanism. Each configuration
property has a URI, which is always of the form http://saxon.sf.net/feature/
SOME_NAME. Provided the property allows a string value (as most do), the property can
be set from the command line using the syntax --SOME_NAME:value. For example
the property identified by FeatureKeys.LICENSE_FILE_LOCATION [Javadoc:
net.sf.saxon.lib.FeatureKeys#LICENSE_FILE_LOCATION] has the URI http://
saxon.sf.net/feature/licenseFileLocation, and it can therefore be set on
the command line using an option such as --licenseFileLocation:c:/saxon/
license.lic.

For boolean-valued configuration properties, Saxon accepts any of the values "yes", "on",
"true", or "1" to switch the option on, or "no", "off", "false", or "0" to switch it off.

Configuration using XQJ
The root object in the XQJ (XQuery for Java) API is javax.xml.query.XQDataSource,
and the Saxon implementation class is net.sf.saxon.xqj.SaxonXQDataSource
[Javadoc: net.sf.saxon.xqj.SaxonXQDataSource]. The XQDataSource provides
methods getProperty(name) and setProperty(name, value) which at first
sight appear to map cleanly to the methods getConfigurationProperty(name)
and setConfigurationProperty(name, value) in the underlying Saxon
Configuration [Javadoc: net.sf.saxon.Configuration], and indeed
they can be used in this way, using either the URI value of the property or
the symbolic constant in class net.sf.saxon.lib.FeatureKeys [Javadoc:
net.sf.saxon.lib.FeatureKeys].

There are some glitches, however. Firstly, the XQJ specifications mandate that the properties available
through this interface should also have explicit getters and setters: for example if a property named
"lineNumbering" is available, then there should be a pair of methods setLineNumbering()
and getLineNumbering(). This does not square well with the use of URIs for property names.
Secondly, XQJ requires that the property values should be strings. Saxon therefore:

1. exposes a subset of commonly-used configuration properties using shortened names such as
dtdValidation and retainLineNumbers;

2. provides getters and setters for these properties, as required by the XQJ specification;

3. lists the names of the above properties (only) in the result of the method
getSupportedPropertyNames()

4. makes all other configuration properties available using URIs as the name, without
providing getters and setters, and without listing the names in the result of
getSupportedPropertyNames, provided that the value can be represented as a string.
Boolean values can be represented using any of the strings ("yes", "on", "true", or "1"), or ("no",
"off", "false", or "0").

Saxon Configuration

92

Configuration when running Ant

It is possible to run XSLT transformations from Ant using the xslt task,
selecting Saxon as the XSLT processor by setting the factory child element to
the Saxon implementation class of javax.xml.transform.TransformerFactory,
that is one of net.sf.saxon.TransformerFactory [Javadoc:
net.sf.saxon.TransformerFactory],
com.saxonica.config.ProfessionalTransformerFactory [Javadoc:
com.saxonica.config.ProfessionalTransformerFactory], or
com.saxonica.config.EnterpriseTransformerFactory [Javadoc:
com.saxonica.config.EnterpriseTransformerFactory] depending on the Saxon
edition in use.

Additional configuration options can be specified using the attribute child of the factory
element: for example the following task was used as part of the pipeline for publishing this
documentation:

 <xslt in="${userdoc.dir}/src/function-data.xml"
 style="${userdoc.dir}/style/preprocess-functions.xsl"
 out="${userdoc.dir}/src/functions.xml"
 classpath="e:/saxon/eej/saxon9ee.jar;e:/saxon/eej/saxon-licenses">
 <factory name="com.saxonica.config.EnterpriseTransformerFactory">
 <attribute name="http://saxon.sf.net/feature/xsltSchemaAware" value="true"/>
 <attribute name="http://saxon.sf.net/feature/schema-validation-mode" value="strict"/>
 <attribute name="http://saxon.sf.net/feature/xsd-version" value="1.1"/>
 </factory>
 </xslt>

Many of the options available as configuration parameters
(for example FeatureKeys.XSLT_INITIAL_TEMPLATE) [Javadoc:
net.sf.saxon.lib.FeatureKeys#XSLT_INITIAL_TEMPLATE] were provided
explicitly with Ant in mind. The provision of these parameters makes the customized version of the
Ant XSLT task provided with some earlier Saxon versions redundant, and the customized task is no
longer supported.

The Saxon configuration file

Configuration parameters for Saxon can be defined in a configuration file. This file is optional. It can
be applied by using the option -config:filename on the Transform, Query, or Validate
command line, or using the factory method Configuration.readConfiguration().

A schema for the configuration file is provided as config.xsd in the samples directory of
the saxon-resources download.

In both the s9api interface on Java, and the Saxon.Api interface on .NET, there is a constructor on the
Processor class that takes a configuration file as input.

Here is an example configuration file. It is designed to show as many options as possible; in practice,
no option needs to be included if it is to take its default value, and it is probably good practice to only
include those parameters that you need to specify explicitly. Some of the example values used in this
sample will not work unless you have files with the relevant names at particular locations, or unless

Saxon Configuration

93

you have classes with particular names available on your classpath; if such entries cause problems,
you can always delete them.

<configuration xmlns="http://saxon.sf.net/ns/configuration"
 edition="EE">
 <global
 allowExternalFunctions="true"
 allowMultiThreading="true"
 allowOldJavaUriFormat="false"
 collationUriResolver="net.sf.saxon.lib.StandardCollationURIResolver"
 collectionUriResolver="net.sf.saxon.lib.StandardCollectionURIResolver"
 compileWithTracing="false"
 defaultCollation="http://www.w3.org/2005/xpath-functions/collation/codepoint"
 defaultCollection="file:///e:/temp"
 dtdValidation="false"
 dtdValidationRecoverable="true"
 errorListener="net.sf.saxon.StandardErrorListener"
 expandAttributeDefaults="true"
 lazyConstructionMode="false"
 lineNumbering="true"
 optimizationLevel="10"
 preEvaluateDocFunction="false"
 preferJaxpParser="true"
 recognizeUriQueryParameters="true"
 schemaValidation="strict"
 serializerFactory=""
 sourceParser=""
 sourceResolver=""
 stripWhitespace="all"
 styleParser=""
 timing="false"
 traceExternalFunctions="true"
 traceListener="net.sf.saxon.trace.XSLTTraceListener"
 traceOptimizerDecisions="false"
 treeModel="tinyTreeCondensed"
 uriResolver="net.sf.saxon.StandardURIResolver"
 usePiDisableOutputEscaping="false"
 useTypedValueCache="true"
 validationComments="false"
 validationWarnings="true"
 versionOfXml="1.0"
 xInclude="false"
 />

 <xslt
 initialMode=""
 initialTemplate=""
 messageReceiver=""
 outputUriResolver=""
 recoveryPolicy="recoverWithWarnings"
 schemaAware="false"
 staticErrorListener=""
 staticUriResolver=""
 styleParser=""
 version="2.1"
 versionWarning="false">
 <extensionElement namespace="http://saxon.sf.net/sql"

Saxon Configuration

94

 factory="net.sf.saxon.option.sql.SQLElementFactory"/>
 </xslt>

 <xquery
 allowUpdate="true"
 constructionMode="preserve"
 defaultElementNamespace=""
 defaultFunctionNamespace="http://www.w3.org/2005/xpath-functions"
 emptyLeast="true"
 inheritNamespaces="true"
 moduleUriResolver="net.sf.saxon.query.StandardModuleURIResolver"
 preserveBoundarySpace="false"
 preserveNamespaces="true"
 requiredContextItemType="document-node()"
 schemaAware="false"
 staticErrorListener=""
 version="1.1"
 />

 <xsd
 occurrenceLimits="100,250"
 schemaUriResolver="com.saxonica.sdoc.StandardSchemaResolver"
 useXsiSchemaLocation="false"
 version="1.1"
 />

 <serialization
 method="xml"
 indent="yes"
 saxon:indent-spaces="8"
 xmlns:saxon="http://saxon.sf.net/"/>

 <localizations defaultLanguage="en" defaultCountry="US">
 <localization lang="da" class="net.sf.saxon.option.local.Numberer_da"/>
 <localization lang="de" class="net.sf.saxon.option.local.Numberer_de"/>
 </localizations>

 <resources>
 <externalObjectModel>net.sf.saxon.option.xom.XOMObjectModel</externalObjectModel>
 <extensionFunction>s9apitest.TestIntegrationFunctions$SqrtFunction</extensionFunction>
 <schemaDocument>file:///c:/MyJava/samples/data/books.xsd</schemaDocument>
 <schemaComponentModel/>
 </resources>

 <collations>
 <collation uri="http://www.w3.org/2005/xpath-functions/collation/codepoint"
 class="net.sf.saxon.sort.CodepointCollator"/>
 <collation uri="http://www.microsoft.com/collation/caseblind"
 class="net.sf.saxon.sort.CodepointCollator"/>
 <collation uri="http://example.com/french" lang="fr" ignore-case="yes"/>
 </collations>
</configuration>

The configuration element takes a single attribute, edition, whose value indicates the Saxon
edition in use: HE (home edition), PE (professional edition), or EE (enterprise edition). The default
value is HE. If PE or EE is specified, then the appropriate license file must be installed.

The children of the configuration element may appear in any order.

Saxon Configuration

95

The contents of the different sections of the configuration file are described in the following
subsections.

• The <global> element

• The <xslt> element

• The <xquery> element

• The <xsd> element

• The <resources> element

• The <collations> element

• The <localizations> element

The <global> element
The global input element of the configuration file contains properties defining global configuration
options.

Table 4.1.

allowExternalFunctions true|false True if calls to external Java
or .NET functions are allowed

allowMultiThreading true|false True if saxon:threads
attribute on xsl:for-each
causes multi-threading under
Saxon-EE; false to disable multi-
threading. Default is true (but
multi-threading only happens
if explicitly requested using
saxon:threads.

allowOldJavaUriFormat true|false True if reflexive calls to external
Java functions are allowed
to use the "liberal" syntax
(for example "http://my.com/
extensions/java.util.Date"). The
default is to allow only the
"strict" form of URI such as
"java:java.util.Date"

collationUriResolver Name of a class implementing
CollationURIResolver

User-supplied class used to
intepret collation URIs

collectionUriResolver Name of a class implementing
CollectionURIResolver

User-supplied class used for
resolving the URI supplied to the
collection() function

compileWithTracing true|false generates trace code in the
expression tree, allowing a
TraceListener to be used at run-
time

defaultCollation A collation URI (Requires Saxon-PE.) The
collation URI to be used when no
explicit collation is requested.

defaultCollection A collection URI The collection URI to be used
when no argument is passed to
the collection() function.

Saxon Configuration

96

dtdValidation true|false Controls whether DTD
validation is applied to input
files.

dtdValidationRecoverable true|false Controls whether DTD
validation errors are recoverable
or fatal.

errorListener A Java class that implements
javax.xml.transform.ErrorListener

Defines the default
ErrorListener for reporting both
compile-time and run-time
errors

expandAttributeDefaults true|false Controls whether attribute
default values found in a DTD or
schema are expanded or not.

lazyConstructionMode true|false If true, causes temporary trees to
be constructed lazily

lineNumbering true|false Controls whether line and
column number information is
maintained for input files

optimizationLevel integer, 0 to 10 Defines the level of code
optimization to be applied

preEvaluateDocFunction true|false If true, allows calls on doc()
with a literal argument to be
evaluated early, at compile time

preferJaxpParser true|false Relevant only on .NET,
determines whether the Java
Classpath parser is used
in preference to the
Microsoft .NET parser

recognizeUriQueryParameters true|false If true, and the standard
URIResolver is in use,
query parameters such as
val=strict will be
recognized on URIs supplied
to the doc or document()
functions.

schemaValidation strict|lax|preserve|skip Controls whether schema
validation is applied to input
files

serializerFactory Java class that extends
net.sf.saxon.event.SerializerFactory

Allows the serialization pipeline
to be customized, for example to
handle user-defined serialization
parameters

sourceParser Java class implementing
XMLReader

The SAX parser to be used for
reading source files.

sourceResolver Java class name implementing
net.sf.saxon.SourceResolver

Name of a user-supplied
class that resolves unknown
implementations of the JAXP
Source class into a known
implementation.

stripWhitespace all|none|ignorable Controls what whitespace is
removed from input documents
(all inter-element whitespace,

Saxon Configuration

97

no inter-element whitespace, or
all inter-element whitespace in
elements having element-only
content models)

styleParser Java Class implementing
XMLReader

XML parser used for stylesheets
and schema documents

timing true|false Outputs progress messages to
System.err. Equivalent to the -t
option on the command line

traceExternalFunctions true|false Provides diagnostics when
external functions are
dynamically loaded

traceListener Java Class implementing
net.sf.saxon.trace.TraceListener

User-defined class to be used for
handling run-time trace output

traceOptimizerDecisions true|false Causes tracing of decisions
made by the optimizer

treeModel linkedTree|tinyTree|
tinyTreeCondensed

Determines the tree model
implementation used for input
files: TinyTree, LinkedTree, or
TinyTree(condensed)

uriResolver Name of a JAXP URIResolver The URIResolver to be
used for deferencing URIs
used in xsl:include,
xsl:import, doc(), and
document().

usePiDisableOutputEscaping true|false When sending output to a
user-defined content handler,
indicates whether JAXP-defined
processing instructions are used
to signal the start and end of
text in which output escaping is
disabled

useTypedValueCache true|false If true, typed values of element
and attribute nodes are cached
in the TinyTree. Uses extra
memory, may make execution
faster.

validationComments true|false Only relevant when
validationWarnings=true,
indicates that validation error
messages should where possible
be added as comments in
the document instance being
validated rather than fatal errors.

validationWarnings true|false For result trees subjected to
schema validation, indicates
whether validation failures
should be treated as warnings
rather than fatal errors.

versionOfXml 1.0|1.1 Determines whether XML 1.0
or XML 1.1 rules are used for
names. (1.0 means the rules
before Edition 5)

Saxon Configuration

98

xInclude true|false Controls whether XInclude
processing is applied to input
files

The <xslt> element
The xslt element of the configuration file contains properties specific to XSLT. Remember that
these are defaults, they can always be overridden for specific queries or transformations. An attribute
whose value is set to a zero-length string is ignored, the effect is the same as omitting the attribute.

Table 4.2.

messageReceiver Java class that implements
net.sf.saxon.event.Receiver

Destination of xsl:message
output

outputUriResolver Java class that implements
the Saxon OutputURIResolver
interface

Handles documents written
using xsl:result-
document

recoveryPolicy recoverWithWarnings|
recoverSilently|fail

Indicates how XSLT
recoverable errors are handled
(for example, ambiguous
template rules)

schemaAware true|false Indicates whether stylesheet
should be compiled to be
able to handle schema-
typed input, even if they
contain no xsl:import-
schema declaration

staticErrorListener Java class that implements the
JAXP ErrorListener interface

Receives reports of compile-
time errors in a stylesheet

staticUriResolver Java class that implements the
JAXP URIResolver interface

User-defined class for
dereferencing URIs on
xsl:include or
xsl:import

styleParser Java class that implements
XMLReader

XML parser used for stylesheet
and schema modules

version 0.0, 2.0, or 2.1 XSLT language version to be
supported by the processor.
The value 0.0 indicates that
the version is taken from the
xsl:stylesheet element.

versionWarning true|false False suppresses the warning
produced when the XSLT
processor version is not the
same as the version in the
xsl:stylesheet element.

The xslt element may contain one or more extensionElement children defining namespaces
used for extension instructions. The extensionElement element has the following attributes:

Table 4.3.

namespace A namespace URI The namespace URI of the
extension instructions

Saxon Configuration

99

factory The name of Java class that
implements the Saxon interface
ExtensionElementFactory

Links to the implementation
of the various extension
instructions in the specified
namespace.

The <xquery> element
The xquery element of the configuration file contains properties specific to XQuery. Remember that
these are defaults, they can always be overridden for specific queries. An attribute whose value is set
to a zero-length string is ignored, the effect is the same as omitting the attribute.

Table 4.4.

allowUpdate true|false Indicates whether XQuery
Update syntax is accepted

constructionMode preserve|strip Default value for construction
mode in the static context

defaultElementNamespace A namespace URI Default namespace for elements
and types

defaultFunctionNamespace A namespace URI Default namespace for functions

emptyLeast true|false True if the empty sequence
comes first in sort order

inheritNamespaces true|false Default value for "inherit
namespaces" in the static context

moduleUriResolver Class that implements the Saxon
ModuleURIResolver interface

Used for locating query modules
referenced by "import module"

preserveBoundarySpace true|false Policy for preserving boundary
space within direct element
content

preserveNamespaces true|false Default value for "preserve
namespaces" in the static context

requiredContextItemType An item type, e.g. document-
node()

The required type for the context
item

schemaAware true|false True if the query makes use of
schema information

staticErrorListener Class that implements JAXP
ErrorListener

Receives notification of static
errors occurring in a Query

version 1.0|1.1 Indicates whether XQuery 1.1
syntax is accepted

The <xsd> element
The xsd element of the configuration file contains properties defining how schema documents are
compiled by Saxon.

Table 4.5.

occurrenceLimits MMM,NNN Two integers, comma-separated.
Controls the limits applied
to minOccurs and maxOccurs
values in XSD content models.

Saxon Configuration

100

schemaUriResolver Class implementing the Saxon
SchemaURIResolver interface

Controls the handling of URIs
in xs:include, xs:import
etc. declarations, and also in
xsi:schemaLocation

useXsiSchemaLocation true|false Indicates whether the schema
processor takes account of
xsi:schemaLocation and
xsi:noNamespaceSchemaLocation
attributes appearing in the
instance document

version 1.0|1.1 Inidcates whether XSD 1.1
syntax is accepted

The <resources> element
The resources element in the configuration file defines a number of resources that can be preloaded
into the configuration. It contains child elements as detailed below, in any order; most of them can
appear more than once.

Table 4.6.

externalObjectModel Class that implements the
ExternalObjectModel interface

Defines an external object model
that can be used to provide input
to Saxon (and in some cases
receive output): for example
DOM, JDOM, XOM, etc.

extensionFunction Class that implements the
IntegratedFunction interface

Defines an "integrated extension
function" written to a specific
Saxon API

schemaDocument relative or absolute URI A schema document to be
preloaded into the Saxon schema
cache

schemaComponentModel relative or absolute URI A schema component model
document (previously exported
by Saxon) allowing fast loading
of a compiled schema

The <collations> element
The collations element in the configuration file defines a number of collations that can be
preloaded into the configuration. It contains zero or more child collation elements as detailed
below.

Each collation element may have the following attributes:

Table 4.7.

uri The collation URI (mandatory) An absolute URI used to identify
the collation in queries and
stylesheets

class Java class implementing
Collator, StringCollator, or
Comparator

Class used to perform string
comparisons

Saxon Configuration

101

lang Language code, eg. en-US Language supported by the
collation

rules Rules in Java RuleBasedCollator
format

Detailed rules for ordering of
characters

strength primary|secondary|tertiary|
identical

The strength of the collation.
A stronger collation takes more
details of the character into
account, e.g. accents and case

ignore-case yes|no Yes indicates that upper-case
and lower-case are equivalent

ignore-modifiers yes|no Yes indicates that accents and
other modifiers are ignored

ignore-symbols yes|no Yes indicates that punctuation
symbols are ignored (.NET only)

ignore-width yes|mp Yes indicates that width
variations between characters
are ignored

decomposition none|standard|full Determines whether Unicode
normalization should be applied
to strings before comparison
(Java platform only)

case-order upper-first|lower-first|#default Indicates whether upper-case
characters should precede
or follow their lower-case
equivalents

alphanumeric yes|no Yes indicates that a sequence of
digits within a string is read as a
number, for example "test8.xml"
precedes "test10.xml"

The <localizations> element
The localizations element in the configuration file defines classes used to localize the output of
the xsl:number instruction in XSLT, and the functions format-date(), format-time(),
and format-dateTime().

It has two attributes, defaultLanguage and defaultCountry which provide default values
for the lang attribute/argument and the country argument respectively. If no values are supplied,
the defaults are taken from the default Locale in the Java VM (which in turn will typically depend
on operating system settings).

The element contains zero or more child localization elements as detailed below.

Each localization element may have the following attributes:

Table 4.8.

lang An ISO language code,
for example "en" or "fr-
CA" (mandatory)

The language to which this
localization relates

class The name of a class
that implements the interface
net.sf.saxon.number.Numberer

The class that performs
localization for the specified
language

Saxon Configuration

102

additional attributes Additional attributes are passed
on to a user-specified
LocalizationFactory

The meaning of these attributes
depends entirely on the
LocalizationFactory.

Note that numberers for various European languages (da, de, fr, dr-BE, it, nl, nl-BE, sv) are supplied
in package net.sf.saxon.option.local. In Saxon-PE and Saxon-EE these are compiled into
the standard JAR file, but they are not configured by default. In Saxon-HE they are not built-in to
the product, but can be integrated from the supplied source code in the same way as user-written
localizations.

Configuration Features
This page provides a complete list of the configuration features available.

The properties are identified by a symbolic name and a URI value defined in the Java module
FeatureKeys [Javadoc: net.sf.saxon.lib.FeatureKeys]. The table below gives
summary information for each property, together with a link to the Javadoc, where more complete
information is held.

103

Chapter 5. Using XSLT 2.0
Using XSLT 2.0 Stylesheets

This section describes how to use Saxon XSLT 2.0 stylesheets, either from the command line, or from
the Java API, or from Ant.

It also describes the subset of XSLT 3.0 (previously known as XSLT 2.1) that Saxon currently
implements.

Running XSLT from the Command Line
A command is available to apply a given stylesheet to a given source XML document. For simple
transformations on the Java platform, use the command:

java net.sf.saxon.Transform -s: -xsl: -o:

where , , and are the source XML file, the XSLT stylesheet, and the output file respectively.

For the .NET platform, the command is simply:

Transform -s: -xsl: -o:

For a schema-aware transformation, specify the option -sa, or (on the Java platform only) use
the alternate entry point com.saxonica.Transform. For more details see Schema-Aware
Transformations.

For backwards compatibility with previous releases, the prefixes "-s:" and "-xsl:" can be omitted
provided that the source document and the stylesheet are the last two options before any
keyword=value parameters.

More generally, the arguments consist of a number of options prefixed with "-", then optionally (for
backwards compatibility) the source filename and/or stylesheet filename, then a number of parameters
provided as keyword=value pairs. The options must come first, then the file names if present, then
the parameters.

For this to work, all the necessary Java components must be available on the classpath. See Installation
for details of how to set up the classpath.

If you are are not using any additional Java libraries, you can use the simpler form of command (this
example is for the Home Edition):

java -jar /saxon9he.jar [options] [params]

The options are as follows (in any order):

Table 5.1.

-a[:(on|off)] Use the xml-stylesheet processing instruction in
the source document to identify the stylesheet to
be used. The stylesheet argument must not be
present on the command line.

-catalog:filenames is either a file name or a list of file names
separated by semicolons; the files are OASIS
XML catalogs used to define how public
identifiers and system identifiers (URIs) used
in a source document, stylesheet, or schema
are to be redirected, typically to resources

Using XSLT 2.0

104

available locally. For more details see Using XML
Catalogs.

-config:filename Indicates that configuration information should be
taken from the supplied configuration file. Any
options supplied on the command line override
options specified in the configuration file.

-cr:classname Use the specified CollectionURIResolver
to process collection URIs passed
to the collection() function.
The CollectionURIResolver is a user-
defined class that implements the
net.sf.saxon.CollectionURIResolver
interface.

-dtd:(on|off|recover) Setting -dtd:on requests DTD-based validation
of the source file and of any files read using the
document() function. Requires an XML parser
that supports validation. The setting -dtd:off
(which is the default) suppresses DTD validation.
The setting -dtd:recover performs DTD
validation but treats the error as non-fatal if it fails.
Note that any external DTD is likely to be read
even if not used for validation, because DTDs can
contain definitions of entities.

-expand:(on|off) Normally, if validation using a DTD or Schema is
requested, any fixed or default values defined in
the DTD or schema will be expanded. Specifying
-expand:off suppresses this. (In the case of DTD-
defined defaults, this might not work with all
XML parsers. It does work with the Xerces
parser (default for Java) and the Microsoft parser
(default for .NET))

-explain[:filename] Display an execution plan for the stylesheet.
This is a representation of the expression tree
after rewriting by the optimizer. It compbines the
XSLT instructions and the XPath expressions into
a single tree. If no file name is specified the output
is sent to the standard error stream. The output is
a tree in XML format.

-ext:(on|off) If ext:off is specified, suppress calls on
dynamically-loaded external Java functions. This
does not affect calls on integrated extension
functions, including Saxon and EXSLT extension
functions. This option is useful when loading
an untrusted stylesheet, perhaps from a remote
site using an http:// URL; it ensures that the
stylesheet cannot call arbitrary Java methods and
thereby gain privileged access to resources on
your machine.

-im:modename Selects the initial mode for the transformation.
If this is namespaced, it can be written as
{uri}localname

-init:initializer The value is the name of a user-
supplied class that implements the
interface net.sf.saxon.Initializer;
this initializer will be called during the

Using XSLT 2.0

105

initialization process, and may be used to
set any options required on the Configuration
programmatically. It is particularly useful for
such tasks as registering extension functions,
collations, or external object models, especially in
Saxon-HE where the option does not exist to do
this via a configuration file.

-it:template Selects the initial named template to be executed.
If this is namespaced, it can be written as
{uri}localname. When this option is used,
you do not need to supply a source file, but if you
do, you must supply it using the -s option.

-l[:(on|off)] If -l or -l:on is specified, causes line
and column numbers to be maintained
for source documents. These are accessible
using the extension functions saxon:line-
number() and saxon:column-number().
Line numbers are useful when the purpose of
the stylesheet is to find errors or anomalies in
the source XML file. Without this option, line
numbers are available while source documents
are being parsed and validated, but they are
not retained in the tree representation of the
document.

-m:classname Use the specified Receiver to process the output
from xsl:message. The class must implement the
net.sf.saxon.event.Receiver class.
This interface is similar to a SAX
ContentHandler, it takes a stream of events to
generate output. In general the content of a
message is an XML fragment. By default the
standard XML emitter is used, configured to write
to the standard error stream, and to include no
XML declaration. Each message is output as
a new document.The sequence of calls to this
Receiver is as follows: there is a single open()
call at the start of the transformation, and a single
close() call at the end; and each evaluation
of an xsl:message instruction starts with
a startDocument() call and ends with
endDocument(). The startDocument()
event has a properties argument indicating
whether terminate="yes" was specified,
and the locationId on calls such
as startElement() and characters()
can be used to identify the location in
the stylesheet where the message data
originated (this is achieved by passing
the supplied locationId in a call to
getPipelineConfiguration().getLocator().getSystemId(locationId),
or to getLineNumber() on
the same object).Select the class
net.sf.saxon.event.MessageWarner
to have xsl:message output notified to the
JAXP ErrorListener, as described in the
JAXP documentation.

Using XSLT 2.0

106

-now:yyyy-mm-ddThh:mm:ss+hh:mm Sets the value of current-dateTime()
(and implicit-timezone()) for the
transformation. This is designed for testing, to
enable repeatable results to be obtained for
comparison with reference results, or to test that
stylesheets can handle significant dates and times
such as end-of-year processing.

-o:filename Send output to named file. In the absence of
this option, the results go to standard output. If
the source argument identifies a directory, this
option is mandatory and must also identify a
directory; on completion it will contain one output
file for each file in the source directory. If the
stylesheet writes secondary output files using
the xsl:result-document instruction; this
filename acts as the base URI for the href
attribute of this instruction. In the absence of this
option, secondary output files are written relative
to the current working directory. The file is
created if it does not already exist; any necessary
directories will also be created. If the file does
exist, it is overwritten (even if the transformation
fails); but not if the transformation produces no
principal result tree.

-opt:0...10 Set optimization level. The value is an integer
in the range 0 (no optimization) to 10 (full
optimization); currently all values other than 0
result in full optimization but this is likely to
change in future. The default is full optimization;
this feature allows optimization to be suppressed
in cases where reducing compile time is
important, or where optimization gets in the
way of debugging, or causes extension functions
with side-effects to behave unpredictably. (Note
however, that even with no optimization, lazy
evaluation may still cause the evaluation order to
be not as expected.)

-or:classname Use the specified OutputURIResolver
to process output URIs appearing in
the href attribute of xsl:result-
document. The OutputURIResolver is
a user-defined class that implements
the net.sf.saxon.OutputURIResolver
interface.

-outval:(recover|fatal) Normally, if validation of result documents is
requested, a validation error is fatal. Setting
the option -outval:recover causes such
validation failures to be treated as warnings. The
validation message is written both to the standard
error stream, and (where possible) as a comment
in the result document itself.

-p[:(on|off)] Use the PTreeURIResolver. This option is
available in Saxon-PE and Saxon-EE only. It
cannot be used in conjunction with the -r option,
and it automatically switches on the -u and -sa
options. The effect is twofold. Firstly, Saxon-

Using XSLT 2.0

107

specific file extensions are recognized in URIs
(including the URI of the source document on the
command line). Currently the only Saxon-specific
file extension is .ptree, which indicates that
the source document is supplied in the form of a
Saxon PTree. This is a binary representation of an
XML document, designed for speed of loading.
Secondly, Saxon-specific query parameters are
recognized in a URI. Currently the only query
parameter that is recognized is val. This may
take the values strict, lax, or strip. For
example, source.xml?val=strict loads a
document with strict schema validation.

-r:classname Use the specified URIResolver to process all
URIs. The URIResolver is a user-defined class,
that extends the net.sf.saxon.URIResolver class,
whose function is to take a URI supplied
as a string, and return a SAX InputSource.
It is invoked to process URIs used in the
document() function, in the xsl:include and
xsl:import elements, and (if -u is also specified) to
process the URIs of the source file and stylesheet
file provided on the command line.

-repeat:integer Performs the transformation N times, where N
is the specified integer. This option is useful for
performance measurement, since timings for the
first transformation are often dominated by Java
warm-up time.

-s:filename Identifies the source file or directory. Mandatory
unless the -it option is used. The source file
is parsed to create a tree, and the document
node of this tree acts as the initial context item
for the transformation.If the name identifies a
directory, all the files in the directory will be
processed individually. In this case the -o option
is mandatory, and must also identify a directory,
to contain the corresponding output files. A
directory must be specified as a filename, not as
a URL.The source-document can be specified as
"-" to take the source from standard input.

-sa Invoke a schema-aware transformation. Requires
Saxon-EE to be installed. This options is not
needed if either (a) another option implying
schema-awareness is present (for example -
val:strict) or (b) the stylesheet contains an
xsl:import-schema declaration.

-strip:(all|none|ignorable) Specifies what whitespace is to be stripped
from source documents (applies both to
the principal source document and to any
documents loaded for example using the
document() function. The default is none:
no whitespace stripping. Specifying all strips
all whitespace text nodes from source documents
before any further processing, regardless of
any xsl:strip-space declarations in the
stylesheet, or any xml:space attributes in

Using XSLT 2.0

108

the source document.Specifying ignorable
strips all ignorable whitespace text nodes
from source documents before any further
processing, regardless of any xsl:strip-
space declarations in the stylesheet, or any
xml:space attributes in the source document.
Whitespace text nodes are ignorable if they appear
in elements defined in the DTD or schema as
having element-only content.

-t Display version and timing information to the
standard error output. The output also traces the
files that are read and writing, and extension
modules that are loaded.

-T[:classname] Display stylesheet tracing information. This
traces execution of each instruction in the
stylesheet, so the output can be quite voluminous.
Also switches line numbering on for the source
document. If a classname is specified, it is
a user-defined class, which must implement
net.sf.saxon.trace.TraceListener. If the classname
is omitted, a system-supplied trace listener is
used.For performance profiling, set classname to
net.sf.saxon.trace.TimedTraceListener.
This creates an output file giving timings for
each instruction executed. This output file can
subsequently be analyzed to give an execution
time profile for the stylesheet. See Performance
Analysis.

-threads:N Used only when the -s option specifies a
directory. Controls the number of threads used
to process the files in the directory. Each
transformation runs in a single thread.

-TJ Switches on tracing of the binding of calls
to external Java methods. This is useful when
analyzing why Saxon fails to find a Java method
to match an extension function call in the
stylesheet, or why it chooses one method over
another when several are available.

-TP:filename This is equivalent to setting -
T:net.sf.saxon.trace.TimedTraceListener
and -traceout:filename; that is, it causes
trace profile information to be set to the specified
file. This output file can subsequently be analyzed
to give an execution time profile for the stylesheet.
See Performance Analysis.

-traceout:filename Indicates that the output of the trace()
function should be directed to a specified file.
Alternatively, specify #out to direct the output
to System.out, #err to send it to System.err (the
default), or #null to have it discarded. This option
is ignored when a trace listener is in use: in that
case, trace() output goes to the registered trace
listener.

-tree:(linked|tiny|tinyc) Selects the implementation of the internal tree
model. -tree:tiny selects the "tiny tree" model

Using XSLT 2.0

109

(the default). -tree:linked selects the linked tree
model. -tree:tinyc selects the "condensed tiny
tree" model. See Choosing a tree model.

-u Indicates that the names of the source document
and the stylesheet document are URLs; otherwise
they are taken as filenames, unless they start with
"http:" or "file:", in which case they are taken as
URLs

-val[:(strict|lax)] Requests schema-based validation of the source
file and of any files read using the document()
or similar functions. Validation is available
only with Saxon-EE, and this flag automatically
switches on the -sa option. Specify -val or -
val:strict to request strict validation, or -
val:lax for lax validation.

-versionmsg:(on|off) If versionmsg:off is specified, suppress version
warnings. This suppresses the warning message
that is normally issued (as required by the
W3C specification) when running an XSLT
2.0 processor against a stylesheet that specifies
version="1.0".

-warnings:(silent|recover|fatal) Indicates the policy for handling recoverable
errors in the stylesheet: silent means recover
silently, recover means recover after writing
a warning message to the system error output,
fatal means signal the error and do not attempt
recovery. (Note, this does not currently apply
to all errors that the XSLT recommendation
describes as recoverable). The default is
recover.

-x:classname Use specified SAX parser for source file and any
files loaded using the document() function. The
parser must be the fully-qualified class name of a
Java class that implements the org.xml.sax.Parser
or org.xml.sax.XMLReader interfaceOne use of
this option is to select an HTML parser such
as John Cowan's TagSoup rather than an XML
parser. In this case, the TagSoup JAR file must
be on the classpath, and the class name to use is
org.ccil.cowan.tagsoup.Parser.Another
common use is to specify
org.apache.xml.resolver.tools.ResolvingXMLReader.
This parser is provided by the Apache commons
project, and it customizes the default parser
by using an EntityResolver that resolves
external entity references (notable the reference
to an external DTD in a DOCTYPE declaration)
by reference to an OASIS catalog file. This can
be used to avoid repeated calls to external web
servers (such as the W3C server) for commonly
used DTDs such as the XHTML DTD.

-xi:(on|off) Apply XInclude processing to all input XML
documents (including schema and stylesheet
modules as well as source documents). This
currently only works when documents are parsed

Using XSLT 2.0

110

using the Xerces parser, which is the default in
JDK 1.5 and later.

-xmlversion:(1.0|1.1) If -xmlversion:1.1 is specified, allows
XML 1.1 and XML Namespaces 1.1 constructs.
This option must be set if source documents using
XML 1.1 are to be read, or if result documents
are to be serialized as XML 1.1. This option also
enables use of XML 1.1 constructs within the
stylesheet itself.

-xsd:file1;file2;file3... Loads additional schema documents. The
declarations in these schema documents are
available when validating source documents (or
for use by the validate{} expression). This
option may also be used to supply the locations
of schema documents that are imported into the
stylesheet, in the case where the xsl:import-
schema declaration gives the target namespace
of the schema but not its location.

-xsdversion:(1.0|1.1) If -xsdversion:1.1 is specified, allows
XML Schema 1.1 constructs such as assertions.
This option must be set if schema documents
using XML Schema 1.1 are to be read.

-xsiloc:(on|off) If set to "on" (the default) the schema
processor attempts to load any schema documents
referenced in xsi:schemaLocation
and xsi:noNamespaceSchemaLocation
attributes in the instance document, unless a
schema for the specified namespace (or non-
namespace) is already available. If set to "off",
these attributes are ignored.

-xsl:filename Specifies the file containing the principal
stylesheet module. Mandatory unless the -a option
or -c option is used. The value "-" identifies
the standard input stream. If the -u option is
specified then the value must be a URI rather than
a filename.

-xsltversion:(2.0|3.0) Determines whether an XSLT 2.0 processor or
XSLT 3.0 processor is to be used. By default the
value is taken from the version attribute of the
xsl:stylesheet element

-y:classname Use specified SAX parser for stylesheet file,
including any loaded using xsl:include or
xsl:import. The parser must be the fully-
qualified class name of a Java class that
implements the org.xml.sax.Parser or
org.xml.sax.XMLReader interface

--:value Set a feature defined in the Configuration
interface. The names of features are defined in the
Javadoc for class FeatureKeys [Javadoc:
net.sf.saxon.lib.FeatureKeys]: the
value used here is the part of the name after
the last "/", for example --allow-external-
functions:off. Only features accepting a
string or boolean may be set; for booleans the

Using XSLT 2.0

111

values true/false, on/off, yes/no, and 1/0 are
recognized.

-? Display command syntax

A takes the form name=value, being the name of the parameter, and the value of the parameter.
These parameters are accessible within the stylesheet as normal variables, using the $name syntax,
provided they are declared using a top-level xsl:param element. If there is no such declaration, the
supplied parameter value is silently ignored. If the xsl:param element has an as attribute indicating
the required type, then the string value supplied on the command line is cast to this type: this may
result in an error, for example if an integer is required and the supplied value cannot be converted
to an integer.

A preceded by a leading question mark (?) is interpreted as an XPath expression. For example, ?
time=current-dateTime() sets the value of the stylesheet parameter $time to the value of the
current date and time, as an instance of xs:dateTime, while ?debug=false() sets the value of
the parameter $debug to the boolean value false. If the parameter has a required type (for example
<xsl:param name="p" as="xs:date"/>), then the supplied value must be compatible with
this type according to the standard rules for converting variable values and function arguments. The
static context for this XPath expression includes only the standard namespaces conventionally bound
to the prefixes xs, fn, xsi, and saxon. The static base URI (used when calling the doc() function)
is the current directory. The dynamic context contains no context item, position, or size, and no
variables.

A preceded by a leading exclamation mark (!) is interpreted as an output parameter. For
example, !indent=yes requests indented output. This is equivalent to specifying the attribute
indent="yes" on an xsl:output declaration in the stylesheet. An output parameter specified on
the command line overrides one specified within the stylesheet. For parameters doctype-system,
doctype-public, and saxon:next-in-chain, a zero-length value is treated as "absent", that
is, the effect is to cancel any value that was set within the stylesheet.

If you are using the bash shell, you will need to escape "!" as "\!".

A preceded by a leading plus sign (+) is interpreted as a filename or directory. The content of the
file is parsed as XML, and the resulting document node is passed to the stylesheet as the value of the
parameter. If the parameter value is a directory, then all the immediately contained files are parsed
as XML, and the resulting sequence of document nodes is passed as the value of the parameter.
For example, +lookup=lookup.xml sets the value of the stylesheet parameter lookup to the
document node at the root of the tree representing the parsed contents of the file lookup.xml.

Under most operating systems it is possible to supply a value containing spaces by enclosing it in
double quotes, for example name="John Smith". This is a feature of the operating system shell,
not something Saxon does, so it may not work the same way under every operating system or command
processor. (In the jEdit console plugin, for example, it has to be written as "name=John Smith")

If the parameter name is in a non-null namespace, the parameter can be given a value using the
syntax {uri}localname=value. Here uri is the namespace URI of the parameter's name, and
localname is the local part of the name.

This applies also to output parameters. For example, you can set the indentation level to 4 by using
the parameter !{http://saxon.sf.net/}indent-spaces=4. In this case, however, lexical
QNames using the prefix "saxon" are also recognized, for example !saxon:indent-spaces=4.
See also Additional serialization parameters.

If the -a option is used, the name of the stylesheet is omitted. The source document must contain
a <?xml-stylesheet?> processing instruction before the first element start tag; this processing
instruction must have a pseudo-attribute href that identifies the relative or absolute URL of the
stylsheet document, and a pseudo-attribute type whose value is text/xml, application/xml,
or text/xsl. For example:

Using XSLT 2.0

112

<?xml-stylesheet type="text/xsl" href="../style3.xsl" ?>

It is also possible to refer to a stylesheet embedded within the source document, provided it has an id
attribute and the id attribute is declared in the DTD as being of type ID. For example:

<?xml-stylesheet type="text/xsl" href="#style1" ?>
<!DOCTYPE BOOKLIST SYSTEM "books.dtd"
 <!ATTLIST xsl:transform id ID #IMPLIED>
<
<BOOKLIST>
 ...
 <xsl:transform id="style1" version="1.0" xmlns:xsl="...">
 ...
 </xsl:transform>
</BOOKLIST>

Compiling a Stylesheet
The facility to "compile" a stylesheet to a binary disk representation (the CompileStylesheet
command and the -c option of net.sf.saxon.Transform) has been dropped with effect from
Saxon 9.4.

Saxon now generates Java bytecode automatically when stylesheets are processed, but the bytecode
cannot be saved to disk, because it is integrated with interpreted data structures representing the
executable stylesheet.

The performance boost achieved by bytecode generation is variable; 25% is typical. The constructs
that benefit the most are those where the expression tree contains many constructs that are relatively
cheap in themselves, such as type conversion, comparisons, and arithmetic. This is because the saving
from bytecode generation is mainly not in the cost of performing primitive operations, but in the cost
of deciding which operations to perform: so the saving is greater where the number of operations is
high relative to their average cost.

There are configuration options to suppress bytecode generation
(FeatureKeys.GENERATE_BYTE_CODE), to insert debugging logic into the generated
bytecode (FeatureKeys.DEBUG_BYTE_CODE), and to display the generated bytecode
(FeatureKeys.DISPLAY_BYTE_CODE)

A new facility for distributing an obfuscated stylesheet is available (this was the main use case for
compiled stylesheets, since there were negligible performance benefits). This is described in the next
section.

Packaged Stylesheets
A new facility is available in Saxon 9.4 allowing an XSLT stylesheet to be distributed to users in a
format such that the source code of the stylesheet is not readily visible. Creating a packaged stylesheet
requires Saxon-PE or Saxon-EE; running the stylesheet only requires Saxon-HE, provided that it only
uses features that are available with Saxon-HE.

This feature is not currently available on .NET

The stylesheet is distributed in the form of a ZIP file; the format of the content is not strongly encrypted,
but requires non-trivial effort to decompile. The ZIP package contains all the stylesheet modules that
are needed.

Using XSLT 2.0

113

To create the package for distribution, use the following command:

java com.saxonica.ptree.StylesheetPackager stylesheet.xsl package.zip

where stylesheet.xsl is the principal stylesheet module, and package.zip is the output file
containing the packaged stylesheet.

Running the stylesheet requires both the normal Saxon executable JAR file (HE or higher), and also the
JAR file saxon9-unpack.jar which is included as standard in each Saxon edition. This contains
Saxonica-proprietary code issued in compiled form only (not open source), but it does not require a
license key to run. To run the stylesheet, use a command such as the following (on a single line):

java -cp saxon9he.jar;saxon9-unpack.jar net.sf.saxon.Transform -xsl:package.zip -s:source.xml
-r:com.saxonica.ptree.PackageURIResolver -u:on

In this command, the -r option sets a URIResolver that has the task of retrieving obfuscated stylesheet
modules from the ZIP file, and the -u option ensures that this URIResolver is used for the main
stylesheet module (here package.zip) as well as for resolving xsl:include and xsl:import
references between modules.

Limitations
Some care is needed with operations that depend on the static base URI. This is interpreted as the
location of the packaged stylesheet at the time it is executed, not the original location at the time it
was compiled. However, there is no limitation on the URIs that can be used in xsl:include and
xsl:import declarations - the original URIs appearing in the source code will be replaced with
references to the obfuscated modules within the generated ZIP file.

Use of the document('') function to access the source stylesheet is best avoided.

There is no special handling of schema documents referenced by the stylesheet. The packaged
stylesheet does not include any imported schema; this must be distributed separately. The version of
the schema used for validating documents at run-time must be consistent with the version used for
compiling the stylesheet.

Running Saxon XSLT Transformations from
Ant

It is possible to run a Saxon transformation from Ant using the standard xslt task [http://ant.apache.org/
manual/CoreTasks/style.html], by using the trax processor and with an appropriate classpath
that forces Saxon to be selected. This can now be used to provide the ability to take advantage of the
full range of capabilities offered by XSLT 2.0 in general and Saxon in particular (for example, schema
aware processing and multiple output files).

The custom Ant task developed for earlier Saxon releases is not being further developed, although
it remains available. It is no longer issued as an intrinsic part of the Saxon product, but
can be downloaded as a separate package from SourceForge: see https://sourceforge.net/project/
showfiles.php?group_id=29872. For information, see the documentation accompanying Saxon 9.2 or
earlier releases.

Saxon-specific configuration options can be specified using the attribute child of the factory
element. For example, the following switches on Saxon tracing (the equivalent of the -T option on
the command line):

 <factory name="net.sf.saxon.TransformerFactoryImpl">
 <attribute name="http://saxon.sf.net/feature/traceListenerClass"
 value="net.sf.saxon.trace.XSLTTraceListener"/>

http://ant.apache.org/manual/CoreTasks/style.html
http://ant.apache.org/manual/CoreTasks/style.html
http://ant.apache.org/manual/CoreTasks/style.html
https://sourceforge.net/project/showfiles.php?group_id=29872
https://sourceforge.net/project/showfiles.php?group_id=29872

Using XSLT 2.0

114

 </factory>

For a full list of feature names, see the Javadoc documentation of class
net.sf.saxon.FeatureKeys.

With Saxon-PE and Saxon-EE it is possible to get detailed control of the configuration by specifying
the name of a Saxon configuration file using this mechanism, for example:

 <factory name="com.saxonica.config.EnterpriseTransformerFactory">
 <attribute name="http://saxon.sf.net/feature/configuration-file"
 value="config-de.xml"/>
 </factory>

In this case this must be the first attribute.

The initial template and initial mode for the transformation can be specified using the attribute names
http://saxon.sf.net/feature/initialTemplate and http://saxon.sf.net/
feature/initialMode respectively. The value is a QName in Clark notation (that is
{uri}local).

Note that names in Clark notation may also be used for the qualified names of stylesheet parameters
and serialization options.

Note that an Ant transformation always has an input file. If necessary, a dummy file can be specified.

There is a history of bugs in successive releases of Ant that mean not all these features work in every
Ant version. In particular, the classpath attribute of the xslt task element has been unreliable:
the safest approach is to ensure that the Jar files needed to run Saxon are present on the externally-
specified classpath (the classpath at the point where Ant is invoked), rather than relying on the task-
specific classpath.

Invoking XSLT from an application
Rather than using the XSLT interpreter from the command line, you may want to include it in your
own application, perhaps one that enables it to be used within an applet or servlet. If you run the
interpreter repeatedly, this will always be much faster than running it each time from a command line.

There are several APIs you can use to invoke Saxon's XSLT processor from an application.

The JAXP interface (Java)
On the Java platform, Saxon incorporates support for the standard JAXP transformation API [http://
jaxp.java.net/] (originally known as TrAX). This is compatible with the API for invoking other XSLT
processors such as Xalan and Oracle.

This API is described in the documentation provided with JDK 1.5 and later. It is available
online at http://download.oracle.com/javase/6/docs/api/ Look for the javax.xml.transform [http://
download.oracle.com/javase/6/docs/api/javax/xml/transform/package-summary.html] package.

The s9api interface (Java)
Alternatively, you can use Saxon's own interface. This is designed to provide an integrated approach to
XML processing across the different range of languages supported by Saxon; unlike JAXP, it includes
support for XSLT 2.0 capabilities, and it also takes advantage of generics in Java 5.

The Saxon.Api interface (.NET)

http://jaxp.java.net/
http://jaxp.java.net/
http://jaxp.java.net/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/javax/xml/transform/package-summary.html
http://download.oracle.com/javase/6/docs/api/javax/xml/transform/package-summary.html
http://download.oracle.com/javase/6/docs/api/javax/xml/transform/package-summary.html

Using XSLT 2.0

115

Links
• Using s9api for Transformations

• Using JAXP for Transformations

Using s9api for Transformations
You can perform a transformation using the s9api interface as follows:

1. Create a Processor (net.sf.saxon.s9api.Processor) and set any global configuration
options on the Processor.

2. Call newXsltCompiler() to create an XSLT Compiler, and set any options that are local to a
specific compilation (for example, the destination of error messages).

3. Call the compile() method to compile a stylesheet. The result is an XsltExecutable, which
can be used as often as you like in the same thread or in different threads.

4. To run a transformation, call the load() method on the XsltExecutable. This creates an
XsltTransformer. The XsltTransformer can be serially reused, but it must not be shared
across multiple threads. Set any options required for the specific transformation (for example,
the initial context node, the stylesheet parameters, and the destination for the results of the
transformation), and then call the transform() method to run the transformation.

The output of the transformation is specified as a Destination object, which allows a wide range
of possibilities: you can send the output to a serializer, or to a SAX ContentHandler. You can build
a tree either in Saxon's native format (represented by the s9api class XdmNode) or as a DOM. You
can send the output to be validated against a schema by nominating a SchemaValidator as the
destination, or you can pipe it through another transformation, because XsltTransformer itself
implements the Destination interface.

Examples of s9api transformations are included in the Saxon resources file, see module .

Using JAXP for Transformations
This API is described in the documentation provided with JDK 1.5 and later. It is available
online at http://download.oracle.com/javase/6/docs/api/ Look for the javax.xml.transform [http://
download.oracle.com/javase/6/docs/api/javax/xml/transform/package-summary.html] package.

More information and examples relating to the JAXP transformation API can be found in the example
application found in the samples directory.

The class name for the JAXP TransformerFactory depends on which Saxon edition you are
using:

• net.sf.saxon.TransformerFactoryImpl [Javadoc:
net.sf.saxon.TransformerFactoryImpl]

• com.saxonica.config.ProfessionalTransformerFactory [Javadoc:
com.saxonica.config.ProfessionalTransformerFactory]

• com.saxonica.config.EnterpriseTransformerFactory [Javadoc:
com.saxonica.config.EnterpriseTransformerFactory]

Note that as an alternative to using TransformerFactory.newInstance() to find Saxon
dynamically on the class path, it is possible (and much faster, and more robust) to instantiate the Saxon
TransformerFactory directly, by a call such as TransformerFactory factory = new
com.saxonica.config.ProfessionalTransformerFactory()

http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/javax/xml/transform/package-summary.html
http://download.oracle.com/javase/6/docs/api/javax/xml/transform/package-summary.html
http://download.oracle.com/javase/6/docs/api/javax/xml/transform/package-summary.html

Using XSLT 2.0

116

The types of object that can be supplied as stylesheet parameters are not defined in the JAXP
specification: they are implementation-dependent. Saxon takes the Java object supplied, and converts
it to an XPath value using the same rules as it applies for the return value from a Java extension
function: for these rules, see Saxon Extensibility. If the resulting value is an atomic value, it is cast
to the required type of the parameter as specified in the xsl:param declaration, using the XPath
casting rules. If the value is non-atomic (for example, if it is a node, or a sequence of integers), then
no conversion is attempted, instead, the value must match the required type as stated.

The JAXP TransformerFactory interface provides a configuration method setAttribute()
for setting implementation-defined configuration parameters. The parameters supported by Saxon
have names defined by constants in the class net.sf.saxon.FeatureKeys. The names of these
properties and their meanings, are described in Configuration Features.

Where the required value of a property is a Boolean, the supplied value may be either a
java.lang.Boolean, or a String holding the values "true" or "false" (also accepted are "on"|"off",
"1"|"0", or "yes"|"no"). The returned value of the property, however, will be a Boolean.

Saxon's implementation of the JAXP Transformer interface is the class
net.sf.saxon.Controller [Javadoc: net.sf.saxon.Controller]. This provides
a number of options beyond those available in the standard JAXP interface, for example the ability
to set an output URI resolver for secondary output documents, and a method to set the initial mode
before the transformation starts. You can access these methods by casting the Transformer to a
Controller. The methods are described in the JavaDoc documentation supplied with the product.

When using the JAXP interface, you can set serialization properties using
a java.util.Properties object. The names of the core XSLT 1.0
properties, such as method, encoding, and indent, are defined in the
JAXP class javax.xml.transform.OutputKeys. Additional properties, including
Saxon extensions and XSLT 2.0 extensions, have names defined by
constants in the class net.sf.saxon.lib.SaxonOutputKeys [Javadoc:
net.sf.saxon.lib.SaxonOutputKeys]. The values of the properties are exactly as you
would specify them in the xsl:output declaration, except that QNames are written in Clark
notation ({uri}local).

Performance Analysis
Saxon comes with a simple tool allowing profiling of the execution time in a stylesheet.

To run this tool, first execute the transformation with the -TP:filename option, which will gather
timed tracing information and create a profile report to the specified file (or to the standard error output
if no filename is given)

java -jar /saxon9he.jar -TP:profile.html

Then view the resulting profile.html file in your browser.

The output identifies templates and functions in the original stylesheet by their name or match pattern,
line number, and the last few characters of the URI of their module. For each instruction it gives the
number of times the instruction was executed, the average time in milliseconds of each execution, and
the total time. Timings are given both gross (the time for a template including all the templates it calls
recursively), and net (the time in a template excluding time in its called templates). The table is sorted
according to a weighting function that attempts to put the dominant functions and templates at the top.
These will not necessarily be those with the greatest time, which tend to be instructions that were only
executed once but remained active for the duration of the transformation.

XSLT 3.0 Support
Saxon 9.4 adds further support for a number of features defined in the draft XSLT 3.0 specification
(previously known as XSLT 2.1) that were introduced in Saxon 9.3. It must be noted that this is an

Using XSLT 2.0

117

early working draft, and everything is subject to change. If the W3C specification changes, Saxon will
change to match, without regards to backwards compatibility. Use it at your own risk.

All these features require at least Saxon-PE. Streaming requires Saxon-EE.

XSLT 3.0 support must be explicitly enabled, for example by specifying version="3.0" in the
stylesheet or by using the option -xsltversion:3.0 on the command line. It can also be enabled
from the configuration file or using methods in the API (for example, on the s9api XsltCompiler
object).

For details of the features implemented in the current Saxon release, see XSLT 3.0 Conformance. Full
details of these features are in the W3C XSLT and XPath specifications; but summary information
about some of them can be found here:

• Functions

• XSLT Elements

• XPath 3.0 Expressions

• Maps in XPath 3.0

118

Chapter 6. Using XQuery
Introduction

This section describes how to use Saxon as an XQuery processor, either from the command line, or
from the Java API.

For details of the .NET API, see Saxon API for .NET

For information about the conformance of Saxon to the XQuery 1.0 and XQuery 3.0 specifications,
and about the handling of implementation-defined features of the specifications, see Conformance.

Saxon uses the same run-time engine to support both XQuery and XSLT, reflecting the fact that the two
languages have very similar semantics. Most of the compile-time code (in particular, the type checking
logic and the optimizer) is also common. The XQuery support in Saxon consists essentially of an
XQuery parser (which is itself an extension of the XPath parser); the parser generates the same internal
interpretable code as the XSLT processor. There are also some constructs in the internal expression tree
that will only be generated from XQuery source rather than XSLT source; examples are the XQuery
order by and group by clauses, which have no direct XSLT equivalent.

The XQuery processor may be invoked either from the operating system command line, or via an API
from a user-written application. There is no graphical user interface provided.

Saxon is an in-memory processor. Unless you can take advantage of streaming, Saxon is designed
to process source documents that fit in memory. Saxon has been used successfully to process source
documents of 100Mbytes or more without streaming, but if you attempt anything this large, you need
to be aware (a) that you will need to allocate sufficient memory to the Java VM (at least 5 times the
size of the source document), and (b) that complex FLWOR expressions may be very time-consuming
to execute. (In this scenario, Saxon-EE is recommended, because it has a more powerful optimizer
for complex joins).

The memory available in the Java heap is controlled using the -Xmx option on the command
line, for example java -Xmx1024m net.sf.saxon.Query ... allocates 1Gb.

Running XQuery from the Command Line
A command is available to run a query contained in a file. The form of command on the Java platform
is:

java net.sf.saxon.Query [options] -q:queryfile []

On the .NET platform, the command is simply:

Query [options] -q:queryfile []

The options must come first, then the params. If the last option before the params has no leading
hyphen and option letter then it is recognized as the -q option.

The options are as follows (in any order). Square brackets indicate an optional value.

Table 6.1.

-backup:(on|off) Only relevant when -update:on is specified.
Default is on. When backup is enabled, any file
that is updated by the query will be preserved in its
original state by renaming it, adding ".bak" to the

Using XQuery

119

original filename. If backup is disabled, updated
files will be silently overwritten.

-catalog:filenames is either a file name or a list of file names
separated by semicolons; the files are OASIS
XML catalogs used to define how public
identifiers and system identifiers (URIs) used
in a source document, query, or schema are to
be redirected, typically to resources available
locally. For more details see Using XML
Catalogs.

-config:filename Indicates that configuration information should be
taken from the supplied configuration file. Any
options supplied on the command line override
options specified in the configuration file.

-cr:classname Use the specified CollectionURIResolver
to process collection URIs passed
to the collection() function.
The CollectionURIResolver is a user-
defined class that implements the
CollectionURIResolver [Javadoc:
>net.sf.saxon.lib.CollectionURIResolver]
interface.

-dtd:(on|off|recover) Setting -dtd:on requests DTD-based validation
of the source file and of any files read using the
document() function. Requires an XML parser
that supports validation. The setting -dtd:off
(which is the default) suppresses DTD validation.
The setting -dtd:recover performs DTD
validation but treats the error as non-fatal if it fails.
Note that any external DTD is likely to be read
even if not used for validation, because DTDs can
contain definitions of entities.

-expand:(on|off) Normally, if validation using a DTD or Schema is
requested, any fixed or default values defined in
the DTD or schema will be expanded. Specifying
-expand:off suppresses this. (In the case of DTD-
defined defaults, this might not work with all
XML parsers. It does work with the Xerces
parser (default for Java) and the Microsoft parser
(default for .NET))

-explain[:filename] Display a query execution plan. This is a
representation of the expression tree after
rewriting by the optimizer. If no file name is
specified the output is sent to the standard error
stream. The output is a tree in XML format.

-ext:(on|off) If ext:off is specified, suppress calls on
dynamically-loaded external Java functions. This
does not affect calls on integrated extension
functions, including Saxon and EXSLT extension
functions. This option is useful when loading
an untrusted query, perhaps from a remote site
using an http:// URL; it ensures that the
query cannot call arbitrary Java methods and
thereby gain privileged access to resources on
your machine.

Using XQuery

120

-init:initializer The value is the name of a user-
supplied class that implements the
interface Initializer [Javadoc:
net.sf.saxon.lib.Initializer]; this
initializer will be called during the initialization
process, and may be used to set any options
required on the Configuration programmatically.
It is particularly useful for such tasks as
registering extension functions, collations, or
external object models, especially in Saxon-HE
where the option does not exist to do this via a
configuration file.

-l[:(on|off)] If -l or -l:on is specified, causes line
and column numbers to be maintained
for source documents. These are accessible
using the extension functions saxon:line-
number() and saxon:column-number().
Line numbers are useful when the purpose of the
query is to find errors or anomalies in the source
XML file. Without this option, line numbers
are available while source documents are being
parsed and validated, but they are not retained in
the tree representation of the document.

-mr:classname Use the specified ModuleURIResolver to process
all query module URIs. The ModuleURIResolver
is a user-defined class that implements
the ModuleURIResolver [Javadoc:
net.sf.saxon.lib.ModuleURIResolver]
interface. It is invoked to process URIs used in
the import module declaration in the query
prolog, and (if -u is also specified, or if the file
name begins with "http:" or "file:") to process
the URI of the query source file provided on the
command line.

-o:filename Send output to named file. In the absence of
this option, the results go to standard output.
The output format depends on whether the -wrap
option is present. The file is created if it does not
already exist; any necessary directories will also
be created. If the file does exist, it is overwritten
(even if the query fails).

-opt:0...10 Set optimization level. The value is an integer
in the range 0 (no optimization) to 10 (full
optimization); currently all values other than 0
result in full optimization but this is likely to
change in future. The default is full optimization;
this feature allows optimization to be suppressed
in cases where reducing compile time is
important, or where optimization gets in the
way of debugging, or causes extension functions
with side-effects to behave unpredictably. (Note
however, that even with no optimization, lazy
evaluation may still cause the evaluation order to
be not as expected.)

-outval:(recover|fatal) Normally, if validation of result documents is
requested, a validation error is fatal. Setting

Using XQuery

121

the option -outval:recover causes such
validation failures to be treated as warnings. The
validation message is written both to the standard
error stream, and (where possible) as a comment
in the result document itself.

-p[:(on|off)] Use the PTreeURIResolver. This option is
available in Saxon-EE only. It cannot be used
in conjunction with the -r option, and it
automatically switches on the -u option. The
effect is twofold. Firstly, Saxon-specific file
extensions are recognized in URIs (including the
URI of the source document on the command
line). Currently the only Saxon-specific file
extension is .ptree, which indicates that the
source document is supplied in the form of a
Saxon PTree. This is a binary representation
of an XML document, designed for speed
of loading. Secondly, Saxon-specific query
parameters are recognized in a URI. Currently
the only query parameter that is recognized
is val. This may take the values strict,
lax, or strip. For example, source.xml?
validation=strict loads a document with
strict schema validation.

-pipe:(push|pull) Execute query internally in push or pull mode.
Default is push. This may give performance
advantages for certain kinds of query, especially
queries that construct intermediate trees in
memory. In practice when the output is serialized
there is usually little difference, and the option is
there mainly for testing.

-projection:(on|off) Use (or don't use) document projection.
Document Projection is a mechanism that
analyzes a query to determine what parts of a
document it can potentially access, and then while
building a tree to represent the document, leaves
out those parts of the tree that cannot make any
difference to the result of the query. Requires
Saxon-EE.

-q:queryfile Identifies the file containing the query. The file
can be specified as "-" to read the query from
standard input. If this is the last option then the "-
q:" prefix may be omitted.

-qs:querystring Allows the query to be specified inline
(if it contains spaces, you will need
quotes around the expression to keep the
command line processor happy). For example
java net.sf.saxon.Query -
qs:doc('a.xml')//p[1] selects elements
within the file a.xml in the current directory.

-qversion:(1.0|3.0) Specifies the XQuery language version supported.
Default is "1.0". The value "3.0" is currently only
available with Saxon-EE. It supports a fairly small
subset of the features from the draft XQuery 3.0

Using XQuery

122

specification (originally published as XQuery 1.1
but due to be renamed).

-r:classname Use the specified URIResolver to process
all URIs. The URIResolver is a user-defined
class, that implements the URIResolver interface
defined in JAXP, whose function is to take a
URI supplied as a string, and return a SAX
InputSource. It is invoked to process URIs used
in the doc() function, and (if -u is also specified)
to process the URI of the source file provided on
the command line.

-repeat:integer Performs the transformation N times, where N
is the specified integer. This option is useful for
performance measurement, since timings for the
first few runs of the query are often dominated by
Java warm-up time.

-s:filename-or-URI Take input from the specified file. If the -u
option is specified, or if the name begins with
"file:" or "http:", then the name is assumed to
be a URI rather than a filename. This file must
contain an XML document. The document node
of the document is made available to the query
as the context item. The source document can be
specified as "-" to take the source from standard
input.

-sa Invoke a schema-aware query. Requires Saxon-
EE to be installed.

-strip:(all|none|ignorable) Specifies what whitespace is to be stripped from
source documents (applies both to the principal
source document and to any documents loaded for
example using the doc() function. The default is
none: no whitespace stripping.

-t Display version and timing information to the
standard error output. The output also traces the
files that are read and written, and extension
modules that are loaded.

-T[:classname] Notify query tracing information. Also
switches line numbering on for the source
document. If a classname is specified,
it is a user-defined class, which must
implement TraceListener [Javadoc:
net.sf.saxon.lib.TraceListener]. If
the classname is omitted, a system-supplied trace
listener is used. This traces execution of function
calls to the standard error output.

-TJ Switches on tracing of the binding of calls
to external Java methods. This is useful when
analyzing why Saxon fails to find a Java method
to match an extension function call in the
stylesheet, or why it chooses one method over
another when several are available.

-traceout:filename Indicates that the output of the trace()
function should be directed to a specified file.
Alternatively, specify #out to direct the output

Using XQuery

123

to System.out, #err to send it to System.err (the
default), or #null to have it discarded. This option
is ignored when a trace listener is in use: in that
case, trace() output goes to the registered trace
listener.

-tree:(linked|tiny|tinyc) Selects the implementation of the internal tree
model. -tree:tiny selects the "tiny tree" model
(the default). -tree:linked selects the linked tree
model. -tree:tinyc selects the "condensed tiny
tree" model. See Choosing a tree model.

-u Indicates that the name of the source document is
a URI; otherwise it is taken as a filename, unless
it starts with "http:" or "file:", in which case they
it is taken as a URL.

-update:(on|off|discard) Indicates whether XQuery Update syntax is
accepted. This option requires Saxon-EE. The
value "on" enables XQuery update; any elegible
files updated by the query are written back to
filestore. A file is eligible for updating if it
was read using the doc() or collection()
functions using a URI that represents an
updateable location. The context document
supplied using the -s option is eligible for
updating. The default value "off" disables update
(any use of XQuery update syntax is an error). The
value "discard" allows XQuery Update syntax,
but modifications made to files are not saved in
filestore. If the document supplied in the -s option
is updated, the updated document is serialized
as the result of the query (writing it to the -
o destination); updates to any other documents
are simply discarded.Use of the -t option is
recommended: it gives feedback on which files
have been updated by the query.

-val[:(strict|lax)] Requests schema-based validation of the source
file and of any files read using the doc() function.
This option is available only with Saxon-EE,
and it automatically switches on the -sa option.
Specify -val or -val:strict to request strict
validation, or -val:lax for lax validation.

-wrap Wraps the result sequence in an XML element
structure that indicates the type of each node
or atomic value in the query result. This format
can handle any type of query result. In the
absence of this option, the command effectively
wraps a document{} constructor around the
supplied query, so that the result is a single XML
document, which is then serialized. This will fail
if the query result includes constructs that cannot
be added to a document node in this way, notably
free-standing attribute nodes.

-x:classname Use specified SAX parser for source file and any
files loaded using the document() function. The
parser must be the fully-qualified class name of a

Using XQuery

124

Java class that implements the org.xml.sax.Parser
or org.xml.sax.XMLReader interface

-xi:(on|off) Apply XInclude processing to all input XML
documents (including schema documents as well
as source documents). This currently only works
when documents are parsed using the Xerces
parser, which is the default in JDK 1.5 and later.

-xmlversion:(1.0|1.1) If -xmlversion:1.1 is specified, allows
XML 1.1 and XML Namespaces 1.1 constructs.
This option must be set if source documents using
XML 1.1 are to be read, or if result documents
are to be serialized as XML 1.1. This option also
enables use of XML 1.1 constructs within the
stylesheet itself.

-xsd:file1;file2;file3... Loads additional schema documents. The
declarations in these schema documents are
available when validating source documents (or
for use by the validate{} expression). This
option may also be used to supply the locations
of schema documents that are imported into the
query, in the case where the import schema
declaration gives the target namespace of the
schema but not its location.

-xsdversion:(1.0|1.1) If -xsdversion:1.1 is specified, allows
XML Schema 1.1 constructs such as assertions.
This option must be set if schema documents
using XML Schema 1.1 are to be read.

-xsiloc:(on|off) If set to "on" (the default) the schema
processor attempts to load any schema documents
referenced in xsi:schemaLocation
and xsi:noNamespaceSchemaLocation
attributes in the instance document, unless a
schema for the specified namespace (or non-
namespace) is already available. If set to "off",
these attributes are ignored.

--:value Set a feature defined in the Configuration
interface. The names of features are defined in
Configuration Features: the value used here is the
part of the name after the last "/", for example --
allow-external-functions:off. Only
features accepting a string or boolean may be set;
for booleans the values true/false, on/off, yes/no,
and 1/0 are recognized.

-? Display command syntax

A takes the form name=value, being the name of the parameter, and the value of the parameter.
These parameters are accessible within the query as external variables, using the $name syntax,
provided they are declared in the query prolog. If there is no such declaration, the supplied parameter
value is silently ignored.

A preceded by a leading question mark (?) is interpreted as an XPath expression. For example, ?
time=current-dateTime() sets the value of the external variable $time to the value of the
current date and time, as an instance of xs:dateTime, while ?debug=false() sets the value of
the variable $debug to the boolean value false. If the parameter has a required type (for example
declare variable $p as xs:date external;), then the supplied value must be
compatible with this type according to the standard rules for converting function arguments (it doesn't

Using XQuery

125

need to satisfy the stricter rules that apply to variable initialization). The static context for the XPath
expression includes only the standard namespaces conventionally bound to the prefixes xs, fn, xsi,
and saxon. The static base URI (used when calling the doc() function) is the current directory. The
dynamic context contains no context item, position, or size, and no variables.

A preceded by a leading plus sign (+) is interpreted as a filename or directory. The content of the
file is parsed as XML, and the resulting document node is passed to the stylesheet as the value of the
parameter. If the parameter value is a directory, then all the immediately contained files are parsed
as XML, and the resulting sequence of document nodes is passed as the value of the parameter. For
example, +lookup=lookup.xml sets the value of the external variable lookup to the document
node at the root of the tree representing the parsed contents of the file lookup.xml.

A preceded by a leading exclamation mark (!) is interpreted as a serialization parameter. For
example, !indent=yes requests indented output, and !encoding=iso-8859-1 requests that
the serialized output be in ISO 8859/1 encoding. This is equivalent to specifying the option
declaration declare option saxon:output "indent=yes"; or declare option
saxon:output "encoding=iso-8859-1"; in the query prolog.

If you are using the bash shell, you will need to escape "!" as "\!".

Under Windows, and some other operating systems, it is possible to supply a value containing spaces
by enclosing it in double quotes, for example name="John Smith". This is a feature of the
operating system shell, not something Saxon does, so it may not work the same way under every
operating system.

If the parameter name is in a non-null namespace, the parameter can be given a value using the
syntax {uri}localname=value. Here uri is the namespace URI of the parameter's name, and
localname is the local part of the name.

This applies also to output parameters. For example, you can set the indentation level to 4 by using
the parameter !{http://saxon.sf.net/}indent-spaces=4. In this case, however, lexical
QNames using the prefix "saxon" are also recognized, for example !saxon:indent-spaces=4.
For the extended set of output parameters supported by Saxon, see Additional serialization parameters.

Running Queries from a Java Application
Saxon offers three different APIs allowing queries to be run from Java:

• The XQJ interface is an implementation of the XQuery API for Java (XQJ) interface defined in
JSR-225

• The s9api interface is a Saxon-specific interface allowing integrated access to all Saxon's XML
processing capabilities in a uniform way, taking advantage of the type safety offered by generics
in Java 5

• There is also a legacy interface retained from previous Saxon releases, which
may be appropriate if you need access to lower-level Saxon internals. This is
described only in the JavaDoc: start at StaticQueryContext [Javadoc:
net.sf.saxon.query.StaticQueryContext].

Links
• Using s9api for XQuery

• Invoking XQuery using the XQJ API

Using s9api for XQuery
You can perform a query using the s9api interface as follows:

Using XQuery

126

1. Create a Processor [Javadoc: net.sf.saxon.s9api.Processor]) and set any
global configuration options on the Processor.

2. Optionally, build the source document by calling newDocumentBuilder() to create a
document builder, setting appropriate options, and then calling the build() method. This returns
an XdmNode [Javadoc: net.sf.saxon.s9api.XdmNode] which can be supplied as
input to the query either as the context item, or as the value of an external variable.

3. Call newXQueryCompiler() to create an XQuery Compiler. Then set any options that are local
to a specific compilation (for example, the destination of error messages, the base URI, or the
character encoding of the query text).

4. Call one of the compile() methods to compile a query. The result is an XQueryExecutable,
which can be used as often as you like in the same thread or in different threads.

5. To run a query, call the load() method on the XQueryExecutable. This creates an
XQueryEvaluator [Javadoc: net.sf.saxon.s9api.XQueryEvaluator]. The
XQueryEvaluator can be serially reused, but it must not be shared across multiple threads.
Set any options required for the specific query execution (for example, the initial context node,
the values of external variables, and the destination for the query result), and then call either the
iterator() or the run() method to execute the query.

6. Because the XQueryEvaluator is an Iterable, it is possible to iterate over the results directly
using the Java 5 "for-each" construct.

The output of the query may be retrieved as an iterator over a sequence of items, or it may is specified as
a Destination [Javadoc: net.sf.saxon.s9api.Destination] object, which allows
a wide range of possibilities: you can send the output to a serializer, or to a SAX ContentHandler. You
can build a tree either in Saxon's native format (represented by the s9api class XdmNode) or as a DOM.
You can send the output to be validated against a schema by nominating a SchemaValidator
[Javadoc: net.sf.saxon.s9api.SchemaValidator] as the destination, or you
can pipe it through an XSLT transformation, because XsltTransformer [Javadoc:
net.sf.saxon.s9api.XsltTransformer] also implements the Destination interface.

Examples of s9api queries are included in the Saxon resources file, see module S9APIExamples.java.

Separate compilation of library modules

Under Saxon-EE, it is possible to compile library modules separately from the main module. This
reduces the compilation time and memory usage when the same library module is imported by many
main modules for different queries. A method compileLibrary() (with a number of overloaded
variants supplying the input in different ways) is provided in the XQueryCompiler class; any library
module compiled using this method will be available to all subsequent compilations using the same
XQueryCompiler. To import the module, simply use import module specifying the module
URI in the normal way. It is not necessary to supply a module location hint (at "URI"), and if any
is supplied, it will be ignored.

Invoking XQuery using the XQJ API
XQJ (XQuery API for Java, also known as JSR 225) is a vendor-neutral API for invoking XQuery from
Java applications. The Final Release (1.0) is published at http://jcp.org/en/jsr/detail?id=225. Saxon
includes a complete and conformant implementation of this API.

For information on how to use the API, please see the JSR 225 documentation.

XQJ has many similarities with JDBC, and its general style is that of a client-server API in which the
application opens a "connection" to a database. This of course does not fit the Saxon in-process model
particularly well; on the other hand, apart from the terminology and the use of some methods (such
as the ability to set a connection timeout) that make little sense in a Saxon context, the API works
equally well in an environment like Saxon where the XQuery processor is invoked directly and runs
within the same Java VM as the client application.

http://jcp.org/en/jsr/detail?id=225

Using XQuery

127

The samples directory in the issued saxon-resources download file includes a Java test application, ,
which illustrates some of the possible ways of invoking Saxon using the XQJ interface.

Note that Saxon will generally only recognize its own implementation of XQJ interfaces. For example,
the interface XQDynamicContext includes a method bindAtomicValue that allows the value
of a variable or the context item to be supplied. The type of the argument is XQItem: however, Saxon
will only accept an XQItem that was created by its own implementations of the factory methods in
XQDataFactory.

Unlike JAXP interfaces, XQJ does not include an implementation-independent factory class. Instead,
you start the process by calling:

new SaxonXQDataSource()

This constructor will create a new Configuration, which will be an EnterpriseConfiguration
or ProfessionalConfiguration if Saxon-EE or Saxon-PE is in use. As an alternative, there
is also a constructor that allows a specific pre-exising configuration to be used.

From the XQDataSource you can call getConnection() to get a connection, and from
the connection you can call prepareExpression() to compile a query. The resulting
XQPreparedExpression object has a method executeQuery() allowing the query to be
evaluated. The result of the query evaluation is an XQSequence, which acts as a cursor or iterator:
it has a next() method allowing you to change the current position, and a getItem() method
allowing you to retrieve the item at the current position. The result of getItem() is an XQItem
object, and this has methods allowing you to determine the item type, and to convert the item into a
suitable Java object or value.

Using XQuery Update
Saxon-EE supports use of the update extensions to XQuery defined in http://www.w3.org/TR/xquery-
update-10/. The current version supported is the Candidate Recommendation.

Update is available only in Saxon-EE, and is supported only if explicitly requested. The command
line has an option update:on for this purpose, and all the XQuery APIs have an option to enable
updating, which must be set before compiling the query. If this option is not set, the parser will not
recognize update syntax, and any use of updating expressions will trigger a syntax error.

It is possible for an update to modify the document supplied as the context item, or a document read
using the doc() or collection() function, or even a document constructed dynamically by the
query itself. When using the various APIs, the general policy is that updated documents are never
written automatically to disk. Instead, the list of updated documents is available to the application
on completion of the query, and the application can decide whether to save the documents to their
original location, or to some other location. Documents that were originally read from disk will have
a document URI property which can be used to decide where to write them back.

When using XQuery Update from the command line, updated documents will be written back to disk if
they have a known document URI, and if that URI is an updatable location (which in practice means it
must be a URI that uses the file:// scheme). For testing purposes, the write-back can be suppressed
by using -update:discard. There is also a -backup option to control whether the old file is
saved under a different name before being overwritten.

Saxon does no locking to prevent multiple threads attempting to update the same document.
This is entirely a user responsibility.

Most errors that can arise during updating operations (for example, inserting two conflicting attributes)
will cause an exception, with the supplied input document in memory being left in its original state.
However, errors detected during the validation phase (that is, when the updated document is invalid
against the schema, assuming revalidation is requested) are non-recoverable; after such a failure, the

http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/

Using XQuery

128

state of the document is unpredictable. Generally the (invalid) updates will have been made, and some
of the updates done during schema validation (setting type annotations and default values) may also
have been made.

Note that updates to a document will fail unless it is implemented using the model. This can be selected
from the command line using -tree:linked, or via configuration settings in the API. It is not at
present possible to update the Tiny Tree, nor external object models such as DOM, JDOM, or XOM.

Calling XQuery Functions from Java
Although the usual way to invoke XQuery from a Java application is to compile and execute a query
as described above, it is also possible to invoke individual XQuery functions directly from Java if
required. This interface is very efficient but performs less validation of parameters than the standard
interface described above. To achieve this, first compile the query as described above, specifying a
query that includes one or more declare function declarations in the query prolog. It is then
possible to retrieve the UserFunction objects representing the compiled code of these functions,
by calling the getUserDefinedFunction method on the StaticQueryContext object. As
discussed above, the information is not held in the original StaticQueryContext object (which
Saxon does not alter), but in a modified copy which is obtainable from the XQueryExpression
object. Once found, such a function can be called using its call method. The first argument to
this is an array containing the values of the arguments. These must be supplied using Saxon's native
classes, for example an integer argument is supplied as an instance of IntegerValue [Javadoc:
net.sf.saxon.value.IntegerValue]. These values must be of the type expected by the
function; no conversion or type checking takes place (which means that a ClassCastException
will probably occur if the wrong type of value is supplied). The second argument to the call method
is a Controller. A Controller can be obtained by calling the getController() method on the
XQueryExpression object. The same Controller can be used for a series of separate function calls.

For example:

Configuration config = new Configuration();
StaticQueryContext sqc = config.newStaticQueryContext();

XQueryExpression exp1 = sqc.compileQuery(
 "declare namespace f='f.ns';" +
 "declare function f:t1($p as xs:integer) { $p * $p };" +
 "declare function f:t2($p as xs:integer) { $p + $p };" +
 "1"
);

StaticQueryContext sqc2 = exp1.getStaticContext();
UserFunction fn1 = sqc2.getUserDefinedFunction("f.ns", "t1", 1);
UserFunction fn2 = sqc2.getUserDefinedFunction("f.ns", "t2", 1);
Controller controller = exp1.getController();

IntegerValue[] arglist = new IntegerValue[1];
for (int x=1; x<1000000; x++) {
 arglist[0] = new IntegerValue(x);
 Value v1 = fn1.call(arglist, controller);
 Value v2 = fn2.call(arglist, controller);
 System.err.println("Returned product " + v1 + "; sum =" + v2);
}

Result Format
The result of a query is a sequence of nodes and atomic values - which means it is not, in general, an
XML document. This raises the question as to how the results should be output.

Using XQuery

129

The Saxon command line processor for XQuery by default produces the output in raw format.
This converts the result sequence to a document following the rules of the XQuery document{}
constructor, and then serializes this document.

The alternative is wrapped format, requested using the -wrap argument. This wraps the result
sequence as an XML document, and then serializes the resulting document. Each item in the result
sequence is wrapped in an element (such as result:element or result:atomic-value)
according to its type. The sequence as a whole is wrapped in a result:sequence element.

Compiling Queries
In Saxon 9.4, Saxon-EE automatically (and selectively) compiles queries to Java bytecode. When
running on .NET, the bytecode is then automatically converted to IL code for execution. The bytecode
exists only in memory, and would not be useful otherwise because it contains many references to the
data structures generated by the Saxon parser and optimizer.

This facility replaces the ability in previous Saxon-EE releases to generate Java source code from a
query.

The performance boost achieved by bytecode generation is variable; 25% is typical. The constructs
that benefit the most are those where the expression tree contains many constructs that are relatively
cheap in themselves, such as type conversion, comparisons, and arithmetic. This is because the saving
from bytecode generation is mainly not in the cost of performing primitive operations, but in the cost
of deciding which operations to perform: so the saving is greater where the number of operations is
high relative to their average cost.

There are configuration options to suppress bytecode generation
(FeatureKeys.GENERATE_BYTE_CODE), to insert debugging logic into the generated
bytecode (FeatureKeys.DEBUG_BYTE_CODE), and to display the generated bytecode
(FeatureKeys.DISPLAY_BYTE_CODE).

Extensibility
The Saxon XQuery implementation allows you to call Java methods as external functions. The
function does not need to be declared. Use a namespace declaration such as declare namespace
math="java:java.lang.Math", and invoke the method as math:sqrt(2).

More details of this mechanism are found in Writing Extension Functions.

Saxon recognizes the XQuery pragma syntax, but it currently defines only one pragma of its own, the
saxon:validate-type pragma (see Extensions), and this is now redundant since the equivalent
facility is standard in XQuery 3.0. Saxon will adopt the correct fallback behavior if presented with
a query that uses another vendor's extensions, provided these are designed in conformance with the
W3C pragma specification.

Saxon also recognizes the XQuery option declaration syntax. Several specific option declarations are
provided: declare option saxon:default declares a default value for external variables
(query parameters); declare option saxon:output declares a serialization parameter; and
declare option saxon:memo-function defines whether the following function declaration
is to be implemented as a memo function. These are described under Extensions. Any other option
declaration in the Saxon namespace is ignored with a warning; an option declaration in any other
namespace is ignored silently.

Extensions
The full library of Saxon and EXSLT functions described in Extensions is available, except for those
(for example, some forms of saxon:serialize) that have an intrinsic dependency on an XSLT
stylesheet.

Using XQuery

130

declare option saxon:default

An XQuery option declaration is defined allowing a default value to be specified for a query parameter
(external variable). The syntax is illustrated below:

declare namespace saxon="http://saxon.sf.net/";
declare option saxon:default "20";
declare variable $x external;

The default value is written as an XPath expression. The surrounding quotes are part of the "declare
option" syntax, not part of the expression: therefore, if the default value is to be supplied as a string
literal, two sets of quotes are needed. In the above example, the default value is the integer 20, not a
string. Perhaps it would be clearer to show this by writing saxon:default "(+20)"

declare option saxon:output
Saxon provides an option declaration to set serialization parameters. This takes the form shown in the
following example:

declare namespace saxon="http://saxon.sf.net/";
declare option saxon:output "method=html";
declare option saxon:output "saxon:indent-spaces=1";

The standard serialization parameters described in The W3C Serialization specification [http://
www.w3.org/TR/xslt-xquery-serialization/] are all available, namely:

• byte-order-mark

• cdata-section-elements

• doctype-public

• doctype-system

• encoding

• escape-uri-attributes

• include-content-type

• indent

• media-type

• method

• normalization-form

• omit-xml-declaration

• standalone

• undeclare-prefixes

• use-character-maps (only useful in XSLT)

• version

http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt-xquery-serialization/

Using XQuery

131

In addition some Saxon-specific serialization parameters are available: see Additional serialization
parameters.

declare option saxon:memo-function
Saxon provides an option declaration to treat the immediately following function as a memo-function.
This takes the form shown in the following example:

declare namespace saxon="http://saxon.sf.net/";
declare option saxon:memo-function "true";
declare function local:factorial($n as xs:integer) as xs:integer {
 local:factorial($n - 1) * n
};

A memo function remembers the results of previous calls, so if it is called twice with the same
arguments, it will not repeat the computation, but return the previous result.

The allowed values of the option are "true" and "false" (the default is false), and any other value is
ignored with a warning.

declare option saxon:allow-cycles
Saxon checks for the error XQST0093 which was introduced in the Proposed Recommendation. This
error makes it illegal for a function or variable in module A to reference a function or variable in
module B if there is a function or variable in module B that references one in A. Because this restriction
is quite unnecessary and makes it very difficult to write modular applications, Saxon provides an
option declare option saxon:allow-cycles "true" to disable this check. This option
also disables error XQST0073, which otherwise occurs when two modules in different namespaces
import each other

The allowed values of the option are "true" and "false" (the default is false), and any other value is
ignored with a warning.

This option does not disable the check for cycles that would actually cause execution to fail, for
example a global variable $V1 whose initializer uses $V2, when $V2 similarly depends on $V1.

Note that this option declaration must be written the module imports, but before any variable or
function declarations.

The saxon:validate-type pragma

Saxon-EE provides a pragma (a language extension) to allow constructed elements to be validated
against a schema-defined global type definition. The standard validate expression allows
validation only against a global element declaration, but some schemas (an example is FpML) provide
very few global elements, and instead rely heavily on locally-declared elements having a global type.
This makes it impossible to construct fragments of an FpML document in a way that takes advantage
of static and dynamic type checking.

The extension takes the form:

(# saxon:validate-type my:personType #) { expr }

Conceptually, it makes a copy of the result of evaluating expr and validates it against the named
schema type, causing the copied nodes to acquire type annotations based on the validation process.
The effect is the same as that of the type attribute in XSLT instructions such as xsl:element
and xsl:copy-of. The schema type (shown in the above example as myPersonType) may be

Using XQuery

132

a simple type or a complex type defined in an imported schema, or a built-in type; it is written as a
QName, using the default namespace for elements and types if it is unprefixed.

Note that XQuery processors other than Saxon will typically ignore this pragma, and return the value
of expr unchanged. Such processors will report type-checking failures if the value is used in a context
where the required type is element(*, type-name).

You can use a different namespace prefix in place of "saxon", but it must be bound using a namespace
declaration to the namespace "http://saxon.sf.net/".

Here is a complete example:

module namespace tim="http://www.example.com/module/hour-minute-time";
declare namespace saxon="http://saxon.sf.net/";
import schema namespace fpml = "http://www.fpml.org/2005/FpML-4-2" at "....";

declare function time:getCurrentHourMinuteTime() as element(*, fpml:HourMinuteTime) {
 let $time = string(current-time())
 return
 (# saxon:validate-type fpml:HourMinuteTime #) {
 <time>{substring($time, 1, 5)}:00</time>
 }
};

Saxon ignores any pragmas in a namespace other than the Saxon namespace; it rejects any pragmas
whose QName is ill-formed, as well as pragmas in the Saxon namespace whose local name is not
recognized.

The construct also allows validation of attributes against a simple type definition, for example:

module namespace tim="http://www.example.com/module/hour-minute-time";
declare namespace saxon="http://saxon.sf.net/";
import schema namespace fpml = "http://www.fpml.org/2005/FpML-4-2" at "....";

declare function time:getCurrentHourMinuteTime() as attribute(*, fpml:HourMinuteTime) {
 let $time = string(current-time())
 return (# saxon:validate-type fpml:HourMinuteTime #) {
 attribute time {concat(substring($time, 1, 5), ':00')}
 }
};

Use Cases
Saxon runs all the XQuery Use Cases [http://www.w3.org/xquery-use-cases].

The relevant queries (some of which have been corrected from those published by W3C) are included
in the Saxon distribution (folder use-cases) together with batch scripts for running them. A few
additional use cases have been added to show features that would otherwise not be exercised. A
separate script is available for running the STRONG use cases since these require Saxon-EE.

Also included in the distribution is a query samples/query/tour.xq. This is a query that
generates a knight's tour of the chessboard. It is written as a demonstration of recursive functional
programming in XQuery. It requires no input document. You need to supply a parameter on the
command line indicating the square where the knight should start, for example start=h8. The output
is an HTML document.

http://www.w3.org/xquery-use-cases
http://www.w3.org/xquery-use-cases

133

Chapter 7. Handling Source
Documents
Handling Source Documents

This section discusses the various options in Saxon for handling source documents that form the input
to a query or stylesheet.

See the topics below for further information:

• Source Documents on the Command Line

• Collections

• Building a Source Document from an application

• Preloading shared reference documents

• Using XML Catalogs

• Writing input filters

• XInclude processing

• Controlling Parsing of Source Documents

• Saxon and XML 1.1

• JAXP Source Types

• Third-party Object Models: DOM, JDOM, XOM, and DOM4J

• Choosing a Tree Model

• The PTree File Format

• Validation of Source Documents

• Whitespace Stripping in Source Documents

• Streaming of Large Documents

• Document Projection

• References to W3C DTDs

Source Documents on the Command Line
When Saxon (either XSLT or XQuery) is invoked from the command line, the source document will
normally be an XML 1.0 document. Supplying an XML 1.1 document will also work, provided that
(a) the selected parser is an XML 1.1 parser, and (b) the command line option -1.1 is set.

If a custom parser is specified using the -x option on the command line, then the source document can
be in any format accepted by this custom parser. The only constraint is that the parser must behave as
a SAX2 parser, delivering a stream of events that define a virtual XML document. For example, the
TagSoup [http://www.tagsoup.info/] parser from John Cowan can be used to feed an HTML document
as input to Saxon.

http://www.tagsoup.info/
http://www.tagsoup.info/

Handling Source Documents

134

Non-standard input formats can also be handled by specifying a user-written URIResolver. If the -
u option is used on the command line, or if the source file name begins with http:// or file://,
then the source file name is resolved to a JAXP Source object using the URIResolver; if a user-
written URIResolver is nominated (using the -r option) then this may translate the file name into
a Source object any way that it wishes.

Collections
Saxon implements the collection() function by passing the given URI (or null, if the
default collection is requested) to a user-provided CollectionURIResolver [Javadoc:
net.sf.saxon.lib.CollectionURIResolver]. This section describes how the standard
collection resolver behaves, if no user-written collection resolver is supplied.

The default collection resolver returns the empty sequence as the default collection. The only way of
specifying a default collection it to provide your own CollectionURIResolver.

If a collection URI is provided, Saxon attempts to dereference it. What happens next depends on
whether the URI identifies a file or a directory.

Using catalog files
If the collection URI identifies a file, Saxon treats this as a catalog file. This is a file in XML format
that lists the documents comprising the collection. Here is an example of such a catalog file:

<collection stable="true">
 <doc href="dir/chap1.xml"/>
 <doc href="dir/chap2.xml"/>
 <doc href="dir/chap3.xml"/>
 <doc href="dir/chap4.xml"/>
</collection>

The stable attribute indicates whether the collection is stable or not. The default value is true.
If a collection is stable, then the URIs listed in the doc elements are treated like URIs passed to the
doc() function. Each URI is first looked up in the document pool to see if it is already loaded; if it is,
then the document node is returned. Otherwise the URI is passed to the registered URIResolver,
and the resulting document is added to the document pool. The effect of this process is firstly, that two
calls on the collection() function passing the same collection URI will return the same nodes
each time, and secondly, that these results are consistent with the results of the doc() function: if
the document-uri() of a node returned by the collection() function is passed to the doc()
function, the original node will be returned. If stable="false" is specified, however, the URI
is dereferenced directly, and the document is not added to the document pool, which means that a
subsequent retrieval of the same document will not return the same node.

Processing directories
If the URI passed to the collection() function (still assuming a default
CollectionURIResolver) identifies a directory, then the contents of the directory are returned.
Such a URI may have a number of query parameters, written in the form file:///a/b/c/
d?keyword=value;keyword=value;.... The recognized keywords and their values are as
follows:

Table 7.1.

Handling Source Documents

135

The pattern used in the select parameter can take the conventional form, for example *.xml selects
all files with extension "xml". More generally, the pattern is converted to a regular expression by
prepending "^", appending "$", replacing "." by "\.", and replacing "*" by ".*", and it is then used
to match the file names appearing in the directory using the Java regular expression rules. So, for
example, you can write ?select=*.(xml|xhtml) to match files with either of these two file
extensions. Note however, that special characters used in the URL (that is, characters with a special
meaning in regular expressions) may need to be escaped using the %HH convention. For example,
vertical bar needs to be written as %7C. This escaping can be achieved using the iri-to-uri() function.

Registered Collections
On the .NET product there is a third way to use a collection URI (provided that you
use the API rather than the command line): you can register a collection using the
Processor.RegisterCollection method on the Saxon.Api.Processor class.

Building a Source Document from an
application

With the Java s9api interface, a source document can be built using the DocumentBuilder
[Javadoc: net.sf.saxon.s9api.DocumentBuilder] class, which is created
using the factory method newDocumentBuilder on the Processor [Javadoc:
net.sf.saxon.s9api.Processor] object. Various options for document building are
available as methods on the DocumentBuilder, for example options to perform schema or
DTD validation, to strip whitespace, to expand XInclude directives, and also to choose the tree
implementation model to be used.

Similarly in the .NET API, there is a DocumentBuilder object that can be created from the
processor. This allows options to be set controlling the way documents are built, and provides an
overloaded Build method allowing a tree to be built from various kinds of source.

It is also possible to build a Saxon tree in memory by using the buildDocument
method of the Configuration [Javadoc: net.sf.saxon.Configuration] object.
(When using the JAXP Transformation API, the Configuration can be obtained from the
TransformerFactory as the value of the attribute named FeatureKeys.CONFIGURATION
[Javadoc: net.sf.saxon.lib.FeatureKeys#CONFIGURATION].)

The buildDocument() [Javadoc:
net.sf.saxon.Configuration#buildDocument] method takes a single argument, a
JAXP Source. This can be any of the standard kinds of JAXP Source. See JAXP Sources for more
information.

All the documents processed in a single transformation or query must be loaded using the same
Configuration [Javadoc: net.sf.saxon.Configuration]. However, it is possible
to copy a document from one Configuration into another by supplying the DocumentInfo
[Javadoc: net.sf.saxon.om.DocumentInfo] at the root of the existing document as the
Source supplied to the buildDocument() method of the new Configuration.

Preloading shared reference documents
An option is available in the Configuration [Javadoc:
net.sf.saxon.Configuration] to indicate that calls to the doc() or document()
functions with constant string arguments should be evaluated when a query or stylesheet is compiled,
rather than at run-time. This option is intended for use when a reference or lookup document is used
by all queries and transformations. Using this option has a number of effects:

1. The URI is resolved using the compile-time URIResolver rather than the run-time URIResolver

Handling Source Documents

136

2. The document is loaded into a document pool held by the Configuration, whose memory is
released only when the Configuration itself ceases to exist;

3. all queries and transformations using this document share the same copy;

4. any updates to the document that occur between compile-time and run-time have no effect.

The option is selected by using Configuration.setConfigurationProperty()\
or TransformerFactory.setAttribute() with the property name
FeatureKeys.PRE_EVALUATE_DOC_FUNCTION [Javadoc:
net.sf.saxon.lib.FeatureKeys#PRE_EVALUATE_DOC_FUNCTION]. This option is not
available from the command line because it has no useful effect with a single-shot compile-and-run
interface.

This option has no effect if the URI supplied to the doc() or document() function includes a
fragment identifier.

It is also possible to preload a specific document into the shared document pool from the Java
application by using the call config.getGlobalDocumentPool().add(doc, uri).
When the doc() or document() function is called, the shared document pool is first checked
to see if the requested document is already present. The DocumentPool [Javadoc:
net.sf.saxon.om.DocumentPool] object also has a discard() method which causes the
document to be released from the pool.

Using XML Catalogs
XML Catalogs (defined by OASIS [http://xml.apache.org/commons/components/resolver/resolver-
article.html]) provide a way to avoid hard-coding the locations of XML documents and other resources
in your application. Instead, the applicaton refers to the resource using a conventional system identifier
(URI) or public identifier, and a local catalog is used to map the system and public identifiers to an
actual location.

When using Saxon from the command line, it is possible to specify a catalog to be used using the option
-catalog:. Here is the catalog file to be searched, or a list of filenames separated by semicolons.
This catalog will be used to locate DTDs and external entities required by the XML parser, XSLT
stylesheet modules requested using xsl:import and xsl:include, documents requested using
the document() and doc() functions, and also schema documents, however they are referenced.

With Saxon on the Java platform, if the -catalog option is used on the command line, then the
open-source Apache library resolver.jar must be present on the classpath. With Saxon on .NET,
this module (cross-compiled to IL) is included within the Saxon DLL.

Setting the -catalog option is equivalent to setting the following options:

Table 7.2.

-r org.apache.xml.resolver.tools.CatalogResolver

-x org.apache.xml.resolver.tools.ResolvingXMLReader

-y org.apache.xml.resolver.tools.ResolvingXMLReader

In addition, the system property xml.catalog.files is set to the value of the supplied value.
And if the -t option is also set, Saxon sets the verbosity level of the catalog manager to 2, causing it
to report messages for each resolved URI. Saxon customizes the Apache resolver library to integrate
these messages with the other output from the -t option: that is, by default it is sent to the standard
error output.

When the -catalog option is used on the command line, this overrides the internal resolver
used in Saxon (from 9.4) to redirect well-known W3C references (such as the XHTML DTD) to

http://xml.apache.org/commons/components/resolver/resolver-article.html
http://xml.apache.org/commons/components/resolver/resolver-article.html
http://xml.apache.org/commons/components/resolver/resolver-article.html

Handling Source Documents

137

Saxon's local copies of these resources. Because both these features rely on setting the XML parser's
EntityResolver, it is not possible to use them in conjunction.

This support for OASIS catalogs is implemented only in the Saxon command line. To use catalogs
from a Saxon application, it is necessary to configure the various options individually. For example:

• To use catalogs to resolve references to DTDs and external
entities, choose ResolvingXMLReader as your XML parser, or set
org.apache.xml.resolver.tools.CatalogResolver as the EntityResolver
used by your chosen XML parser.

• To use catalogs to resolve xsl:include and xsl:import references, choose
org.apache.xml.resolver.tools.CatalogResolver as the URIResolver used by
Saxon when compiling the stylesheet.

• To use catalogs to resolve calls on doc() or document() references, choose
org.apache.xml.resolver.tools.CatalogResolver as the URIResolver used by
Saxon when running the stylesheet (for example, using Transformer.setURIResolver()).

Here is an example of a very simple catalog file. The publicId and systemID attributes give the
public or system identifier as used in the source document; the uri attribute gives the location (in this
case a relative location) where the actual resource will be found.

 <?xml version="1.0"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <group prefer="public" xml:base="file:///usr/share/xml/" >

 <public
 publicId="-//OASIS//DTD DocBook XML V4.5//EN"
 uri="docbook45/docbookx.dtd"/>

 <system
 systemId="http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd"
 uri="docbook45/docbookx.dtd"/>

 </group>
</catalog>

There are many tutorials for XML catalogs available on the web, including some that have information
specific to Saxon, though this may well relate to earlier releases.

Writing input filters
Saxon can take its input from a JAXP SAXSource object, which essentially represents a sequence
of SAX events representing the output of an XML parser. A very useful technique is to interpose a
between the parser and Saxon. The filter will typically be an instance of the SAX2 class.

There are a number of ways of using a Saxon XSLT transformation as part of a pipeline of filters.
Some of these techniques also work with XQuery. The techniques include:

• Generate the transformation as an XMLFilter using the newXMLFilter() method of the
TransformerFactory. This works with XSLT only. A drawback of this approach is that it
is not possible to supply parameters to the transformation using standard JAXP facilities. It is
possible, however, by casting the XMLFilter to a net.sf.saxon.Filter [Javadoc:
net.sf.saxon.Filter], and calling its getTransformer() method, which returns a
Transformer object offering the usual addParameter() method.

Handling Source Documents

138

• Generate the transformation as a SAX ContentHandler using the
newTransformerHandler() method. The pipelines stages after the transformation can be
added by giving the transformation a SAXResult as its destination. This again is XSLT only.

• Implement the pipeline step before the transformation or query as an XMLFilter, and use this as
the XMLReader part of a SAXSource, pretending to be an XML parser. This technique works
with both XSLT and XQuery, and it can even be used from the command line, by nominating the
XMLFilter as the source parser using the -x option on the command line.

The -x option on the Saxon command line specifies the parser
that Saxon will use to process the source files. This class must
implement the SAX2 XMLReader interface, but it is not required
to be a real XML parser; it can take the input from
any kind of source file, so long as it presents it in the
form of a stream of SAX events. When using the JAXP API,
the equivalent to the -x option is to call
transformerFactory.setAttribute(net.sf.saxon.lib.FeatureKeys.SOURCE_PARSER_CLASS,
'com.example.package.Parser')

XInclude processing
If you are using Xerces as your XML parser, you can have Xerces expand any XInclude directives.

The -xi option on the command line causes XInclude processing to be applied to all input
XML documents. This includes source documents, stylesheets, and schema documents listed on the
command line, and also those loaded indirectly for example by calls on the doc() function or by
mechanisms such as xsl:include and xs:include.

From the Java API, the equivalent is to call setXInclude() on the
Configuration object, or to set the attribute denoted by FeatureKeys.XINCLUDE
[Javadoc: net.sf.saxon.lib.FeatureKeys#XINCLUDE] to Boolean.TRUE on the
TransformerFactory.

XInclude processing can be requested at a per-document level by creating an
AugmentedSource [Javadoc: net.sf.saxon.lib.AugmentedSource] and calling
its setXIncludeAware() method. The corresponding method is also recognized on Saxon's
implementation of the JAXP DocumentBuilderFactory. When the doc() or document()
or collection() function is called from an XPath expression, XInclude processing can be enabled
by including xinclude=yes among the query parameters in the URI.

It is also possible to switch on XInclude processing (for all documents) by setting the system property:

-Dorg.apache.xerces.xni.parser.XMLParserConfiguration=
 org.apache.xerces.parsers.XIncludeParserConfiguration

An alternative approach is to incorporate an XInclude processor as a SAX filter in the input pipeline.
You can find a suitable SAX filter at http://xincluder.sourceforge.net/, and you can incorporate it into
your application as described at Writing Input Filters.

On the .NET platform, there is a customized XmlReader that performs XInclude processing available
at http://www.xmlmvp.org/xinclude/index.html. You can supply this as an argument to the method
Build(XmlReader parser) in the DocumentBuilder class of the .NET Saxon API.

For further information on using XInclude, see http://www.sagehill.net/docbookxsl/Xinclude.html

Controlling Parsing of Source Documents
Saxon does not include its own XML parser. By default:

http://xincluder.sourceforge.net/
http://www.xmlmvp.org/xinclude/index.html
http://www.sagehill.net/docbookxsl/Xinclude.html

Handling Source Documents

139

• On the Java platform, the default SAX parser provided as part of the JDK is used. With the Sun/
Oracle JDK, this is a variant of the Apache Xerces parser customized by Sun.

• On the .NET platform, Saxon includes a copy of the Apache Xerces parser cross-compiled to run
on .NET

An error reported by the XML parser is generally fatal. It is not possible to process ill-formed XML.

There are several ways you can cause a different XML parser to be used:

• The -x and -y options on the command line can be used to specify the class name of a SAX parser,
which Saxon will load in preference to the default SAX parser. The -x option is used for source
XML documents, the -y option for schemas and stylesheets. The equivalent options can be set
programmatically or by using the configuration file.

• By default Saxon uses the SAXParserFactory mechanism to load a parser. This can be
configured by setting the system property javax.xml.parsers.SAXParserFactory, by
means of the file lib/jaxp.properties in the JRE directory, or by adding another parser to
the lib/endorsed directory.

• The source for parsing can be supplied in the form of a SAXSource object, which has an
XMLReader property containing the parser instance to be used.

• On .NET, the configuration option PREFER_JAXP_PARSER can be set to false, in which case
Saxon will use the Microsoft XML parser instead of the Apache parser. (This parser is not used by
default because it does not notify ID attributes to the application, which means the XPath id()
and idref() functions do not work.)

Saxonica recommends use of the Xerces parser from Apache in preference to the version bundled in
the JDK, which is known to have some serious bugs.

By default, Saxon invokes the parser in non-validating mode (that is, without requested DTD
validation). Note however, that the parser still needs to read the DTD if one is present, because it may
contain entity definitions that need to be expanded. DTD validation can be requested using -dtd:on
on the command line, or equivalent API or configuration options.

Saxon is issued with local copies of commonly-used W3C DTDs such as the XHTML, SVG, and
MathML DTDs. When Saxon itself instantiates the XML parser, it will use an EntityResolver that
causes these local copies of DTDs to be used rather than fetching public copies from the web (the
W3C servers are increasingly failing to serve these requests as the volume of traffic is too high.)
It is possible to override this using the configuration setting ENTITY_RESOLVER_CLASS, which
can be set to the name of a user-supplied EntityResolver, or to the empty string to indicate that no
EntityResolver should be used. Saxon will not add this EntityResolver in cases where the XML parser
instance is supplied by the caller as part of a SAXSource object. It will add it to a parser obtained
as an instance of the class specified using the -x and -y command line options, unless either the use
of the EntityResolver is suppressed using the ENTITY_RESOLVER_CLASS configuration option, or
the instantiated parser already has an EntityResolver registered.

Saxon never asks the XML parser to perform schema validation. If schema validation is required it
should be requested using the command line options -val:strict or -val:lax, or their API
equivalents. Saxon will then use its own schema processor to validate the document as it emerges from
the XML parser. Schema processing is done in parallel with parsing, by use of a SAX-like pipeline.

Saxon and XML 1.1
XML 1.1 (with XML Namespaces 1.1) originally extended XML 1.0 in three ways:

• The set of valid characters is increased

• The set of characters allowed in XML Names is increased

Handling Source Documents

140

• Namespace undeclarations are permitted.

The second change has subsequently been retrofitted to XML 1.0 Fifth Edition (XML 1.0e5). Saxon
now uses the XML 1.1 and XML 1.0e5 rules unconditionally for all validation of XML names.

Saxon is capable of working with XML 1.1 input documents. If you want to use Saxon
with XML 1.1, you should set the option "-xmlversion:1.1" on the Saxon command
line, or call the method configuration.setXMLVersion(Configuration.XML11)
[Javadoc: net.sf.saxon.Configuration#setXMLVersion] or, in the case of XSLT,
transformerFactory.setAttribute(FeaturesKeys.XML_VERSION, "1.1")

This configuration setting affects:

• the characters considered valid in the source of an XQuery query

• the characters considered valid in the result of the functions codepoints-to-string() and
unparsed-text()

• the characters considered valid in the result of certain Saxon extension functions

• the way in which line endings in XQuery queries are normalized

• the default version used by the serializer (with output method XML)

Since Saxon 9.4, the configuration setting no longer affects:

• validation of names used in XQuery and XPath expressions, including names of elements, attributes,
functions, variables, and types

• validation of names of constructed elements, attributes, and processing instructions in XQuery and
XSLT

• schema validation of values of type xs:NCName, xs:QName, xs:NOTATION, and xs:ID

• the permitted names of stylesheet objects such as keys, templates, decimal-formats, output
declarations, and output methods

Note that if you use the default setting of "1.0", then supplying an XML 1.1 source document as input
may cause undefined errors.

It is advisable to use an XML parser that supports XML 1.1 when the configuration is set to "1.1",
and an XML parser that does not support XML 1.1 when the configuration is set to "1.0". However,
Saxon does not enforce this.

You can set the configuration to allow XML 1.1, but still serialize result documents as XML 1.0 by
specifying the output property version="1.0". In this case Saxon will check while serializing the
document that it conforms to the XML 1.0 constraints (note that this check can be expensive). These
checks are not performed if the configuration default is set to XML 1.0.

If you want the serializer to output namespace undeclarations, use the output property undeclare-
namespaces="yes" as well as version="1.1".

JAXP Source Types

When a user application invokes Saxon via the Java API, then a source document is supplied as
an instance of the JAXP Source class. This is true whether invoking an XSLT transformation,
an XQuery query, or a free-standing XPath expression. The Source class is essentially a marker
interface. The Source that is supplied must be a kind of Source that Saxon recognizes.

Saxon recognizes the three kinds of Source defined in JAXP: a StreamSource, a SAXSource,
and a DOMSource.

Handling Source Documents

141

Note that the Xerces DOM implementation is not thread-safe, even for read-only access. Never
use a DOMSource in several threads concurrently, unless you have checked that the DOM
implementation you are using is thread-safe.

Saxon also accepts input from an XMLStreamReader
(javax.xml.stream.XMLStreamReader), that is a StAX pull parser as defined in JSR
173. This is achieved by creating an instance of net.sf.saxon.pull.StaxBridge
[Javadoc: net.sf.saxon.pull.StaxBridge], supplying the XMLStreamReader
using the setXMLStreamReader() method, and wrapping the StaxBridge
object in an instance of net.sf.saxon.pull.PullSource [Javadoc:
net.sf.saxon.pull.PullSource], which implements the JAXP Source interface and can
be used in any Saxon method that expects a Source. Saxon has been validated with two StAX
parsers: the Zephyr parser from Sun (which is supplied as standard with JDK 1.6), and the open-source
Woodstox parser from Tatu Saloranta. In my experience, Woodstox is the more reliable of the two.
However, there is no immediate benefit in using a pull parser to supply Saxon input rather than a push
parser; the main use case for using an XMLStreamReader is when the data is supplied from some
source other than parsing of lexical XML.

Nodes in Saxon's implementation of the XPath data model are represented by the interface NodeInfo
[Javadoc: net.sf.saxon.om.NodeInfo]. A NodeInfo is itself a Source, which means
that any method in the API that requires a source object will accept any implementation of NodeInfo.
As discussed in the next section, implementations of NodeInfo are available to wrap DOM, DOM4J,
JDOM, or XOM nodes, and in all cases these wrapper objects can be used wherever a Source is
required.

Saxon also provides a class net.sf.saxon.lib.AugmentedSource [Javadoc:
net.sf.saxon.lib.AugmentedSource] which implements the Source interface. This
class encapsulates one of the standard Source objects, and allows additional processing options
to be specified. These options include whitespace handling, schema and DTD validation, XInclude
processing, error handling, choice of XML parser, and choice of Saxon tree model.

Saxon allows additional Source types to be supported by registering a SourceResolver
[Javadoc: net.sf.saxon.lib.SourceResolver] with the Configuration
[Javadoc: net.sf.saxon.Configuration] object. The task of a SourceResolver
is to convert a Source that Saxon does not recognize into a Source that it does recognize. For
example, this may be done by building the document tree in memory and returning the NodeInfo
[Javadoc: net.sf.saxon.om.NodeInfo] object representing the root of the tree.

Third-party Object Models: DOM, JDOM,
XOM, and DOM4J

In the case of DOM, all Saxon editions support DOM access "out of the box", and no special
configuration action is necessary.

Support for JDOM, XOM, and DOM4J is not available "out of the box" with Saxon-HE, but the source
code is open source (in sub-packages of net.sf.saxon.option) and can be compiled for use
with Saxon-HE if required.

In general, use of a third party tree implementation is much less efficient than using Saxon's
native TinyTree. These models should only be used if your application needs to construct
them for other reasons. Transforming a DOM can take up to 10 times longer than transforming
the equivalent TinyTree.

Handling Source Documents

142

A support module for JDOM2 has been created, but is not released with Saxon 9.4 because JDOM2
at the time of release was not yet sufficiently stable.

In addition, Saxon allows various third-party object models to be used to supply the input to a
transformation or query. Specifically, it supports JDOM, XOM, and DOM4J in addition to DOM.
Since Saxon 9.2 the support code for these three models is integrated into the main JAR files for
Saxon-PE and Saxon-EE, but (unlike the case of DOM) it is not activated unless the object model
is registered with the Configuration [Javadoc: net.sf.saxon.Configuration],
which can be done either by including it in the relevant section of the configuration file,
or by nominating it using the method registerExternalObjectModel() [Javadoc:
net.sf.saxon.Configuration#registerExternalObjectModel].

For DOM input, the source can be supplied by wrapping a DOMSource
around the DOM Document node. For JDOM, XOM, and DOM4J the
approach is similar, except that the wrapper classes are supplied by Saxon
itself: they are net.sf.saxon.option.jdom.DocumentWrapper [Javadoc:
net.sf.saxon.option.jdom.DocumentWrapper],
net.sf.saxon.option.xom.DocumentWrapper [Javadoc:
net.sf.saxon.option.xom.DocumentWrapper], and
net.sf.saxon.option.dom4j.DocumentWrapper [Javadoc:
net.sf.saxon.option.dom4j.DocumentWrapper], and respectively. These wrapper
classes implement the Saxon NodeInfo [Javadoc: net.sf.saxon.om.NodeInfo]
interface (which means that they also implement Source).

Note that the Xerces DOM implementation is not thread-safe, even for read-only access. Never
use a DOMSource in several threads concurrently, unless you have checked that the DOM
implementation you are using is thread-safe.

Saxon supports these models by wrapping each DOM, JDOM, XOM, or DOM4J node in a wrapper that
implements the Saxon NodeInfo [Javadoc: net.sf.saxon.om.NodeInfo] interface.
When nodes are returned by the XQuery or XPath API, these wrappers are removed and the original
node is returned. Similarly, the wrappers are generally removed when extension functions expecting
a node are called.

In the case of DOM only, Saxon also supports a wrapping the other way around: an object
implementing the DOM interface may be wrapped around a Saxon NodeInfo [Javadoc:
net.sf.saxon.om.NodeInfo]. This is done when Java methods expecting a DOM Node are
called as extension functions, if the NodeInfo is not itself a wrapper for a DOM Node.

You can also send output to a DOM by using a DOMResult, or to a JDOM tree by using a
JDOMResult, or to a XOM document by using a XOMWriter. In such cases it is a good idea to
set saxon:require-well-formed="yes" on xsl:output to ensure that the transformation
or query result is a well-formed document (for example, that it does not contain several elements at
the top level).

Choosing a Tree Model
Saxon provides several implementations of the internal tree data structure (or tree model). The tree
model can be chosen by an option on the command line (-tree:tiny for the tiny tree, -tree:linked for the
linked tree [previously known as the "standard tree"]). There is also a variant of the tiny tree called a
"condensed tiny tree" which saves space (at the expense of build time) by recognizing text nodes and
attribute nodes whose values appear more than once in the input document. The tree model can also
be selected from the Java API. The default is to use the tiny tree model. The choice should make no
difference to the results of a transformation (except the order of attributes and namespace declarations)
but only affects performance.

Handling Source Documents

143

Generally speaking, the tiny tree model is both faster to build and faster to navigate. It also uses less
space.

The tiny tree model gives most benefit when you are processing a large document. It uses a lot less
memory, so it can prevent thrashing when the size of document is such that the linked tree doesn't
fit in real memory. Use the "condensed" variant if you need to save memory, and if your source data
contains many text or attribute nodes with repeated values.

The linked tree is used internally to represent stylesheet and schema modules because of the
programming convenience it offers: it allows element nodes on the tree to be represented by custom
classes for each kind of element. The linked tree is also needed when you want to use XQuery Update,
because unlike the TinyTree, it is mutable.

The PTree File Format
Saxon-PE and Saxon-EE support a file format called the PTree (persistent tree). This is a binary
representation of an XML document. The PTree file is generally about the same size as the original
document (perhaps 10% smaller), but it typically loads in about half the time. Storing a document
as a PTree can therefore give a useful performance improvement when the same source document is
used repeatedly as the input to many queries or transformations. Another benefit of the PTree is that
it retains any type information that is present, which means that the document does not need to be
validated against its schema each time it is loaded. (The schema, however, must be loaded whenever
the document is loaded.)

Two commands are available for converting XML documents into PTree files and vice versa. To create
a PTree, use:

java com.saxonica.ptree.PTreeWriter source.xml result.ptree

The option -strip causes all whitespace-only text nodes to be stripped in the process, which will
often give a useful saving in space and therefore in loading time.

To convert a PTree back to an XML document, use:

java com.saxonica.ptree.PTreeReader source.ptree result.xml

It is possible to apply a query or transformation directly to a PTree by specifying the -p
option on the command line for com.saxonica.Transform or com.saxonica.Query.
This option actually causes a different URIResolver, the PTreeURIResolver [Javadoc:
com.saxonica.ptree.PTreeURIResolver], to be used in place of the standard
URIResolver. The PTreeURIResolver recognizes any URI ending in the extension .ptree as
an identifier for a file in PTree format. This extends to files loaded using the doc() or document()
functions: if the file extension is .ptree, the file will be assumed to be in PTree format.

The result of a query or transformation can be serialized as a PTree file by specifying saxon:ptree
as the output method, where the namespace prefix saxon represents the URI http://
saxon.sf.net/.

The PTree format is designed to allow future Saxon releases to read files created using older releases.
The converse may not always be true: it might sometimes be impossible for release N to read a PTree
file created using release N+1.

In releases up to and including Saxon 9.3, the PTree files were always at version 0.
Saxon 9.4 introduces a new version, version 1. The new version differs in retaining
DTD-derived attribute types (ID, IDREF, IDREFS). The PTreeReader [Javadoc:
com.saxonica.ptree.PTreeReader] in Saxon 9.4 (onwards) will read both versions. The
PTreeWriter [Javadoc: com.saxonica.ptree.PTreeWriter] in Saxon 9.4 writes

Handling Source Documents

144

version 1 output by default (which cannot be read by earlier releases), but it can still write original
version 0 output if requested. If called from the command line, use the option -version:1.

The PTree format does not retain the base URI of the original file: when a PTree is loaded, the base
URI is taken as the URI of that file, not the original XML file. The PTree is a serialization of the XPath
data model, so information that isn't present in the data model will not be present in the PTree: for
example, it will have no DTD and no entity references or CDATA sections.

References to unparsed entities are not currently retained in a PTree.

Validation of Source Documents
With Saxon-EE, source documents may be validated against a schema. Not only does this perform
a check that the document is valid, it also adds type information to each element and attribute node
in the document to identify the schema type against which it was validated. It may also expand the
source document by adding default values of elements and attributes.

If the option -val:strict is specified on the command line for com.saxonica.Query or
com.saxonica.Transform, then the principal source document to the query or transformation
is schema-validated, as is every document loaded using the doc() or document() function. Saxon
will look among all the loaded schemas for an element declaration that matches the outermost element
of the document, and will then check that the document is valid against that element declaration,
reporting a fatal error if it is not. The loaded schemas include schemas imported statically into the
query or stylesheet using import schema or xsl:import-schema, schemas referenced in
the xsi:schemaLocation or xsi:noNamespaceSchemaLocation attributes of the source
document itself, and schemas loaded by the application using the addSchema method of the
Configuration [Javadoc: net.sf.saxon.Configuration] object.

As an alternative to -val:strict, the option -val:lax may be specified. This validates the
document if and only if an element declaration can be found. If there is no declaration of the outermost
element in any loaded schema, then it is left as an untyped document.

When invoking transformations or queries from the Java API, the equivalent of the -val:strict
option is to call the method setSchemaValidation(Validation.STRICT) on the
Configuration [Javadoc: net.sf.saxon.Configuration] object. The equivalent
of -val:lax is setSchemaValidation(Validation.LAX).

When documents are built using the DocumentBuilder [Javadoc:
net.sf.saxon.s9api.DocumentBuilder] in the s9api interface, or in the Saxon.Api
interface on .NET, validation may be controlled by setting the appropriate options on the
DocumentBuilder.

On Java interfaces that expect a JAXP Source object it is possible to request validation by supplying
an AugmentedSource [Javadoc: net.sf.saxon.lib.AugmentedSource]. This
consists of a Source and a set of options, including validation options; since AugmentedSource
implements the JAXP Source interface it is possible to use it anywhere that a Source is expected,
including as the object returned by a user-written URIResolver.

Saxon's standard URIResolver uses this technique if it has been enabled (for example by using -
p on the command line). With this option, any URI containing the query parameter ?val=strict
(for example, doc('source.xml?val=strict')) causes strict validation to be requested for
that document, while ?val=lax requests lax validation, and ?val=strip requests no validation.

Whitespace Stripping in Source Documents
A number of factors combine to determine whether whitespace-only text nodes in the source document
are visible to the user-written XSLT or XQuery code.

Handling Source Documents

145

By default, if there is a DTD or schema, then is stripped from any source document loaded from a
StreamSource or SAXSource. Ignorable whitespace is defined as the whitespace that appears
separating the child elements in element declared to have element-only content. This whitespace is
removed regardless of any xml:space attributes in the source document.

It is possible to change this default behavior in several ways.

• From the Transform or Query command line, options are available: -strip:all strips
all whitespace text nodes, -strip:none strips no whitespace text nodes, and -
strip:ignorable strips ignorable whitespace text nodes only (this is the default).

• If the -p option is used on the command line, then query parameters are recognized in the URI
passed to the document() or doc() function. The parameter strip-space=yes strips
all whitespace text nodes, strip-space=no strips no whitespace text nodes, and strip-
space=ignorable strips ignorable whitespace text nodes only. This overrides anything
specified on the command line.

• Options corresponding to the above can also be set on the TransformerFactory object or on
the Configuration [Javadoc: net.sf.saxon.Configuration]. These settings are
global.

Whitespace stripping that is specified in any of the above ways does not occur only if the source
document is parsed under Saxon's control: that is, if it supplied as a JAXP StreamSource or
SAXSource. It also applies where the input is supplied in the form of a tree (for example, a DOM).
In this case Saxon wraps the supplied tree in a virtual tree that provides a view of the original tree
with whitespace text nodes omitted.

This whitespace stripping is additional (and prior) to any stripping carried out as a result of the
xsl:strip-space declaration in the stylesheet.

Streaming of Large Documents
Sometimes source documents are too large to hold in memory. Saxon-EE provides a range of facilities
for processing such documents in : that is, processing data as it is read by the XML parser, without
building a complete tree representation of the document in memory.

Some of these facilities implement new features in the draft XSLT 3.0 standard (also known as XSLT
2.1). Some are specific to Saxon, and a few facilities are also available in XQuery.

Inevitably there are things that cannot be done in streaming mode - sorting is an obvious example.
Sometimes, achieving a streaming transformation means rethinking the design of how it works - for
example, splitting it into multiple phases. So streaming is rarely a case of simply taking your existing
code and setting a simple switch to request streamed implementation.

There are basically two ways of doing streaming in Saxon:

• Burst-mode streaming: with this approach, the transformation of a large file is broken up into a
sequence of transformations of small pieces of the file. Each piece in turn is read from the input,
turned into a small tree in memory, transformed, and written to the output file.

This approach works well for files that are fairly flat in structure, for example a log file holding
millions of log records, where the processing of each log record is independent of the ones that
went before.

A variant of this technique uses the new XSLT 3.0 xsl:iterate instruction to iterate over the
records, in place of xsl:for-each. This allows working data to be maintained as the records are
processed: this makes it possible, for example, to output totals or averages at the end of the run, or to
make the processing of one record dependent on what came before it in the file. The xsl:iterate
instruction also allows early exit from the loop, which makes it possible for a transformation to
process data from the beginning of a large file without actually reading the whole file.

Handling Source Documents

146

Burst-mode streaming is available in both XSLT and XQuery, but there is no equivalent in XQuery
to the xsl:iterate construct.

• Streaming templates: this approach follows the traditional XSLT processing pattern of performing
a recursive descent of the input XML hierarchy by matching template rules to the nodes at each
level, but does so one element at a time, without building the tree in memory.

Every template belongs to a mode (perhaps the default, unnamed mode), and streaming is a property
of the mode that can be specified using the new xsl:mode declaration. If the mode is declared
to be streamable, then every template rule within that mode must obey the rules for streamable
processing.

The rules for what is allowed in streamed processing are quite complicated, but the essential
principle is that the template rule for a given node can only read the descendants of that node once,
in order. There are further rules imposed by limitations in the current Saxon implementation: for
example, although grouping using <xsl:for-each-group group-adjacent="xxx"> is
theoretically consistent with a streamed implementation, it is not currently implemented in Saxon.

The streamed template mechanism applies to XSLT only.

Both these facilities are available in Saxon-EE only. Streamed templates also require XSLT 3.0 to be
enabled by setting the relevant configuration parameters or command line options.

• Burst-mode streaming

• Processing the nodes returned by saxon:stream()

• Reading source documents partially

• Streamable path expressions

• How burst-mode streaming works

• Using saxon:stream() with saxon:iterate

• Streaming Templates

Burst-mode streaming
The saxon:stream extension function enables burst-mode streaming by reading a source document
and delivering a sequence of element nodes representing selected elements within that document. For
example:

saxon:stream(doc('employees.xml')/*/employee)

This example returns a sequence of employee elements. These elements are parentless, so it is not
possible to navigate from one employee element to others in the file; in fact, only one of them actually
exists in memory at any one time.

The function saxon:stream may be regarded as a pseudo-function. Conceptually, it takes the
set of nodes supplied in its argument, and makes a deep copy of each one (the copy operation is
needed to make the employee elements parentless). The resulting sequence of nodes will usually be
processed by an instruction such as xsl:for-each or xsl:iterate, or by a FLWOR expression
in XQuery, which handles the nodes one at a time. The actual implementation of saxon:stream,
however, is rather different, in that it changes the way in which its argument is evaluated: instead of the
doc() function building a tree in the normal way, the path expression doc('employees.xml')/
*/employee) is evaluated in streamed mode - which means that it must conform to a subset of the
XPath syntax which Saxon can evaluate in streamed mode. For details of this subset, see Streamable
path expressions

Handling Source Documents

147

The facility should not be used if the source document is read more than once in the course of the
query/transformation. There are two reasons for this: firstly, performance will be better in this case if
the document is read into memory; and secondly, when this optimization is used, there is no guarantee
that the doc() function will be stable, that is, that it will return the same results when called repeatedly
with the same URI.

If the path expression cannot be evaluated in streaming mode, execution does not fail; rather it is
evaluated with an unoptimized copy-of instruction. This will give the same results provided enough
memory is available for this mode of evaluation. To check whether streamed processing is actually
being used, set the -t option from the command line or the FeatureKeys.TIMING option from the
configuration API; the output will indicate whether a particular source document has been processed
by building a tree, or by streaming.

In XSLT an alternative way of invoking the facility is by using an <xsl:copy-of> instruction with
the special attribute saxon:read-once="yes". Typically the xsl:copy-of instruction will
form the body of a stylesheet function, which can then be called in the same way as saxon:stream
to deliver the stream of records. This approach has the advantage that the code is portable to other
XSLT processors (saxon:read-once="yes" is an extension attribute, a processing hint that
other XSLT processors are required to ignore.)

In XQuery the same effect can be achieved using a pragma (# saxon:read-once #). Again,
processors other than Saxon are required to ignore this pragma.

Example: selective copying

A very simple way of using this technique is when making a selective copy of parts of a document.
For example, the following code creates an output document containing all the footnote elements
from the source document that have the attribute @type='endnote':

<xsl:template name="main">
 <footnotes>
 <xsl:sequence select="saxon:stream(doc('thesis.xml')//footnote[@type='endnote'])"
 xmlns:saxon="http://saxon.sf.net/"/>
 </footnotes>
</xsl:template>

 <footnotes>{
 saxon:stream(doc('thesis.xml')//footnote[@type='endnote'])
 }</footnotes>

XSLT example using xsl:copy-of

To allow code to be written in a way that will still work with processors other than Saxon, the facility
can also be invoked using extension attributes in XSLT. Using this syntax, the previous example can
be written as:

<xsl:template name="main">
 <footnotes>
 <xsl:copy-of select="doc('thesis.xml')//footnote[@type='endnote']"
 saxon:read-once="yes" xmlns:saxon="http://saxon.sf.net/"/>
 </footnotes>
</xsl:template>

Handling Source Documents

148

XQuery example using the saxon:stream pragma

In XQuery the pragma saxon:stream is available as an alternative to the function of the same
name, allowing the code to be kept portable. The above example can be written:

 <footnotes>{
 (# saxon:stream #) {
 doc('thesis.xml')//footnote[@type='endnote']
 }
 }</footnotes>

Note the restrictions below on the kind of predicate that may be used.

Processing the nodes returned by saxon:stream()
The nodes selected by the streamed expression may be further processed. For example:

<xsl:template name="main">
 <xsl:apply-templates select="saxon:stream(doc('customers.xml')/*/customer)"
 xmlns:saxon="http://saxon.sf.net/"/>
</xsl:template>

<xsl:template match="customer">
 <xsl:value-of select="code, name, location" separator="|"/>
 <xsl:text>
</xsl:text>
</xsl:template>

declare function f:customers() {
 saxon:stream(doc('customers.xml')/*/customer)
};

for $c in f:customers()
return concat(string-join(($c/code, $c/name, $c/location), '|'), '
')

Conceptually, saxon:stream() evaluates the sequence supplied in its first argument as a sequence
of nodes, and then makes copies of these nodes as described in the rules of the xsl:copy-of
instruction. The significance of the (notional) copy operation is that the returned nodes have no
ancestors or siblings; each is the root of its own tree.

The document that is processed in streaming mode must be read using the doc() function (or in
XSLT, the document() function). The query or stylesheet may also process other documents (for
example a document named on the command line) but this is not necessary. In XSLT it is often useful
to activate the stylesheet at a named template using the -it option on the command line, which allows
activation without a primary input document.

When streaming copy is used, the relevant calls on the doc() or document() functions are not :
that is, there is no guarantee that if the same document is read more than once, its contents will be
unchanged. This is because the whole point of the facility is to ensure that Saxon does not need to keep
the content of the document in memory. This limitation explains the choice of the keyword read-
once: the facility should not be used to process a document if it needs to be read more than once
during the query or transformation.

Handling Source Documents

149

Reading source documents partially
As well as allowing a source document to be processed in a single sequential pass, the streaming
facility in many cases allows the source document to be read only partially. For example, the following
query will return true as soon as it finds a transaction with a negative value, and will then immediately
stop processing the input file:

some $t in saxon:stream(doc('big-transaction-file.xml')//transaction)
satisfies number($t/@value) lt 0

This facility is particularly useful for extracting data that appears near the start of a large file. It does
mean, however, that well-formedness or validity errors appearing later in the file will not necessarily
be detected.

Streamable path expressions
The expression used as an argument to the saxon:stream function must consist of:

1. A call to the document() or doc() function, followed by

2. A streamable pattern

Streamable patterns use a subset of XPath expression corresponding roughly to the rules for match
patterns in XSLT (the reason for this is that both subsets are designed to make it efficient to test an
individual node for membership of the selected set of nodes). There are some extensions and some
restrictions.

• Unlike XSLT match patterns, streamable patterns are not allowed to perform arbitrary navigation
within a predicate. For example, employee[id = preceding-sibling::employee/
id] is not allowed.

More specifically, the predicate must not be positional (that is, it must not evaluate to a number,
and must not call position() or last()), and it must only use downward selection from the
context node (the self, child, attribute, descendant, descendant-or-self, or namespace axes)

• The streamable pattern that follows doc()/ in the argument to saxon:stream must be a relative
path: unlike XSLT match patterns, it may not start with "/" or "//" or with a call to the key() or
id() function.

• Some of the restrictions in XSLT match patterns are relaxed, however: for example, the descendant
axis can be used.

How burst-mode streaming works
Where necessary, the implementation of burst-mode streaming will use multithreading. One thread
(which operates as a push pipeline) is used to read the source document and filter out the nodes selected
by the path expression. The nodes are then handed over to the main processing thread, which iterates
over the selected nodes using an XPath pull pipeline. Because multithreading is used, this facility is
not used when tracing is enabled. It should also be disabled when using a debugger (there is a method
in the Configuration object to achieve this.)

In cases where the entire stylesheet or query can be evaluated in "push" mode (as in the first example
above), there is no need for multithreading: the selected nodes are written directly to the current output
destination.

Note that a tree is built for each selected node, and its subtree. Trees are also built for all nodes selected
by the path expression, whether or not the satisfy the filter (if they do not satisfy the filter, they will be

Handling Source Documents

150

immediately discarded from memory). The saving in memory comes when these nodes are processed
one at a time, because each subtree can then be discarded as soon as it has been processed. There
is no benefit if the stylesheet needs to perform non-serial processing, such as sorting. There is also
no benefit if the path expression selects a node that contains most or all of the source document, for
example its outermost element.

Saxon can handle expressions that select nested nodes, for example //section where one section
contains another. However, the need to deliver nodes in document order makes the pipeline somewhat
turbulent in such cases, increasing memory usage.

Streamed processing in this way is not actually faster than conventional processing (in fact, when
multithreading is required, it may only run at half the speed). Its big advantage is that it saves
memory, thus making it possible to process documents that would otherwise be too large for XSLT to
handle. There may also be environments where the multithreading enables greater use of the processor
capacity available. To run without this optimization, either change the xsl:copy-of instruction to
xsl:sequence, or set saxon:read-once to "no".

Using saxon:stream() with saxon:iterate
In the examples given above, saxon:stream() is used to select a sequence of element nodes
from the source document, and each of these nodes is then processed independently. In cases
where the processing of one node depends in some way on previous nodes, it is possible to use
saxon:stream() in conjunction with the saxon:iterate extension element in XSLT. (For
details see saxon:iterate.)

The following example takes a sequence of <transaction> elements in an input document, each
one containing the value of a debit or credit from an account. As output it copies the transaction
elements, adding a current balance.

 <saxon:iterate select="saxon:stream(doc('transactions.xml')/account/transaction)">
 <xsl:param name="balance" as="xs:decimal" select="0.00"/>
 <xsl:variable name="new-balance" as="xs:decimal" select="$balance + xs:decimal(@value)"/>
 <transaction balance="{$new-balance}">
 <xsl:copy-of select="@*"/>
 </transaction>
 <saxon:continue>
 <xsl:with-param name="balance" select="$new-balance"/>
 </saxon:continue>
 </saxon:iterate>

The following example is similar: this time it copies the account number (contained in a separate
element at the start of the file) into each transaction element:

 <saxon:iterate select="saxon:stream(doc('transactions.xml')/account/(account-number|transaction))">
 <xsl:param name="accountNr"/>
 <xsl:choose>
 <xsl:when test="self::account-number">
 <saxon:continue>
 <xsl:with-param name="accountNr" select="string(.)"/>
 </saxon:continue>
 </xsl:when>
 <xsl:otherwise>
 <transaction account-number="{$accountNr}">
 <xsl:copy-of select="@*"/>
 </transaction>
 </xsl:otherwise>
 </xsl:choose>

Handling Source Documents

151

 </saxon:iterate>

Here is a more complex example, one that groups adjacent transaction elements having the same date
attribute. The two loop parameters are the current grouping key and the current date. The contents of
a group are accumulated in a variable until the date changes.

 <saxon:iterate select="saxon:stream(doc('transactions.xml')/account/transaction)">
 <xsl:param name="group" as="element(transaction)*" select="()"/>
 <xsl:param name="currentDate" as="xs:date?" select="()"/>
 <xsl:choose>
 <xsl:when test="xs:date(@date) eq $currentDate or empty($group)">
 <saxon:continue>
 <xsl:with-param name="currentDate" select="@date"/>
 <xsl:with-param name="group" select="($group, .)"/>
 </saxon:continue>
 </xsl:when>
 <xsl:otherwise>
 <daily-transactions date="{$currentDate}">
 <xsl:copy-of select="$group"/>
 </daily-transactions>
 <saxon:continue>
 <xsl:with-param name="group" select="."/>
 <xsl:with-param name="currentDate" select="@date"/>
 </saxon:continue>
 </xsl:otherwise>
 </xsl:choose>
 <saxon:finally>
 <final-daily-transactions date="{$currentDate}">
 <xsl:copy-of select="$group"/>
 </final-daily-transactions>
 </saxon:finally>
 </saxon:iterate>

Note that when a saxon:iterate loop is terminated using saxon:break, parsing of the source
document will be abandoned. This provides a convenient way to read data near the start of a large file
without incurring the cost of reading the entire file.

Streaming Templates
Streaming templates allow a document to be processed hierarchically in the classical XSLT style,
applying template rules to each element (or other nodes) in a top-down manner, while scanning the
source document in a pure streaming fashion, without building the source tree in memory. Saxon-EE
allows streamed processing of a document using template rules, provided the templates conform to a
set of strict guidelines. The facility was introduced in a very simple form in Saxon 9.2, and is greatly
enhanced in Saxon 9.3.

Streaming is a property of a ; a mode can be declared to be streamable, and if it is so declared, then
all template rules using that mode must obey the rules for streamability. A mode is declared to be
streamable using the top-level stylesheet declaration:

<xsl:mode name="s" streamable="yes"/>

The name attribute is optional; if omitted, the declaration applies to the default (unnamed) mode.

Streamed processing of a source document can be applied either to the principal source document of the
transformation, or to a secondary source document read using the doc() or document() function.

To use streaming on the principal source document, the input to the transformation must be supplied
in the form of a StreamSource or SAXSource, and the initial mode selected on entry to the

Handling Source Documents

152

transformation must be a streamable mode. In this case there must be no references to the context item
in the initializer of any global variable.

Streamed processing of a secondary document is initiated using the instruction:

<xsl:apply-templates select="doc('abc.xml')" mode="s"/>

Here the select attribute must contain a simple call on the doc() or document()
function, and the mode (explicit or implicit) must be declared as streamable. The call on
doc() or document() can be extended with a streamable selection path, for example
select="doc('employee.xml')/*/employee"

If a mode is declared as streamable, then it must ONLY be used in streaming mode; it is not possible
to apply templates using a streaming mode if the selected nodes are ordinary non-streamed nodes.

Every template rule within a streamable mode must follow strict rules to ensure it can be processed
in a streaming manner. The essence of these rules is:

1. The match pattern for the template rule must be a simple pattern that can be evaluated when
positioned at the start tag of an element, without repositioning the stream (but information about
the ancestors of the element and their attribute is available). Examples of acceptable patterns are
, para, or para/

2. The body of the template rule must contain at most one expression or instruction that reads the
contents below the matched element (that is, children or descendants), and it must process the
contents in document order. This expression or instruction will often be one of the following:

• <xsl:apply-templates/>

• <xsl:value-of select="."/>

• <xsl:copy-of select="."/>

• string(.)

• data(.) (explicitly or implicitly)

but this list is not exhaustive. It is possible to process the contents selectively by using a streamable
path expression, for example:

• <xsl:apply-templates select="foo"/>

• <xsl:value-of select="a/b/c"/>

• <xsl:copy-of select="x/y"/>

but this effectively means that the content not selected by this path is skipped entirely; the
transformation ignores it.

The template can access attributes of the context item without restriction, as well as properties
such as its name(), local-name(), and base-uri(). It can also access the ancestors of the
context item, the attributes of the ancestors, and properties such as the name of an ancestor; but
having navigated to an ancestor, it cannot then navigate downwards or sideways, since the siblings
and the other descendants of the ancestor are not available while streaming.

The restriction that only one downwards access is allowed makes it an error to use an
expression such as price - discount in a streamable template. This problem can often be
circumvented by making a copy of the context item. This can be done using an xsl:variable
containing an xsl:copy-of instruction, or for convenience it can also be done using the
copy-of() function: for example <xsl:value-of select="copy-of(.)/(price -
discount)"/>. Taking a copy of the context node requires memory, of course, and should be
avoided unless the contents of the node are small.

Handling Source Documents

153

The following rules gives further advice on what is allowed and disallowed within the body of a
streaming template.

Non-context-sensitive instructions

Instructions and expressions that do not access the context node are allowed without restriction.

This includes:

• Instructions that create new nodes, for example literal result elements, xsl:element and
xsl:attribute are allowed without restriction.

• Instructions that declare variables, including temporary trees, if the value of the variable does not
depend on the context.

• Instructions that process documents other than the streamed document, for example by calling the
doc() or document() functions. Provided such processing is not streamed, the full capabilities
of the XSLT language can be used.

Access to attributes and ancestors

Access to attributes: there are no restrictions on accessing attributes of the context node, or attributes
of its ancestors.

Properties of the context node: there are no restrictions on using functions such as name(), node-
name(), or base-uri() to access properties of the context node, or properties of its ancestors, its
attributes, or attributes of its ancestors. It is also possible to use the is operator to test the identity
of the node, the << and >> operators to test its position in document order, or the instance of
operator to test its type. For attribute nodes it is possible to use (explicitly or implicitly) the string()
function to get its string value and the data() function to get its typed value.

It is not possible to perform navigation from the attributes of the node or from its ancestors, only to
access the values of attributes and properties such as the name of the node.

It is not possible to bind a variable (or pass a parameter, or return a result) to a node in the streamed
document, because Saxon does not currently include the logic to analyse that the way in which the
variable is subsequently used is consistent with streaming.

Conditional instructions

This includes xsl:if, xsl:choose, and the XPath if expression. All of these are regarded as
special cases of a construct of the form if (condition-1) then action-1 else if
(condition-2) then action2 else ...

The rule is that the conditional must fit one of the following descriptions:

• The first condition makes a downward selection, in which case none of the actions and none of the
subsequent conditions may make a downward selection

• The first condition makes no downward selection, in which case each of the actions is allowed to
make a downward selection (but subsequent conditions must not do so).

So examples of permitted conditionals are:

• if (@a = 3) then b else c

• if (a = 3) then @b else @c

while the following are not permitted:

• if (a = 3) then b else c

Handling Source Documents

154

• <xsl:choose> <xsl:when test="a=3">foo</xsl:when> <xsl:when
test="a=4">bar</xsl:when> </xsl:choose>

Looping instructions

This applies primarily to xsl:for-each and xsl:iterate. In addition, an XPath expression
for $x in SEQ return E is translated to an equivalent xsl:for-each instruction, provided
that E does not depend on the context item, position, or size.

The common case is where the select expression and the loop body each make a downward
selection, for example:

<xsl:for-each select="employee">
 <salary><xsl:value-of select="salary"/></salary>
</xsl:for-each>

The body of the loop may only make a single downwards selection of this kind.

No sorting is allowed.

If the select expression does not make a downward selection, then the loop body must not perform
any navigation from the context node. This is because the same navigation would have to take place
more than once, which is inconsistent with streaming.

Saxon handles the case where some reordering of the output is required. This arises when the select
expression uses the descandant axis, for example:

<xsl:for-each select=".//section">
 <size><xsl:value-of select="string-length(.)"/></size>
</xsl:for-each>

In this example, given nested sections, the downward selections for each section needed to evaluate
string-length() overlap with each other, and the string-length of section 2.1 (say) must be
output before that of its children (sections 2.1.1 and 2.1.2, say), even though the computation for the
children completes earlier. Saxon achieves this by buffering output results where necessary to achieve
the correct ordering.

It is of course quite permissible to call xsl:apply-templates within the body of the xsl:for-
each; this will count as the one permitted downward selection.

It is permitted to call position() within the loop, but not last().

Sorting, grouping and numbering

Sorting (xsl:sort), grouping (xsl:for-each-group), and numbering (xsl:number) are not
supported in streaming mode.

Document Projection
Document Projection is a mechanism that analyzes a query to determine what parts of a document it
can potentially access, and then while building a tree to represent the document, leaves out those parts
of the tree that cannot make any difference to the result of the query.

Document projection can be enabled as an option on the XQuery command line interface: set -
projection:on. It is only used if requested. The command line option affects both the primary
source document supplied on the command line, and any calls on the doc() function within the body
of the query that use a literal string argument for the document URI.

Handling Source Documents

155

For feedback on the impact of document projection in terms of reducing the size of the source document
in memory, use the -t option on the command line, which shows for each document loaded how many
nodes from the input document were retained and how many discarded.

From the s9api API, document projection can be invoked as an option on the DocumentBuilder.
The call setDocumentProjectionQuery() supplies as its argument a compiled query (an
XQueryExecutable), and the document built by the document builder is then projected to retain
only the parts of the document that are accessed by this query, when it operates on this document as
the initial context item. For example, if the supplied query is count(//ITEM), then only the ITEM
elements will be retained.

It is also possible to request that a query should perform document projection on documents that it reads
using the doc() function, provided this has a string-literal argument. This can be requested using the
option setAllowDocumentProjection(true) on the XQueryExpression object. This is
not available directly in the s9api interface, but the XQueryExpression is reachable from the
XQueryExecutable using the accessor method getUnderlyingCompiledQuery().

It is best to avoid supplying a query that actually returns nodes from the document supplied
as the context item, since the analysis cannot know what the invoker of the query will want to
do with these nodes. For example, the query <out>{//ITEM}</out> works better than //
ITEM, since it is clear that all descendants of the ITEM elements must be retained, but not their
ancestors. If the supplied query selects nodes from the input document, then Saxon assumes that
the application will need access to the entire subtree rooted at these nodes, but that it will not
attempt to navigate upwards or outwards from these nodes. On the other hand, nodes that are
atomized (for example in a filter) will be retained without their descendants, except as needed
to compute the filter.

The more complex the query, the less likely it is that Saxon will be able to analyze it to determine the
subset of the document required. If precise analysis is not possible, document projection has no effect.
Currently Saxon makes no attempt to analyze accesses made within user-defined functions. Also, of
course, Saxon cannot analyze the expectations of external (Java) functions called from the query.

Currently document projection is supported only for XQuery, and it works only when a document
is parsed and loaded for the purpose of executing a single query. It is possible, however, to use the
mechanism to create a manual filter for source documents if the required subset of the document is
known. To achieve this, create a query that selects the required parts of the document supplied as
the context item, and compile it to a s9api XQueryExecutable. The query does not have to do
anything useful: the only requirement is that the result of the query on the subset document must be
the same as the result on the original document. Then supply this XQueryExecutable to the s9api
DocumentBuilder used to build the document.

Of course, when document projection is used manually like this then it entirely a user responsibility
to ensure that the selected part of the document contains all the nodes required.

References to W3C DTDs
During 2010-11, W3C took steps to reduce the burden of meeting requests for commonly-referenced
documents such as the DTD for XHTML. The W3C web server is routinely rejecting such requests,
causing parsing failures. In response to this, Saxon now includes copies of these documents within the
issued JAR file, and recognizes requests for these documents, satisfying the request using the local
copy.

This is done only in cases where Saxon itself instantiates the XML parser. In
cases where the user application instantiates an XML parser, the same effect can
be achieved by setting the EntityResolver StandardEntityResolver [Javadoc:
net.sf.saxon.lib.StandardEntityResolver] as a property of the XMLReader
(parser).

Handling Source Documents

156

The documents recognized by the StandardEntityResolver are:

Table 7.3.

Public ID System ID Saxon resource name

-//W3C//ENTITIES Latin 1 for
XHTML//EN

http://www.w3.org/TR/xhtml1/
DTD/xhtml-lat1.ent

w3c/xhtml-lat1.ent

-//W3C//ENTITIES Symbols for
XHTML//EN

http://www.w3.org/TR/xhtml1/
DTD/xhtml-symbol.ent

w3c/xhtml-symbol.ent

-//W3C//ENTITIES Special for
XHTML//EN

http://www.w3.org/TR/xhtml1/
DTD/xhtml-special.ent

w3c/xhtml-special.ent

-//W3C//DTD XHTML 1.0
Transitional//EN

http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd

w3c/xhtml10/xhtml1-
transitional.dtd

-//W3C//DTD XHTML 1.0
Strict//EN

http://www.w3.org/TR/xhtml1/
DTD/xhtml1-strict.dtd

w3c/xhtml10/xhtml1-strict.dtd

-//W3C//DTD XHTML 1.0
Frameset//EN

http://www.w3.org/TR/xhtml1/
DTD/xhtml1-frameset.dtd

w3c/xhtml10/xhtml1-
frameset.dtd

-//W3C//DTD XHTML Basic
1.0//EN

http://www.w3.org/TR/xhtml-
basic/xhtml-basic10.dtd

w3c/xhtml10/xhtml-basic10.dtd

-//W3C//DTD XHTML 1.1//EN http://www.w3.org/MarkUp/
DTD/xhtml11.dtd

w3c/xhtml11/xhtml11.dtd

-//W3C//DTD XHTML Basic
1.1//EN

http://www.w3.org/MarkUp/
DTD/xhtml-basic11.dtd

w3c/xhtml11/xhtml-basic11.dtd

-//W3C//ELEMENTS XHTML
Access Element 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-access-1.mod

w3c/xhtml11/xhtml-
access-1.mod

-//W3C//ENTITIES XHTML
Access Attribute Qnames 1.0//
EN

http://www.w3.org/MarkUp/
DTD/xhtml-access-
qname-1.mod

w3c/xhtml11/xhtml-access-
qname-1.mod

-//W3C//ELEMENTS XHTML
Java Applets 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-applet-1.mod

w3c/xhtml11/xhtml-
applet-1.mod

-//W3C//ELEMENTS XHTML
Base Architecture 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-arch-1.mod

w3c/xhtml11/xhtml-arch-1.mod

-//W3C//ENTITIES XHTML
Common Attributes 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-attribs-1.mod

w3c/xhtml11/xhtml-
attribs-1.mod

-//W3C//ELEMENTS XHTML
Base Element 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-base-1.mod

w3c/xhtml11/xhtml-base-1.mod

-//W3C//ELEMENTS XHTML
Basic Forms 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-basic-form-1.mod

w3c/xhtml11/xhtml-basic-
form-1.mod

-//W3C//ELEMENTS XHTML
Basic Tables 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-basic-table-1.mod

w3c/xhtml11/xhtml-basic-
table-1.mod

-//W3C//ENTITIES XHTML
Basic 1.0 Document Model 1.0//
EN

http://www.w3.org/MarkUp/
DTD/xhtml-basic10-
model-1.mod

w3c/xhtml11/xhtml-basic10-
model-1.mod

-//W3C//ENTITIES XHTML
Basic 1.1 Document Model 1.0//
EN

http://www.w3.org/MarkUp/
DTD/xhtml-basic11-
model-1.mod

w3c/xhtml11/xhtml-basic11-
model-1.mod

-//W3C//ELEMENTS XHTML
BDO Element 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-bdo-1.mod

w3c/xhtml11/xhtml-bdo-1.mod

-//W3C//ELEMENTS XHTML
Block Phrasal 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-blkphras-1.mod

w3c/xhtml11/xhtml-
blkphras-1.mod

Handling Source Documents

157

Public ID System ID Saxon resource name

-//W3C//ELEMENTS XHTML
Block Presentation 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-blkpres-1.mod

w3c/xhtml11/xhtml-
blkpres-1.mod

-//W3C//ELEMENTS XHTML
Block Structural 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-blkstruct-1.mod

w3c/xhtml11/xhtml-
blkstruct-1.mod

-//W3C//ENTITIES XHTML
Character Entities 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-charent-1.mod

w3c/xhtml11/xhtml-
charent-1.mod

-//W3C//ELEMENTS XHTML
Client-side Image Maps 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-csismap-1.mod

w3c/xhtml11/xhtml-
csismap-1.mod

-//W3C//ENTITIES XHTML
Datatypes 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-datatypes-1.mod

w3c/xhtml11/xhtml-
datatypes-1.mod

-//W3C//ELEMENTS XHTML
Editing Markup 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-edit-1.mod

w3c/xhtml11/xhtml-edit-1.mod

-//W3C//ENTITIES XHTML
Intrinsic Events 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-events-1.mod

w3c/xhtml11/xhtml-
events-1.mod

-//W3C//ELEMENTS XHTML
Forms 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-form-1.mod

w3c/xhtml11/xhtml-
form-1.mod

-//W3C//ELEMENTS XHTML
Frames 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-frames-1.mod

w3c/xhtml11/xhtml-
frames-1.mod

-//W3C//ENTITIES XHTML
Modular Framework 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-framework-1.mod

w3c/xhtml11/xhtml-
framework-1.mod

-//W3C//ENTITIES XHTML
HyperAttributes 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-
hyperAttributes-1.mod

w3c/xhtml11/xhtml-
hyperAttributes-1.mod

-//W3C//ELEMENTS XHTML
Hypertext 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-hypertext-1.mod

w3c/xhtml11/xhtml-
hypertext-1.mod

-//W3C//ELEMENTS XHTML
Inline Frame Element 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-iframe-1.mod

w3c/xhtml11/xhtml-
iframe-1.mod

-//W3C//ELEMENTS XHTML
Images 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-image-1.mod

w3c/xhtml11/xhtml-
image-1.mod

-//W3C//ELEMENTS XHTML
Inline Phrasal 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-inlphras-1.mod

w3c/xhtml11/xhtml-
inlphras-1.mod

-//W3C//ELEMENTS XHTML
Inline Presentation 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-inlpres-1.mod

xhtml11/xhtml-inlpres-1.mod

-//W3C//ELEMENTS XHTML
Inline Structural 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-inlstruct-1.mod

w3c/xhtml11/xhtml-
inlstruct-1.mod

-//W3C//ENTITIES XHTML
Inline Style 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-inlstyle-1.mod

w3c/xhtml11/xhtml-
inlstyle-1.mod

-//W3C//ELEMENTS XHTML
Inputmode 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-inputmode-1.mod

w3c/xhtml11/xhtml-
inputmode-1.mod

-//W3C//ELEMENTS XHTML
Legacy Markup 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-legacy-1.mod

w3c/xhtml11/xhtml-
legacy-1.mod

-//W3C//ELEMENTS XHTML
Legacy Redeclarations 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-legacy-
redecl-1.mod

w3c/xhtml11/xhtml-legacy-
redecl-1.mod

-//W3C//ELEMENTS XHTML
Link Element 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-link-1.mod

w3c/xhtml11/xhtml-link-1.mod

-//W3C//ELEMENTS XHTML
Lists 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-list-1.mod

w3c/xhtml11/xhtml-list-1.mod

Handling Source Documents

158

Public ID System ID Saxon resource name

-//W3C//ELEMENTS XHTML
Metainformation 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-meta-1.mod

w3c/xhtml11/xhtml-
meta-1.mod

-//W3C//ELEMENTS XHTML
Metainformation 2.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-meta-2.mod

w3c/xhtml11/xhtml-
meta-2.mod

-//W3C//ENTITIES XHTML
MetaAttributes 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-
metaAttributes-1.mod

w3c/xhtml11/xhtml-
metaAttributes-1.mod

-//W3C//ELEMENTS XHTML
Name Identifier 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-nameident-1.mod

w3c/xhtml11/xhtml-
nameident-1.mod

-//W3C//NOTATIONS
XHTML Notations 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-notations-1.mod

w3c/xhtml11/xhtml-
notations-1.mod

-//W3C//ELEMENTS XHTML
Embedded Object 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-object-1.mod

w3c/xhtml11/xhtml-
object-1.mod

-//W3C//ELEMENTS XHTML
Param Element 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-param-1.mod

w3c/xhtml11/xhtml-
param-1.mod

-//W3C//ELEMENTS XHTML
Presentation 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-pres-1.mod

w3c/xhtml11/xhtml-pres-1.mod

-//W3C//ENTITIES XHTML-
Print 1.0 Document Model 1.0//
EN

http://www.w3.org/MarkUp/
DTD/xhtml-print10-
model-1.mod

w3c/xhtml11/xhtml-print10-
model-1.mod

-//W3C//ENTITIES XHTML
Qualified Names 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-qname-1.mod

w3c/xhtml11/xhtml-
qname-1.mod

-//W3C//ENTITIES XHTML
+RDFa Document Model 1.0//
EN

http://www.w3.org/MarkUp/
DTD/xhtml-rdfa-model-1.mod

w3c/xhtml11/xhtml-rdfa-
model-1.mod

-//W3C//ENTITIES XHTML
RDFa Attribute Qnames 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-rdfa-qname-1.mod

w3c/xhtml11/xhtml-rdfa-
qname-1.mod

-//W3C//ENTITIES XHTML
Role Attribute 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-role-1.mod

w3c/xhtml11/xhtml-role-1.mod

-//W3C//ENTITIES XHTML
Role Attribute Qnames 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-role-qname-1.mod

w3c/xhtml11/xhtml-role-
qname-1.mod

-//W3C//ELEMENTS XHTML
Ruby 1.0//EN

http://www.w3.org/TR/ruby/
xhtml-ruby-1.mod

w3c/xhtml11/xhtml-ruby-1.mod

-//W3C//ELEMENTS XHTML
Scripting 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-script-1.mod

w3c/xhtml11/xhtml-
script-1.mod

-//W3C//ELEMENTS XHTML
Server-side Image Maps 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-ssismap-1.mod

w3c/xhtml11/xhtml-
ssismap-1.mod

-//W3C//ELEMENTS XHTML
Document Structure 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-struct-1.mod

w3c/xhtml11/xhtml-
struct-1.mod

-//W3C//DTD XHTML Style
Sheets 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-style-1.mod

w3c/xhtml11/xhtml-style-1.mod

-//W3C//ELEMENTS XHTML
Tables 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-table-1.mod

w3c/xhtml11/xhtml-
table-1.mod

-//W3C//ELEMENTS XHTML
Target 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-target-1.mod

w3c/xhtml11/xhtml-
target-1.mod

-//W3C//ELEMENTS XHTML
Text 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml-text-1.mod

w3c/xhtml11/xhtml-text-1.mod

Handling Source Documents

159

Public ID System ID Saxon resource name

-//W3C//ENTITIES XHTML
1.1 Document Model 1.0//EN

http://www.w3.org/MarkUp/
DTD/xhtml11-model-1.mod

w3c/xhtml11/xhtml11-
model-1.mod

-//W3C//MathML 1.0//EN http://www.w3.org/Math/DTD/
mathml1/mathml.dtd

w3c/mathml/mathml1/
mathml.dtd

-//W3C//DTD MathML 2.0//EN http://www.w3.org/Math/DTD/
mathml2/mathml2.dtd

w3c/mathml/mathml2/
mathml2.dtd

-//W3C//DTD MathML 3.0//EN http://www.w3.org/Math/DTD/
mathml3/mathml3.dtd

w3c/mathml/mathml3/
mathml3.dtd

-//W3C//DTD SVG 1.0//EN http://www.w3.org/TR/2001/
REC-SVG-20010904/DTD/
svg10.dtd

w3c/svg10/svg10.dtd

-//W3C//DTD SVG 1.1//EN http://www.w3.org/Graphics/
SVG/1.1/DTD/svg11.dtd

w3c/svg11/svg11.dtd

-//W3C//DTD SVG 1.1 Tiny//
EN

http://www.w3.org/Graphics/
SVG/1.1/DTD/svg11-tiny.dtd

w3c/svg11/svg11-tiny.dtd

-//W3C//DTD SVG 1.1 Basic//
EN

http://www.w3.org/Graphics/
SVG/1.1/DTD/svg11-basic.dtd

w3c/svg11/svg11-basic.dtd

-//XML-DEV//ENTITIES
RDDL Document Model 1.0//
EN

http://www.rddl.org/xhtml-rddl-
model-1.mod

w3c/rddl/xhtml-rddl-
model-1.mod

-//XML-DEV//DTD XHTML
RDDL 1.0//EN

http://www.rddl.org/rddl-
xhtml.dtd

w3c/rddl/rddl-xhtml.dtd

-//XML-DEV//ENTITIES
RDDL QName Module 1.0//EN

http://www.rddl.org/rddl-
qname-1.mod

rddl/rddl-qname-1.mod

-//XML-DEV//ENTITIES
RDDL Resource Module 1.0//
EN

http://www.rddl.org/rddl-
resource-1.mod

rddl/rddl-resource-1.mod

-//W3C//DTD Specification
V2.10//EN

http://www.w3.org/2002/
xmlspec/dtd/2.10/xmlspec.dtd

w3c/xmlspec/xmlspec.dtd

-//W3C//DTD XMLSCHEMA
200102//EN

http://www.w3.org/2001/
XMLSchema.dtd

w3c/xmlschema/
XMLSchema.dtd

This Saxon feature can be disabled by setting the configuration property
FeatureKeys.ENTITY_RESOLVER_CLASS [Javadoc:
net.sf.saxon.lib.FeatureKeys] to null; it is also possible to set it to a different
EntityResolver class (perhaps a subclass of Saxon's StandardEntityResolver) that
varies the behavior. If an EntityResolver is set in the relevant ParseOptions or in an
AugmentedSource then this will override any EntityResolver set at the configuration level.

160

Chapter 8. XML Schema Processing
Introduction

Saxon can be used as a free-standing schema processor in its own right, either from the command line
or from a Java application. In addition, Saxon can be used as a schema-aware XSLT processor or as
a schema-aware XQuery processor.

Saxon-EE supports the schema validation APIs in JAXP 1.3, as well as its own native APIs.

Running Validation from the Command Line
The Java class com.saxonica.Validate allows you to validate a source XML document against
a given schema, or simply to check a schema for internal correctness.

To validate one or more source documents, using the Java platform, write:

java com.saxonica.Validate [options] source.xml...

The equivalent on the .NET platform is:

Validate [options] source.xml...

It is possible to use glob syntax to process multiple files, for example Validate *.xml.

In the above form, the command relies on the use of xsi:schemaLocation attributes within the
instance document to identify the schema to be loaded. As an alternative, the schema can be specified
on the command line:

[java com.saxonica.Validate | Validate] -xsd:schema.xsd -s:instance.xml

In this form of the command, it is possible to specify multiple schema documents and/or multiple
instance documents, in both cases as a semicolon-separated list. Glob syntax (such as *.xml) is
available only if the "-s:" prefix is omitted, because the shell has to recognize the argument as a
filename.

Thus, source files to be validated can be listed either using the -s option, or in any argument that is
not prefixed with "-". This allows the standard wildcard expansion facilities of the shell interpreter to
be used, for example *.xml validates all files in the current directory with extension "xml".

If no instance documents are supplied, the effect of the command is simply to check a schema for
internal correctness. So a schema can be verified using the command:

[java com.saxonica.Validate | Validate] -xsd:schema.xsd

More generally the syntax of the command is:

[java com.saxonica.Validate | Validate] [options] [params] [filenames]

where options generally take the form -code:value and params take the form keyword=value.

The options are as follows (in any order):

Table 8.1.

-catalog:filenames is either a file name or a list of file names
separated by semicolons; the files are OASIS
XML catalogs used to define how public
identifiers and system identifiers (URIs) used in a
source document or schema are to be redirected,

XML Schema Processing

161

typically to resources available locally. For more
details see Using XML Catalogs.

-config:filename Loads options from a configuration file. This must
describe a schema-aware configuration.

-init:initializer The value is the name of a user-
supplied class that implements the interface
net.sf.saxon.lib.Initializer
[Javadoc:
net.sf.saxon.lib.Initializer]; this
initializer will be called during the initialization
process, and may be used to set any options
required on the Configuration [Javadoc:
net.sf.saxon.Configuration]
programmatically.

-limits:min,max Sets upper limits on the values of minOccurs and
maxOccurs allowed in a schema content model,
in cases where Saxon is not able to implement the
rules using a finite state machine with counters.
For further details see Handling minOccurs and
maxOccurs

-r:classname Use the specified URIResolver to process
the URIs of all schema documents and source
documents. The URIResolver is a user-defined
class, that implements the URIResolver
interface defined in JAXP, whose function
is to take a URI supplied as a string, and
return a SAX InputSource. It is invoked
to process URIs found in xs:include
and xs:import schemaLocation
attributes of schema documents, the
URIs found in xsi:schemaLocation
and xsi:noNamespaceSchemaLocation
attributes in the source document, and (if -u is
also specified) to process the URI of the source
file provided on the command line.Specifying -
r:org.apache.xml.resolver.tools.CatalogResolver
selects the Apache XML resolver (part of the
Apache Commons project, which must be on the
classpath) and enables URIs to be resolved via a
catalog, allowing references to external web sites
to be redirected to local copies.

-s:file;file... Supplies a list of source documents to be
validated. Each document is validated using the
same options. The value is a list of filenames
separated by semicolons. It is also possible
to specify the names of source documents as
arguments without any preceding option flag; in
this case shell wildcards can be used. A filename
can be specified as "-" to read the source document
from standard input.

-scmin:filename Loads a precompiled schema component model
from the given file. The file should be generated
in a previous run using the -scmout option. When
this option is used, the -xsd option should not be

XML Schema Processing

162

present. Schemas loaded from an SCM file are
assumed to be valid, without checking.

-scmout:filename Makes a copy of the compiled schema (providing
it is valid) as a schema component model to
the specified XML file. This file will contain
schema components corresponding to all the
loaded schema documents. This option may be
combined with other options: the SCM file is
written after all document instance validation has
been carried out.

-stats:filename Requests creation of an XML document
containing statistics showing which schema
components were used during the validation
episode, and how often (coverage data). This
data can be used as input to further processes to
produce user-readable reports; for example the
data could be combined with the output of -
scmout to show which components were not
used at all during the validation.

-t Requests display of version and timing
information to the standard error output. This also
shows all the schema documents that have been
loaded.

-top:element-name Requires that the outermost element of the
instance being validated has the required name.
This is written in Clark notation format
"{uri}local".

-u Indicates that the name of the source document
and schema document are supplied as URIs;
otherwise they are taken as filenames, unless they
start with "http:" or "file:", in which case they they
are taken as URLs.

-val:strict|lax Invokes strict or lax validation (default is strict).
Lax validation validates elements only if there is
an element declaration to validate them against, or
if they have an xsi:type attribute.

-x:classname Requests use of the specified SAX parser for
parsing the source file. The classname must be
the fully-qualified name of a Java class that
implements the org.xml.sax.XMLReader
interface. In the absence of this argument, the
standard JAXP facilities are used to locate an
XML parser. Note that the XML parser performs
the raw XML parsing only; Saxon always
does the schema validation itself.Selecting -
x:org.apache.xml.resolver.tools.ResolvingXMLReader
selects a parser configured to use the Apache
entity resolver, so that DTD and other external
references in source documents are resolved via a
catalog. The parser (part of the Apache Commons
project) must be on the classpath.

-xi:on|off Apply XInclude processing to all input XML
documents (both schema documents and instance
documents). This currently only works when

XML Schema Processing

163

documents are parsed using the Xerces parser,
which is the default in JDK 1.5 and later.

-xmlversion:1.0|1.1 If set to 1.1, allows XML 1.1 and XML
Namespaces 1.1 constructs. This option must be
set if source documents using XML 1.1 are to
be validated, or if the schema itself is an XML
1.1 document. This option causes types such as
xs:Name, xs:QName, and xs:ID to use the XML
1.1 definitions of these constructs.

-xsd:file;file... Supplies a list of schema documents to be
used for validation. The value is a list
of filenames separated by semicolons. If no
source documents are supplied, the schema
documents will be processed and any errors
in the schema will be notified. This option
must not be used when -scmin is specified.
The option may be omitted, in which case
the schema to be used for validation will
be located using the xsi:schemaLocation
and xsi:noNamespaceSchemaLocation
attributes in the source document. A filename
can be specified as "-" to read the schema from
standard input.

-xsiloc:on|off If set to "on" (the default) the schema
processor attempts to load any schema documents
referenced in xsi:schemaLocation
and xsi:noNamespaceSchemaLocation
attributes in the instance document, unless a
schema for the specified namespace (or non-
namespace) is already available. If set to "off",
these attributes are ignored.

--:value Set a feature defined in the
Configuration [Javadoc:
net.sf.saxon.Configuration]
interface. The names of features are defined in the
Javadoc for class FeatureKeys [Javadoc:
net.sf.saxon.lib.FeatureKeys]: the
value used here is the part of the name after
the last "/", for example --allow-external-
functions:off. Only features accepting a
string or boolean may be set; for booleans the
values true/false or on/off are recognized.

-? Display command syntax

The results of processing the schema, and of validating the source document against the schema, are
written to the standard error output. Unless the -t option is used, successful processing of the source
document and schema results in no output.

Controlling Validation from Java
Schema validation can be controlled either using the standard JAXP Java interface, or using Saxon's
own interface. The two approaches are described in the following sections. The main advantage of
using JAXP is that it is portable; the main advantage of s9api is that it is better integrated across the
range of Saxon XML processing interfaces.

• Schema Processing using s9api

XML Schema Processing

164

• Schema Processing using JAXP

Schema Processing using s9api
The s9api interface allows schemas to be loaded into a Processor [Javadoc:
net.sf.saxon.s9api.Processor], and then to be used for validating instances, or for
schema-aware XSLT and XQuery processing.

The main steps are:

1. Create a Processor (net.sf.saxon.s9api.Processor [Javadoc:
net.sf.saxon.s9api.Processor]) and call its getSchemaManager() method to get
a SchemaManager [Javadoc: net.sf.saxon.s9api.SchemaManager].

2. If required, set options on the SchemaManager [Javadoc:
net.sf.saxon.s9api.SchemaManager] to control the way in which schema documents
will be loaded.

3. Load a schema document by calling the load() method, which takes a JAXP Source object as its
argument. The resulting schema document is available to all applications run within the containing
Processor [Javadoc: net.sf.saxon.s9api.Processor].

4. To validate an instance document, call the newSchemaValidator method on the
SchemaManager [Javadoc: net.sf.saxon.s9api.SchemaManager] object.

5. Set options on the SchemaValidator [Javadoc:
net.sf.saxon.s9api.SchemaValidator] to control the way in which a particular
validation episode is performed, and then invoke its validate() method to validate an instance
document.

Note that additional schemas referenced from the xsi:schemaLocation attributes within the
source documents will be loaded as necessary. A target namespace is ignored if there is already a
loaded schema for that namespace; Saxon makes no attempt to load multiple schemas for the same
namespace and check them for consistency.

Although the API is defined in such a way that a SchemaValidator [Javadoc:
net.sf.saxon.s9api.SchemaValidator] is created for a particular SchemaManager
[Javadoc: net.sf.saxon.s9api.SchemaManager], in the Saxon implementation the
schema components that are available to the validator are not only the components within that schema,
but all the components that form part of any schema registered with the Processor (or indeed, with
the underlying Configuration)

The SchemaValidator implements the Destination [Javadoc:
net.sf.saxon.s9api.Destination] interface, which means it can be used to receive input
from any process that writes to a Destination, for example an XSLT transformation or an XQuery
query. The result of validation can also be sent to any Destination, for example an XSLT
transformer.

Schema Processing using JAXP
Applications can invoke schema processing using the APIs provided in JAXP 1.3. This
makes Saxon interchangeable with other schema processors implementing this interface. There
is full information on these APIs in the Java documentation. The two main mechanisms
are the Validator class, and the ValidatorHandler class. Sample applications using
these interfaces are provided in the samples/java directory. Saxon also supplies the class
com.saxonica.jaxp.ValidatingReader, which implements the SAX2 XMLReader
interface, allowing it to be used as a schema-validating XML parser.

The main steps are:

XML Schema Processing

165

1. Create a SchemaFactory, by calling SchemaFactory.getInstance() with the
argument "http://www.w3.org/2001/XMLSchema", and with the Java system
properties set up to ensure that Saxon is loaded as the chosen schema processor.
Saxon will normally be loaded as the default schema processor if Saxon-
EE is present on the classpath, but to make absolutely sure, set the system
property javax.xml.validation.SchemaFactory:http://www.w3.org/2001/
XMLSchema to the value com.saxonica.jaxp.SchemaFactoryImpl [Javadoc:
com.saxonica.jaxp.SchemaFactoryImpl]. Note that if you set this property using a
property file, colons in the property name must be escaped as "\:".

2. Process a schema document by calling one of the several newSchema methods on the returned
SchemaFactory.

3. Create either a Validator or a ValidatorHandler from this returned Schema.

4. Use the Validator or ValidatorHandler to process one or more source documents.

Note that additional schemas referenced from the xsi:schemaLocation attributes within the
source documents will be loaded as necessary. A target namespace is ignored if there is already a
loaded schema for that namespace; Saxon makes no attempt to load multiple schemas for the same
namespace and check them for consistency.

Although the API is defined in such a way that a Validator or ValidatorHandler is
created for a particular Schema, in the Saxon implementation the schema components that
are available to the validator are not only the components within that schema, but all the
components that form part of any schema registered with the Configuration [Javadoc:
net.sf.saxon.Configuration].

Another way to control validation from a Java application is to run a JAXP identity transformation,
having first set the option to perform schema validation. The following code (from the sample
application QuickValidator.java) illustrates this:

try {
 System.setProperty(
 "javax.xml.transform.TransformerFactory",
 "com.saxonica.SchemaAwareTransformerFactory");
 TransformerFactory factory =
 TransformerFactory.newInstance();
 factory.setAttribute(FeatureKeys.SCHEMA_VALIDATION,
 new Integer(Validation.STRICT));
 Transformer trans = factory.newTransformer();
 StreamSource source =
 new StreamSource(new File(args[0]).toURI().toString());
 SAXResult sink =
 new SAXResult(new DefaultHandler());
 trans.transform(source, sink);
} catch (TransformerException err) {
 System.err.println("Validation failed");
}

If you set an ErrorListener on the TransformerFactory, then you can control the way that
error messages are output.

If you want to validate against a schema without hard-coding the URI of the schema into the source
document, you can do this by pre-loading the schema into the TransformerFactory. This
extended example (again from the sample application QuickValidator.java) illustrates this:

try {
 System.setProperty(

XML Schema Processing

166

 "javax.xml.transform.TransformerFactory",
 "com.saxonica.SchemaAwareTransformerFactory");
 TransformerFactory factory =
 TransformerFactory.newInstance();
 factory.setAttribute(FeatureKeys.SCHEMA_VALIDATION,
 new Integer(Validation.STRICT));
 if (args.length > 1) {
 StreamSource schema =
 new StreamSource(new File(args[1]).toURI().toString());
 ((SchemaAwareTransformerFactory)factory).addSchema(schema);
 }
 Transformer trans = factory.newTransformer();
 StreamSource source =
 new StreamSource(new File(args[0]).toURI().toString());
 SAXResult sink =
 new SAXResult(new DefaultHandler());
 trans.transform(source, sink);
} catch (TransformerException err) {
 System.err.println("Validation failed");
}

You can preload as many schemas as you like using the addSchema method. Such schemas are
parsed, validated, and compiled once, and can be used as often as you like for validating multiple
source documents. You cannot unload a schema once it has been loaded. If you want to remove or
replace a schema, start afresh with a new TransformerFactory.

Behind the scenes, the TransformerFactory uses a Configuration
object to hold all the configuration information. The basic
Saxon product uses the class net.sf.saxon.TransformerFactoryImpl
for the TransformerFactory, and net.sf.saxon.Configuration for
the underlying configuration information. The schema-aware product
subclasses these with com.saxonica.config.SchemaAwareTransformerFactory
[Javadoc: com.saxonica.config.SchemaAwareTransformerFactory]
and com.saxonica.config.EnterpriseConfiguration [Javadoc:
com.saxonica.config.EnterpriseConfiguration] respectively. You can get hold
of the Configuration object by casting the TransformerFactory to a Saxon
TransformerFactorImpl and calling the getConfiguration() method. This gives you
more precise control, for example it allows you to retrieve the Schema object containing the schema
components for a given target namespace, and to inspect the compiled schema to establish its
properties. See the JavaDoc documentation for further details.

The programming approach outlined above, of using an identity transformer, is suitable for a
wide class of applications. For example, it enables you to insert a validation step into a SAX-
based pipeline. However, for finer control, there are lower-level interfaces available in Saxon
that you can also use. See for example the JavaDoc for the EnterpriseConfiguration
[Javadoc: com.saxonica.config.EnterpriseConfiguration] class, which
includes methods such as getElementValidator. This constructs a Receiver [Javadoc:
net.sf.saxon.event.Receiver] which acts as a validating XML event filter. This
can be inserted into a pipeline of Receivers. Saxon also provides classes to bridge
between SAX events and Receiver events: ReceivingContentHandler [Javadoc:
net.sf.saxon.event.ReceivingContentHandler] and ContentHandlerProxy
[Javadoc: net.sf.saxon.event.ContentHandlerProxy] respectively.

Running validation from Ant
It is possible to use the Saxon schema validator using the standard Ant tasks xmlvalidate and
schemavalidate. To use Saxon rather than Xerces as the validation engine, specify the attribute

XML Schema Processing

167

classname="com.saxonica.jaxp.ValidatingReader", and make sure Saxon-EE is on
the classpath.

The schema to be used for validation can be specified using the xsi:schemaLocation
and xsi:noNamespaceSchemaLocation attributes in the instance document, or (in the
case of the schemavalidate task) using the schemavalidate/schema child element or
the schemavalidate/@noNamespaceFile or schemavalidate/@noNamespaceURL
attributes.

The attributes lenient and fullchecking have no effect.

The child element schemavalidate/attribute can be used to set options. Any option defined
by the constants in class net.sf.saxon.FeatureKeys can be specified, provided the required
value is expressible as a string (for boolean values, use "true" and "false"). Saxon also recognizes some
property names defined by the Apache Xerces product, for compatibility.

Properties of particular interest include the following:

Table 8.2.

Name Value

http://saxon.sf.net/feature/licenseFileLocation The filename where the Saxon-EE license file is
found

http://saxon.sf.net/feature/
schemaURIResolverClass

Class used to resolve URIs of schema documents

http://saxon.sf.net/feature/schema-validation-
mode

strict or lax: determines whether validation
fails if no element declaration can be found for the
top-level element.

http://saxon.sf.net/feature/
standardErrorOutputFile

Log file to capture validation errors

http://saxon.sf.net/feature/xsd-version 1.0 or 1.1 depending on the version of the XML
Schema (XSD) Recommendation to be supported.
Default is 1.0

Schema-Aware XSLT from the Command
Line

To run a schema-aware transformation from the command line, use the
com.saxonica.Transform [Javadoc: com.saxonica.Transform] command instead
of the usual net.sf.saxon.Transform. This has an additional option -val:strict to request
strict validation of the source document, or -val:lax for lax validation. This applies not only to the
principal source document loaded from the command line, but to all documents loaded via the doc()
and document() functions.

The schemas to be used to validate these source documents can be specified either by using
the xsl:import-schema declaration in the stylesheet, or using xsi:schemaLocation (or
xsi:noNamespaceSchemaLocation) attributes within the source documents themselves, or by
using the -xsd option on the command line.

Validating the source document has several effects. Most obviously, it will cause the transformation
to fail if the document is invalid. It will also cause default values for attributes and elements to be
expanded, so they will appear to the stylesheet as if they were present on the source document. In
addition, element and attribute nodes that have been validated will be annotated with a type. This
enables operations to be performed in a type-safe way. This may cause error messages, for example if
you try to use an xs:decimal value as an argument to a function that expects a string. It may also
cause some operations to produce different results: for example when using elements or attribute that

XML Schema Processing

168

have been given a list type in the schema, the typed value of the node will appear in the stylesheet as
a sequence rather than as a single string value.

Saxon-EE also allows you to validate result documents (both final result documents and temporary
trees), using the validation and type attributes. For details of these, refer to the XSLT 2.0
specification. Validation of result documents is done on-the-fly, so if the stylesheet attempts to
produce invalid output, you will usually get an error message that identifies the offending instruction
in the stylesheet. Type annotations on final result documents are lost if you send the output to a
standard JAXP Result object (whether it's a StreamResult, SAXResult, or DOMResult, but
they remain available if you capture the output in a Saxon Receiver or in a DOMResult that
encapsulates a Saxon NodeInfo [Javadoc: net.sf.saxon.om.NodeInfo]. For details of
the way in which type annotations are represented in the Saxon implementation of the data model, see
the JavaDoc documentation. The getTypeAnnotation() method on a NodeInfo object returns
an integer fingerprint, which can be used to locate the name of the relevant type in the NamePool
[Javadoc: net.sf.saxon.om.NamePool]. The NamePool also provides the ability to
locate the actual type definitions in the schema model, starting from these integer fingerprints.

The -vw option on the command line causes validation errors encountered in processing a final result
tree to be treated as warnings, allowing processing to continue. This allows more than one error to
be reported in a single run. The result document is serialized as if validation were successful, but
with XML comments inserted to show where the validation errors were found. This option does not
necessarily recover from all validation errors, for example at present it does not recover from errors in
uniqueness or referential constraints. It applies only to result trees validated using the validation
attribute of xsl:result-document.

With the schema-aware version of Saxon, type declarations (the as attribute on elements
such as xsl:function, xsl:variable, and xsl:param) can refer to schema-defined
types, for example you can write <xsl:variable name="a" as="schema-
element(ipo:invoice)"/>. You can also use the element() and attribute() tests to
select nodes by their schema type in path expressions and match patterns.

Saxon does a certain amount of static analysis of the XSLT and XPath code based on
schema information. For example, if a template rule is defined with a match pattern such as
match="schema-element(invoice)", then it will check any path expressions used in the
template rule to ensure that they are valid against the schema when starting from invoice as the
context node. Similarly, if the result type of a template rule or function is declared using an as attribute,
then Saxon will check any literal result elements in the body of the template or function to ensure
that they are consistent with this declared type. This analysis can reveal many simple user errors at
compile time that would otherwise result in run-time errors or simply in incorrect output. But this
is only possible if the source code explicitly declares the types of parameters, template and function
results, and match patterns.

Schema-Aware XSLT from Java
When transformations are controlled using the Java JAXP interfaces, the equivalent to
the -val option is to set the attribute "http://saxon.sf.net/feature/schema-validation" on the
TransformerFactory to the value net.sf.saxon.lib.Validation.STRICT [Javadoc:
net.sf.saxon.lib.Validation#STRICT]. Alternatively, you can set the value to
Validation.LAX [Javadoc: net.sf.saxon.lib.Validation#STRICT]. This
attribute name is available as the constant FeatureKeys.SCHEMA_VALIDATION [Javadoc:
net.sf.saxon.lib.FeatureKeys#SCHEMA_VALIDATION].

This option switches validation on for all source documents used by any transformation under the
control of this TransformerFactory. If you want finer control, so that some documents are
validated and others are not, you can achieve this by using the AugmentedSource [Javadoc:
net.sf.saxon.lib.AugmentedSource] object. An AugmentedSource is a wrapper
around a normal JAXP Source object, in which additional properties can be set: for example, a
property to request validation of the document. The AugmentedSource itself implements the JAXP

XML Schema Processing

169

Source interface, so it can be used anywhere that an ordinary Source object can be used, notably
as the first argument to the transform method of the Transformer, and as the return value from
a user-written URIResolver.

If the PTreeURIResolver [Javadoc: com.saxonica.ptree.PTreeURIResolver]
is used, it is also possible to control validation for each source document by means of query parameters
in the document URI. For example, document('source.xml?val=strict') requests the
loading of the file source.xml with strict validation.

The attribute FeatureKeys.VALIDATION_WARNINGS [Javadoc:
net.sf.saxon.lib.FeatureKeys#VALIDATION_WARNINGS] has the same effect as the -
vw option on the command line: validation errors encountered when processing the final result tree
are reported to the ErrorListener as warnings, not as fatal errors.

Schemas can be loaded using either of the techniques used with the command-line interface: that
is, by specifying them in the xsl:import-schema directive in the stylesheet, or by including
them in an xsi:schemaLocation attribute in a source document. In addition, they can be loaded
using the addSchema() method on the SchemaAwareTransformerFactory [Javadoc:
com.saxonica.config.SchemaAwareTransformerFactory] class.

All schemas that are loaded are cached as part of the TransformerFactory (or more specifically,
as part of the Configuration [Javadoc: net.sf.saxon.Configuration] object
owned by the TransformerFactory). This is true whether the schema is loaded explicitly using
the Java API, whether it is loaded as a result of xsl:import-schema, or whether it is referenced in
an xsi:schemaLocation attribute in a source document. There can only be one schema document
loaded for each namespace: any further attempts to load a schema for a given target namespace
will return the existing loaded schema, rather than loading a new one. Note in particular that this
means there can only be one loaded no-namespace schema document. If you want to force loading
of a different schema document for an existing namespace, the only way to do it is to create a new
TransformerFactory.

If you are validating the result tree, and you want your application to have access to the type
annotations in the validated tree, then you should specify as the result of the transformation either a
user-written Receiver, or a DOMResult that wraps a Saxon DocumentInfo object. Note that
type annotations are supported only with the TinyTree implementation.

Schema-Aware XQuery from the Command
Line

To run a schema-aware query from the command line, use the usual command
net.sf.saxon.Query [Javadoc: net.sf.saxon.Query]. This has an option -
val:strict to request strict validation of the source document, or -val:lax to request lax
validation. This applies not only to the principal source document loaded using the -s option on
the command line, but to all documents loaded via the doc() functions, or supplied as additional
command line parameters in the form +param=doc.xml.

The schemas to be used to validate these source documents can be specified either by using
the import schema declaration in the query prolog, or using xsi:schemaLocation (or
xsi:noNamespaceSchemaLocation) attributes within the source documents themselves, or by
using the -xsd option on the command line.

Validating the source document has several effects. Most obviously, it will cause the query to fail if
the document is invalid. It will also cause default values for attributes and elements to be expanded,
so they will appear to the query as if they were present on the source document. In addition, element
and attribute nodes that have been validated will be annotated with a type. This enables operations
to be performed in a type-safe way. This may cause error messages, for example if you try to use an
xs:decimal value as an argument to a function that expects a string. It may also cause some operations
to produce different results: for example when using elements or attributes that have been given a list

XML Schema Processing

170

type in the schema, the typed value of the node will appear in the stylesheet as a sequence rather than
as a single string value.

The enterprise edition of Saxon also allows you to validate result documents (both final result
documents and intermediate results). By default, elements constructed by the query are validated
in lax mode, which means that they are validated if a schema declaration is available, and
are not validated otherwise. You can set a different initial validation mode either using the
declare validation declaration in the Query Prolog, or by issuing a call such as
staticQueryContext.pushValidationMode(Validation.SKIP) in the calling API.

The -vw option on the command line causes validation errors encountered in processing a final result
tree to be treated as warnings, allowing processing to continue. This allows more than one error to
be reported in a single run. The result document is serialized as if validation were successful, but
with XML comments inserted to show where the validation errors were found. This option does not
necessarily recover from all validation errors, for example at present it does not recover from errors
in uniqueness or referential constraints.

By default, the validation context for element constructors in the query depends on the textual nesting
of the element constructors as written in the query. You can change the validation context (and the
validation mode) if you need to, by using a validate{} expression within the query. For details
of this expression, refer to the XQuery 1.0 specification. Validation of result documents is done on-
the-fly, so if the query attempts to produce invalid output, you will usually get an error message that
identifies the approximate location in the query where the error occurred.

With the enterprise edition of Saxon, declarations of functions and variables can refer
to schema-defined types, for example you can write let $a as schema-
element(ipo:invoice)* := //inv. You can also use the element() and attribute()
tests to select nodes by their schema type in path expressions.

Saxon-EE does a certain amount of static analysis of the XQuery code based on schema
information. For example, if a function argument is defined with a type such as as="schema-
element(invoice)", then it will check any path expressions used in the function body to ensure
that they are valid against the schema when starting from invoice as the context node. Similarly, if
the result type of a function is declared using an as attribute, then Saxon will check any direct element
constructors in the body of the function to ensure that they are consistent with this declared type. This
analysis can reveal many simple user errors at compile time that would otherwise result in run-time
errors or simply in incorrect output. But this is only possible if the source code explicitly declares the
types of variables and of function arguments and results.

Schema-Aware XQuery from Java
When queries are controlled using the Java API, the equivalent to the -
val option is to create a EnterpriseConfiguration [Javadoc:
com.saxonica.config.EnterpriseConfiguration] instead of a Configuration
object, and then to call
setSchemaValidationMode(net.sf.saxon.lib.Validation.STRICT) on this
object. The value Validation.LAX [Javadoc:
net.sf.saxon.lib.Validation#LAX] can also be used.

This option switches validation on for all source documents used by any transformation under the
control of this EnterpriseConfiguration. If you want finer control, so that some documents
are validated and others are not, you can achieve this by using the AugmentedSource [Javadoc:
net.sf.saxon.lib.AugmentedSource] object. An AugmentedSource is a wrapper
around a normal JAXP Source object, in which additional properties can be set: for example, a
property to request validation of the document. The AugmentedSource itself implements the JAXP
Source interface, so it can be used anywhere that an ordinary Source object can be used, for
example as the first argument to the buildDocument() method of the QueryProcessor, and
as the return value from a user-written URIResolver.

XML Schema Processing

171

If the PTreeURIResolver [Javadoc: com.saxonica.ptree.PTreeURIResolver]
is used, it is also possible to control validation for each source document by means of query parameters
in the document URI. For example, doc('source.xml?val=strict') requests the loading of
the file source.xml with strict validation.

The Configuration [Javadoc: net.sf.saxon.Configuration] method
setValidationWarnings() has the same effect as the -vw option on the command
line: validation errors encountered when processing the final result tree are reported to the
ErrorListener as warnings, not as fatal errors. They are also reported as XML comments in the
result tree.

Schemas can be loaded using either of the techniques used with the command-line interface: that is,
by specifying them in the import schema directive in the query prolog, or by including them in an
xsi:schemaLocation attribute in a source document. In addition, they can be loaded using the
addSchemaSource() method on the EnterpriseConfiguration class.

All schemas that are loaded are cached as part of the EnterpriseConfiguration [Javadoc:
com.saxonica.config.EnterpriseConfiguration]. This is true whether the schema is
loaded explicitly using the Java API, whether it is loaded as a result of import schema in a query,
or whether it is referenced in an xsi:schemaLocation attribute in a source document. There can
only be one schema document loaded for each namespace: any further attempts to load a schema for a
given target namespace will return the existing loaded schema, rather than loading a new one. Note in
particular that this means there can only be one loaded no-namespace schema document. If you want
to force loading of a different schema document for an existing namespace, the only way to do it is
to create a new EnterpriseConfiguration.

XML Schema 1.1
Saxon-EE release 9.4 includes full support for the XML Schema 1.1 specification, which at the time of
writing is close to becoming a W3C Recommendation. The main changes between XSD 1.0 and XSD
1.1 are listed in the following pages. Note that these features are subject to change as the specifications
mature.

To enable use of XML Schema 1.1 features, set the command line flag -xsdversion:1.1 or the
equivalent in the API.

• Assertions on Complex Types

• Assertions on Simple Types

• Conditional Type Assignment

• All Model Groups

• Open Content

• Miscellaneous XSD 1.1 Features

Assertions on Complex Types
Saxon-EE supports the definition of assertions on both simple and complex types.

Assertions enable cross-validation of different elements or attributes within a complex type. For
example, specifying:

<xs:assert test="xs:date(@date-of-birth) lt xs:date(@date-of-death)"/>

will cause a run-time validation error if an instance document is validated in which the relevant
condition does not hold.

XML Schema Processing

172

Saxon allows any XPath 2.0 expression to be used in the test attribute. This includes expressions
that call Java or .NET extension functions.

For assertions on complex types, the context node supplied to the expression is the element being
validated. The element being validated is presented as type xs:anyType, but its attributes and
children, because they have already been validated, are annotated with their respective types. The
static context for the expression comes from the containing schema document: any namespace prefixes
used in the expression must be declared using namespace declarations in the schema in the usual way.
The default namespace for elements and types may be set using the xpathDefaultNamespace
attribute either on the element containing the XPath expression, or on the xs:schema element). It is
not possible to use any variables or user-defined functions within the expression.

For the purpose of generating diagnostics, Saxon recognizes an assertion of the form empty(expr)
specially. For example, if you are validating an XSLT stylesheet, you might write on the
top-level complex type <xs:assert test="empty(if (@version='1.0') then
xsl:variable[@as] else ())"/>. If you use this form of assertion, the validator will not
only report that the assertion is false for the top-level element, it will also report the location of all
the xsl:variable elements that caused the assertion to be false. This also works for not(expr)
provided that expr has a static item type of node().

Another aid to diagnostics is the saxon:message attribute: if present on the xs:assert element,
this provides a message to be output when the assertion is not satisfied: see saxon:message.

The XPath expression is evaluated against a temporary document that contains the subtree rooted at
this element: more specifically, the subtree contains a document node with this element as its only
child. Validation succeeds if the effective boolean value (EBV) of the expression is true, and fails if
the EBV is false or if an error occurs during the evaluation.

If a complex type is derived by extension or by restriction, then the assertions supplied on the base
type must be satisfied as well as those supplied on the type itself.

Note that when assertions are defined on a complex type, the subtree representing an element with
that type will be built in memory. It is therefore advisable to exercise care when applying this facility
to elements that have very large subtrees.

For assertions on simple types, <xs:assertion> is treated as a facet. It may be applied to any
variety of type, that is to a type derived by restriction from an atomic type, a list type, or a union type.
The value against which the assertion is being tested is available to the expression as the value of
variable $value; this will be typed as an instance of the base type (the type being restricted). There
is no context node. The variable $value is also available in the same way for complex types with
simple content.

Assertions on Simple Types
Saxon allows assertions on simple types to be defined. The mechanism is to define an
xs:assertion element as a child of the xs:restriction child of the xs:simpleType
element (that is, it acts as an additional facet). The type must be an atomic type. The value of the test
attribute of xs:assert is an XPath expression. .

The expression is evaluated with the value being validated supplied as the value of the variable
$value. This will be an instance of the base type: for example, if you are restricting from
xs:string, it will be a string; if you are restricting from xs:date, it will be an xs:date; if you
are validating a list of integers, then $value will be a sequence of integers.

If the effective boolean value of the expression is true, the value is valid. If the effective boolean value
is false, or if a dynamic error occurs while evaluating the expression, the value is invalid. Currently
no diagnostics are produced to indicate why the value is deemed invalid, other than a statement that
the xs:assertion facet is violated. You can supply a message in a saxon:message attribute:
see saxon:message.

XML Schema Processing

173

The XPath expression has no access to any part of the document being validated, other than the atomic
value of the actual element or attribute node. So the validation cannot be context-sensitive.

The XPath expression may make calls on Java extension functions in the normal way: see Writing
extension functions (Java). Allowing call-out to procedural programming languages means that you
can perform arbitrary procedural validation of element and attribute values. Take care to disable use
of extension functions if validating against a schema that is untrusted.

The following example validates that a date is in the past:

 <xs:element name="date">
 <xs:simpleType>
 <xs:restriction base="xs:date">
 <xs:assertion test="$value lt current-date()"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

The following example validates that a string is a legal XPath expression. This relies on the fact that
a failure evaluating the assertion is treated as "false":

 <xs:element name="xpath">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:assertion test="exists(saxon:expression($value))" xmlns:saxon="http://saxon.sf.net/"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

Note how the in-scope namespaces for the XPath expression are taken from the in-scope namespaces
of the containing xs:assert element.

Conditional Type Assignment
Saxon supports Conditional Type Assignment.

The full syntax of XPath 2.0 can be used, but the expression is constrained to access the element node
and its attributes: it has no access to the descendants, siblings, or ancestors of the element.

All Model Groups
Saxon allows arbitrary values of minOccurs and maxOccurs on the particles of a model group
using the compositor xs:all.

A complex type defined using xs:all may be derived by extension or restriction from another type
using xs:all.

Element wildcards (xs:any) are allowed within xs:all content models.

Open Content
Open content is implemented.

The allows a complex type to specify open content with mode "interleave" or "suffix", allowing
arbitrary elements (satisfying a wildcard) to be added either anywhere in the content sequence, or at
the end.

XML Schema Processing

174

At the level of a schema document, the defaultOpenContent defines the default open content
mode for all types defined in the schema document (or, for all types except those with an empty content
model).

Similarly, the defaultAttributes attribute of the xs:schema element defines a default
attribute wildcard to be permitted for all complex types defined in the schema document.

Miscellaneous XSD 1.1 Features
The notNamespace and notQName attributes are now supported on xs:any and
xs:anyAttribute wildcards. The definedSibling option is not currently implemented.

The targetNamespace attribute is available for use on local element and attribute declarations
appearing within the restriction of a complex type.

Saxon allows conditional inclusion of elements in a schema document, using attributes such as
vc:minVersion and vc:maxVersion. This feature is available whether the schema processor
is run in 1.0 or 1.1 mode, allowing new 1.1 features such as assertions to be ignored when running
in 1.0 mode.

The type xs:error is implemented.

An element may now appear in more than one substitution group.

A new facet xs:explicitTimezone is available with values required, optional, or prohibited.

The new built-in data type xs:dateTimeStamp (an xs:dateTime with timezone required) is
implemented.

Importing and Exporting Schema Component
Models

Saxon provides the ability to export or import a compiled schema. The export format is an XML file,
known as an SCM file (for schema component model). Exporting a schema in SCM format makes it
quicker to reload when the same schema is used again. It is also a format that is easier for programs
to analyze, in comparison with raw XSD schema documents.

The simplest way to create an SCM file is from the command line, using the
com.saxonica.Validate command with the -scmout option. This is described here.
Alternatively, an SCM file can be generated programmatically using the exportComponents()
method of the com.saxonica.config.EnterpriseConfiguration [Javadoc:
com.saxonica.config.EnterpriseConfiguration] class, which is described in the
JavaDoc. The serializer is unselective: it will output an SCM containing all the schema components
that have been loaded into the Configuration, other than built-in schema components.

An SCM file can be imported using the -scmin option of the com.saxonica.Validate
command. It can also be loaded programmatically using the SchemaModelLoader [Javadoc:
com.saxonica.schema.SchemaModelLoader] class. For example:

SchemaModelLoader loader = new SchemaModelLoader(config);
loader.load(new StreamSource(new File("input.scm")));

A schema loaded in this way is then available for all tasks performed using this Configuration,
including validation of source documents and compiling of schema-aware queries and stylesheets. In
particular, it can be used when compiled queries are run under this Configuration.

Schema Component Models can also be imported and exported using the importComponents()
and exportComponents() methods of the SchemaManager in the s9api interface.

XML Schema Processing

175

The structure of an SCM file is defined in the schema scmschema.xsd which is available in the
directory samples/scm/ in the saxon-resources download file. This is annotated to explain
the mappings between elements and attributes in the SCM file and components and properties as
defined in the W3C XML Schema Specification. The same directory contains a file scmschema.scm
which contains the schema for SCM in SCM format.

The SCM file includes a representation of the finite state machines used to validate instances
against a complex type. This means that the FSM does not need to be regenerated when a schema
is loaded from an SCM file, which saves a lot of time. However, it also means that the SCM
format is not currently suitable as a target format for software-generated schemas. A variant of
SCM in which the finite state machines can be omitted may be provided in a future release.

Handling minOccurs and maxOccurs
Prior to release 9.1, Saxon used the validation algorithm described in Thompson and Tobin 2003
[http://www.ltg.ed.ac.uk/~ht/XML_Europe_2003.html]. This algorithm can be very inefficient when
large bounded values of minOccurs and maxOccurs are used in a content model; indeed, it can be so
inefficient that the finite state machine is too large to fit in memory, and an OutOfMemory exception
occurs.

Since Saxon 9.1, many common cases of minOccurs and maxOccurs are handled using a finite
state machine that makes use of counters at run-time. This eliminates the need to have one state in
the machine for each possible number of occurrences of the repeating item. Instead, counters are
maintained at run-time and compared against the minOccurs and maxOccurs values.

This technique is used under the following circumstances:

• Either minOccurs > 1, or maxOccurs > 1 (and is not unbounded), or both

• The minOccurs/maxOccurs values must be defined on an element (xs:element) or wildcard (xs:any)
particle

• If the repeating particle is , then it must not be part of a model group that is itself repeatable. A
particle is vulnerable if it is part of a choice group, or if it is part of a sequence group in which
all the other particles are optional or emptiable, except in the case where minOccurs is equal to
maxOccurs. The reason for this restriction is that in such situations there are two nested repetitions,
and it is ambiguous whether a new instance of the repeating term should be treated as a repetition
at the inner level or at the outer level.

In cases where counters cannot be used, Saxon will still attempt to compile a finite state machine,
but will use configuration-defined limits on minOccurs and maxOccurs to approximate the values
requested. If the values used in the schema exceed these limits, Saxon will therefore approximate by
generate a schema that does not strictly enforce the specified minOccurs and maxOccurs. The default
limits are 100 and 250 respectively. Different limits can be set on the command line or via the Java
API on the Configuration object. Note however that when several nested repeating groups are
defined it is still possible for out-of-memory conditions to occur, even with quite modest values of
minOccurs and maxOccurs.

Saxon extensions to XML Schema 1.1
The Working Draft XSD 1.1 specification allows implementations to define their own primitive types
and facets.

At present Saxon provides one additional facet, saxon:preprocess

Saxon extensions to the XML Schema Language are implemented in the Saxon namespace http://
saxon.sf.net/:

http://www.ltg.ed.ac.uk/~ht/XML_Europe_2003.html
http://www.ltg.ed.ac.uk/~ht/XML_Europe_2003.html

XML Schema Processing

176

• Messages associated with assertions and other facets

• The saxon:preprocess facet

• Saxon extensions to XSD uniqueness and referential constraints

Messages associated with assertions and other facets
In assertions, and on all elements representing facets (for example pattern), Saxon supports the
attribute saxon:message="message text". This message text is used in error messages when
the assertion or other facet is not satisfied.

For example:

 <xs:element name="date">
 <xs:simpleType>
 <xs:restriction base="xs:date" xmlns:saxon="http://saxon.sf.net/">
 <xs:assertion test=". lt current-date()"
 saxon:message="The date must not be in the future"/>
 <xs:pattern value="[^Z:]*"
 saxon:message="The date must not have a timezone"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

The saxon:preprocess facet
Saxon provides the saxon:preprocess facet as an addition to the standard facets defined in the
XSD 1.1 specification. It is available only when XSD 1.1 support is enabled.

Like xs:whiteSpace, this is a pre-lexical facet. It is used to transform the supplied lexical value
of an element or attribute from the form as written (but after whitespace normalization) to the lexical
space of the base type. Constraining facets such as pattern, enumeration, and minLength
apply to the value after the saxon:preprocess facet has done its work. In addition, if the
primitive type is say xs:date or xs:decimal, the built-in lexical rules for parsing a date or a
decimal number are applied only after saxon:preprocess has transformed the value. The makes
it possible, for example, to accept yes and no as values of an xs:boolean, 3,14159 as the value
of an xs:decimal, or 13DEC1987 as the value of an xs:date.

Like other facets, saxon:preprocess may be used as a child of xs:restriction when
restricting a simple type, or a complex type with simple content.

The attributes are:

Table 8.3.

id Standard attribute

action Mandatory. An XPath expression. The rules for
writing the XPath expression are generally the
same as the rules for the test expression
of xs:assert. The value to be transformed
is supplied (as a string) as the value of the
variable $value; the context item is undefined.
The expression must return a single string. If
evaluation of the expression fails with a dynamic
error, this is interpreted as a validation failure.

XML Schema Processing

177

reverse Optional. An XPath expression used to reverse
the transformation. Used (in XPath, XSLT, and
XQuery) when a value of this type is converted to
a string. When a value of this type is converted to a
string, it is first converted according to the rules of
the base type. The resulting string is then passed,
as the value of variable $value, to the XPath
expression, and the result of the XPath expression
is used as the final output. This attribute does not
affect the schema validation process itself.

xpathDefaultNamespace The default namespace for element names
(unlikely to appear in practice) and types.

The following example converts a string to upper-case before testing it against the enumeration facet.

<xs:simpleType name="currency">
 <xs:restriction base="xs:string">
 <saxon:preprocess action="upper-case($value)" xmlns:saxon="http://saxon.sf.net/"/>
 <xs:enumeration value="USD"/>
 <xs:enumeration value="EUR"/>
 <xs:enumeration value="GBP"/>
 </xs:restriction>
</xs:simpleType>

Of course, it is not only the constraining facets that will see the preprocessed value (in this case, the
upper-case value), any XPath operation that makes use of the typed value of an element or attribute
node will also see the value after preprocessing. However, the string value of the node is unchanged.

The following example converts any commas appearing in the input to full stops, allowing decimal
numbers to be represented in Continental European style as 3,15. On output, the process is reversed,
so that full stops are replaced by commas.

<xs:simpleType name="euroDecimal">
 <xs:restriction base="xs:decimal">
 <saxon:preprocess action="translate($value, ',', '.')"
 reverse="translate($value, '.', ',')"
 xmlns:saxon="http://saxon.sf.net/"/>
 </xs:restriction>
</xs:simpleType>

Note that in this example, the user-defined type also accepts numbers written in the "standard" style
3.15.

The following example allows an xs:time value to be written with the seconds part omitted. Again,
it also accepts the standard hh:mm:ss notation:

<xs:simpleType name="hoursAndMinutes">
 <xs:restriction base="xs:time">
 <saxon:preprocess action="concat($value, ':00'[string-length($value) = 5])"
 xmlns:saxon="http://saxon.sf.net/"/>
 </xs:restriction>
</xs:simpleType>

The following example uses extension function calls within the XPath expression to support integers
written in hexadecimal notation:

XML Schema Processing

178

<xs:simpleType name="hexInteger">
 <xs:restriction base="xs:long">
 <saxon:preprocess action="Long:parseLong($value, 16)" reverse="Long:toHexString(xs:long($value))"
 xmlns:Long="java:java.lang.Long"
 xmlns:saxon="http://saxon.sf.net/"/>
 </xs:restriction>
</xs:simpleType>

Given the input <val>0040</val>, validated against this schema, the query (val*3) cast
as hexInteger will produce the output c0.

Saxon extensions to XSD uniqueness and referential
constraints

This extension is only available if enabled by specifying the attribute saxon:extensions="id-
xpath-syntax" on the xs:schema element of the containing schema document.

With this extension enabled, restrictions are removed on the syntax allowed in the selector/
@xpath and field/@xpath attributes of the xs:unique, xs:key, and xs:keyref elements.
Instead of the very limited XPath subset defined in the XSD 1.0 and XSD 1.1 specifications, Saxon
will allow the same syntax as is permitted for streamable XPath expressions in XSLT. Specifically, the
syntax for both attributes is the same as allowed in the select attribute of a streaming xsl:apply-
templates, which is an extended form of the XSLT 3.0 syntax for patterns. It permits, for example,
any sequence of downwards axes, arbitrary predicates on any step provided they do no downwards
selection, and conditional expressions.

For example, the following is permitted, indicating that US-based employees must have a unique social
security number, but not imposing any such constraint on other employees:

<xs:element name="company">
 <xs:unique>
 <xs:selector xpath="employee[@location='us']"/>
 <xs:field xpath="@ssid"/>
 </xs:unique>
</xs:element>

179

Chapter 9. XPath API for Java
Introduction

For information about the different ways of loading source documents, see Handling Source
Documents.

Saxon supports three Java APIs for XPath processing, as follows:

• The JAXP API is a (supposedly) standard API defined in Java 5. Saxon implements this interface.
Details of Saxon's implementation are described at The JAXP XPath API. Note that there are some
extensions and other variations in the Saxon implementation. Some of the extensions to this interface
are provided because Saxon supports XPath 2.0, whereas JAXP 1.3 is designed primarily for XPath
1.0; some are provided because Saxon supports multiple object models, not only DOM; some are
for backwards compatibility; and some are provided to allow applications a finer level of control
if required.

• The preferred interface for XPath processing is the s9api interface, which also supports XSLT
and XQuery processing, schema validation, and other Saxon functionality in an integrated set of
interfaces. This is described at Evaluating XPath Expressions using s9api

• For historical reasons Saxon continues to support a legacy XPath API in package
net.sf.saxon.sxpath. This is documented only in the Javadoc specifications. It is a lower-
level API, so as well as being retained for backwards compatibility, it may also be appropriate for
applications that require a very intimate level of integration with Saxon internals.

Evaluating XPath Expressions using s9api
The s9api interface is a custom-designed API for Saxon, allowing integrated access to all Saxon's
XML processing capabilities in a uniform way, taking advantage of the type safety offered by generics
in Java 5.

You can evaluate an XPath expression using the s9api interface as follows:

1. Create a Processor [Javadoc: net.sf.saxon.s9api.Processor] and set any
global configuration options on the Processor.

2. Build the source document by calling newDocumentBuilder() to create a document builder,
setting appropriate options, and then calling the build() method. This returns an XdmNode
[Javadoc: net.sf.saxon.s9api.XdmNode] which can be supplied as the context item
to the XPath expression.

3. Call newXPathCompiler() to create an XPathCompiler [Javadoc:
net.sf.saxon.s9api.XPathCompiler], and set any options that are local to a specific
compilation (notably declaring namespace prefixes that are used in the XPath expression).

4. Call the compile() method to compile an expression. The result is an XPathExecutable
[Javadoc: net.sf.saxon.s9api.XPathExecutable], which can be used as often as
you like in the same thread or in different threads.

5. To evaluate the expression, call the load() method on the XPathExecutable. This
creates an XPathSelector [Javadoc: net.sf.saxon.s9api.Processor]. The
XPathSelector can be serially reused, but it must not be shared across multiple threads. Set any
options required for the specific XPath execution (for example, the initial context node, the values
of any variables referenced in the expression), and then call one of the methods iterator()
evaluate(), or evaluateSingle() to execute the XPath expression.

XPath API for Java

180

6. Because the XPathSelector is an Iterable, it is possible to iterate over the results directly
using the Java 5 "for-each" construct.

7. The result of an XPath expression is in general an XdmValue [Javadoc:
net.sf.saxon.s9api.XdmValue], representing a value as defined in the XDM data
model (that is, a sequence of nodes and/or atomic values). Subclasses of XdmValue
include XdmItem [Javadoc: net.sf.saxon.s9api.XdmItem], XdmNode
[Javadoc: net.sf.saxon.s9api.XdmNode], and XdmAtomicValue [Javadoc:
net.sf.saxon.s9api.XdmAtomicValue], and these relate directly to the corresponding
concepts in XDM. Various methods are available to translate between this model and native Java
data types.

The XdmCompiler [Javadoc: net.sf.saxon.s9api.XdmCompiler] also has compile-
and-go methods evaluate() and evaluateSingle() to execute an expression directly without
going through an explicit compilation process. This provides a simpler approach if the expression is
only evaluated once. The XdmCompiler also has the option of caching compiled expressions, so
that if the same expression is evaluated repeatedly, the compiled form of the expression is re-used.

Examples of the use of s9api to evaluate XPath expressions are included in the Saxon resources file,
see module S9APIExamples.java.

The JAXP XPath API
Saxon implements the JAXP 1.3 API for executing XPath expressions as defined in package
java.xml.xpath, which is a standard part of the Java class library since JDK 1.5. Three
sample applications using this API are available: they are called XPathExample.java,
XPathExampleSA.java, and ApplyXPathJAXP.java, and can be found in the samples/
java directory after downloading the saxon-resources archive.

To run the XPathExample.java application, see the instructions in Shakespeare XPath Sample
Application.

The XPathExampleSA.java application demonstrates use of schema-aware XPath. It is designed
to be used with the files books.xml and books.xsd in the directory samples/data.

The ApplyXPathJAXP.java application is an enhanced version of the class of the same name
issued as a sample application in the JAXP 1.3 distribution. It has been enhanced to show the use of
more advanced features, such as the ability to bind namespaces, variables, and functions, and also to
demonstrate use of the XPath API with different object models.

The XPath API in Saxon predates the introduction of the JAXP 1.3 XPath API, so it contains some
facilities that are obsolescent. However, there are also differences caused by the fact that Saxon
supports XPath 2.0, with its richer data model, whereas JAXP 1.3 operates only on XPath 1.0.

The following sections describe use of the XPath API in more detail.

• Selecting the XPath implementation: Describes how to ensure that Saxon is selected as the XPath
API implemenation

• Setting the context item: Describes how to supply a context item

• Return types: Describes the mapping of XPath return types to Java classes

• Additional Saxon methods: Describes features of the Saxon implementation additional to the JAXP
specification

• Calling JAXP XPath extension functions: Describes how to call out from XPath expressions to Java
code

XPath API for Java

181

Selecting the XPath implementation
An application using the JAXP 1.3 XPath API starts by instantiating a factory class. This is done by
calling:

XPathFactory xpathFactory = XPathFactory.newInstance(objectModel);
XPath xpath = xpathFactory.newXPath();

Here objectModel is a URI that identifies the object model you are using. Saxon recognizes the
following values for the object model:

Table 9.1.

XPathConstants.DOM_OBJECT_MODEL The DOM object model

NamespaceConstant.OBJECT_MODEL_SAXONSaxon's native object model. This means anything
that implements the NodeInfo [Javadoc:
net.sf.saxon.om.NodeInfo] interface,
including the standard tree, the tiny tree, and third-
party implementations of NodeInfo.

NamespaceConstant.OBJECT_MODEL_JDOM The JDOM object model

NamespaceConstant.OBJECT_MODEL_XOM The XOM object model

NamespaceConstant.OBJECT_MODEL_DOM4J The DOM4J object model

To ensure that Saxon is selected as your XPath implementation, you must specify one
of these constants as your chosen object model, and it is a good idea to ensure
that the Java system property javax.xml.xpath.XPathFactory is set to the value
net.sf.saxon.xpath.XPathFactoryImpl. Normally, if Saxon is on your classpath then the
Saxon XPath implementation will be picked up automatically, but if there are other implementations
on the classpath as well then it is best to set the system property explicitly to be sure.

Alternatively, if you know that you want to use the Saxon implementation,
you can simply instantiate the class net.sf.saxon.xpath.XPathFactoryImpl
[Javadoc: net.sf.saxon.xpath.XPathFactoryImpl] directly. If you
want to take advantage of features in Saxon-PE (Professional Edition),
use com.saxonica.config.ProfessionalXPathFactory [Javadoc:
com.saxonica.config.ProfessionalXPathFactory], or for Saxon-EE (Enterprise
Edition) use com.saxonica.config.EnterpriseXPathFactory [Javadoc:
com.saxonica.config.EnterpriseXPathFactory].

It is important to note that a compiled XPath expression can only be used with a
source document that was built using the same Saxon Configuration [Javadoc:
net.sf.saxon.Configuration]. When you create an XPathFactory, a Saxon
Configuration is created automatically. You can extract this configuration and use it to build
source documents. Alternatively, there is a constructor that allows you to create an XPathFactory
that uses a preexisting Configuration.

Saxon's implementation of java.xml.xpath.XPath is the class
net.sf.saxon.xpath.XPathEvaluator [Javadoc:
net.sf.saxon.xpath.XPathEvaluator]. This class provides a few simple configuration
interfaces to set the source document, the static context, and the context node, plus a number of
methods for evaluating XPath expressions.

The XPath object allows you to set the static context for evaluating XPath expressions (you can pre-
declare namespaces, variables, and functions), and to compile XPath expressions in this context. A
compiled XPath expression (an object of class XPathExpression) can then be evaluated, with a

XPath API for Java

182

supplied node (represented by a class in the selected object model) supplied as the context node. For
further details, see the Javadoc specifications and the supplied example applications.

Setting the context item
Many of the methods in the JAXP interface take an argument to represent the context node. Because
the API is designed to be used with multiple object models, this is typed simply as an Object. In the
case of Saxon, this can be an object in any of the supported data models: DOM, JDOM, DOM4J, XOM,
or Saxon's native NodeInfo [Javadoc: net.sf.saxon.om.NodeInfo] representation.
Note that if a NodeInfo is supplied, the tree must have been constructed using the same Saxon
Configuration [Javadoc: net.sf.saxon.config.Configuration] as the one
used by the XPathEvaluator [Javadoc: net.sf.saxon.xpath.XPathEvaluator]
itself.

Many of these methods specify that if the context node supplied is null, the XPath expression will be
evaluated using an empty document node as the context node. Saxon does not implement this rule.
There are two reasons for this. Firstly, it's unnatural in XPath 2.0, where it is permissible for the context
item for an expression to be undefined. Secondly, it's not clear what kind of document node it would
be appropriate to create, given that Saxon supports multiple object models. Instead, if null is supplied,
then the node supplied to the Saxon-specific method setContextNode() is used, and if that is
null, the expression is evaluated with the context item undefined (which will cause a dynamic error
if the expression actually refers to the context item).

Return types
The JAXP specification leaves it rather up to the implementation how the results of an XPath
expression will be returned. This is partly because it is defined only for XPath 1.0, which has a much
simpler type system, and partly because it is deliberately designed to be independent of the object
model used to represent XML trees.

If you specify the return type XPathConstants.BOOLEAN then Saxon will return the effective
boolean value of the expression, as a java.lang.Boolean. This is the same as wrapping the
expression in a call of the XPath boolean() function.

If you specify the return type XPathConstants.STRING then Saxon will return the result of
the expression converted to a string, as a java.lang.String. This is the same as wrapping the
expression in a call of the XPath string() function.

If you specify the return type XPathConstants.NUMBER then Saxon will return the result of
the expression converted to a double as a java.lang.Double. This is the same as wrapping the
expression in a call of the XPath number() function.

If you specify the return type XPathConstants.NODE then Saxon will return the result
the result as a node object in the selected object model. With the DOM model this will be
an instance of org.w3.dom.Node, with the native Saxon model it will be an instance of
net.sf.saxon.om.NodeInfo, and so on.

If the return type is XPathConstants.NODESET, the result will in general be a Java List
containing node objects in the selected object model. It may also contain non-node objects if that's
what the XPath expression returned. As a special case, if the supplied context node is a DOM node, and
if the results are all DOM nodes, then they will be returned in the form of a DOM NodeList object.

Saxon does not recognize additional values for the return type other than the values defined in JAXP.
If you want to return a different result type, for example a list of integers or a date, then it is probably
best not to use this API; if you must, however, then use one of the methods in which the result type is
unspecified. If any conversions are necessary, do them within the XPath expression itself, using casts
or constructor functions. The Java object that is returned will be a representation of the XPath value,
converted in the same way as arguments to a extension functions.

XPath API for Java

183

Additional Saxon methods
Saxon's implementation of XPathExpression (namely
net.sf.saxon.xpath.XPathExpressionImpl [Javadoc:
net.sf.saxon.xpath.XPathExpressionImpl]) provides additional methods for
evaluating the XPath expression. In particular the rawIterator() method
with no arguments returns a Saxon SequenceIterator [Javadoc:
net.sf.saxon.om.SequenceIterator] which allows the application to process the results
of any XPath expression, with no conversion: all values will be represented using a native
Saxon class, for example a node will be represented as a NodeInfo and a QName as
a QNameValue [Javadoc: net.sf.saxon.value.QNameValue]. The NodeInfo
[Javadoc: net.sf.saxon.om.NodeInfo] interface is described in the next section.

You can call methods directly on the NodeInfo [Javadoc:
net.sf.saxon.om.NodeInfo] object to get information about a node: for example
getDisplayName() gets the name of the node in a form suitable for display, and
getStringValue() gets the string value of the node, as defined in the XPath data model. You can
also use the node as the context node for evaluation of subsequent expressions.

Calling JAXP XPath extension functions
The JAXP XPath interface includes an interface FunctionResolver which can be used to bind
a function call appearing in the XPath expression to a user-written Java implementation of the
interface java.xml.xpath.XPathFunction. The form in which parameters are passed to
such a function, and the form in which it returns its results, are not precisely defined in the JAXP
specification, so this section fills the gap. Note that the calling conventions are likely to differ from
those used by other products.

The extension function is called by invoking the method XPathFunction.evaluate(), which
takes a list of arguments, and returns the function result.

The arguments are therefore supplied as a list. Each item in this list represents one argument. The
argument value is represented as follows:

1. if the value of the argument is a singleton item, it will be passed as the "natural Java
equivalent" of the item's type. For example, a double will be passed as an instance of
java.lang.Double, a string as an instance of java.lang.String. An untyped atomic
value is treated as a string. An xs:integer (even if it belongs to a subtype such as
xs:short) is converted to a java.lang.BigInteger. The more specialized XML Schema
primitive types such as xs:hexBinary and xs:duration are passed in their native
Saxon representation (a subclass of net.sf.saxon.value.AtomicValue [Javadoc:
net.sf.saxon.value.AtomicValue]). A node will be passed as an instance of
net.sf.saxon.NodeInfo [Javadoc: net.sf.saxon.NodeInfo], unless it wraps
a foreign node (e.g. a DOM or JDOM node) in which case the foreign node is passed.

2. if the value is a sequence of any length other than one (including zero), then the value that is passed
is a List, where each item in the list is converted as described in rule (1).

If the return value conforms to the above conventions, then it will be accepted. However Saxon will
also accept a wide range of other return values, including of course a List containing one item.

The NodeInfo interface
The NodeInfo [Javadoc: net.sf.saxon.om.NodeInfo] object represents
a node of an XML document. It has a subclass DocumentInfo [Javadoc:
net.sf.saxon.om.DocumentInfo] to represent the root node, but all other nodes are
represented by NodeInfo itself. These follow the XPath data model closely.

XPath API for Java

184

The NodeInfo [Javadoc: net.sf.saxon.om.NodeInfo] object provides the application
with information about the node. The most commonly used methods include:

Table 9.2.

getNodeKind() gets a short identifying the node type (for
example, element or attribute). The values
are consistent with those used in the DOM,
and are referenced by constants in the class
net.sf.saxon.type.Type [Javadoc:
net.sf.saxon.type.Type]

getDisplayName(), getLocalPart(), getPrefix(),
getURI()

These methods get the name of the element,
or its various parts. The getDisplayName()
method returns the QName as used in the original
source XML.

getAttributeValue() get the value of a specified attribute, as a String.

getStringValue() get the string value of a node, as defined in the
XPath data model

getTypedValue() get the typed value of a node, as defined
in the XPath 2.0 data model. This is in
general a sequence of atomic values, so the
result is a SequenceIterator [Javadoc:
net.sf.saxon.om.SequenceIterator].

getParent() get the NodeInfo [Javadoc:
net.sf.saxon.om.NodeInfo]
representing the parent element, (which
will be a DocumentInfo [Javadoc:
net.sf.saxon.om.DocumentInfo]
object if this is the outermost element).

iterateAxis() returns an SequenceIterator [Javadoc:
net.sf.saxon.om.SequenceIterator]
object that can be used to iterate over the
nodes on any of the XPath axes. The first
argument is an integer identifying the axis;
the second is a NodeTest [Javadoc:
net.sf.saxon.pattern.NodeTest] (a
simple form of pattern) which can be used to filter
the nodes on the axis. Supply null if you want
all the nodes on the axis. (For most applications,
it is probably simpler to navigate from a node by
compiling an XPath expression, and executing it
with the correct starting node as the context node).

For other methods, see the JavaDoc documentation.

It is possible (though not easy) to provide your own implementation of the NodeInfo
interface, perhaps allowing Saxon queries to run directly against some non-XML data
source. There are helper methods in the net.sf.saxon.om.Navigator [Javadoc:
net.sf.saxon.om.Navigator] class that reduce the amount of code you need to
write to achieve this. See the implementations that map NodeInfo [Javadoc:
net.sf.saxon.om.NodeInfo] to DOM, DOM4J, JDOM or XOM to see how it is done.

185

Chapter 10. Saxon on .NET
Introduction

Saxon is available on both the Java and .NET platforms. This section of the documentation describes
aspects of Saxon that are specific to the .NET platform.

The Saxon source code is written in Java. It has been ported to the .NET platform by cross-compiling
the bytecode produced by the Java compiler into the IL code used on .NET, and adding various
components designed to integrate Saxon fully into the .NET environment. These additions include:

1. Addition of command-line interfaces Transform, Query, and Validate.

2. Addition of a front-end API suitable for calling Saxon from .NET languages such as C#, VB.NET,
or ASP.NET

3. Internal changes within Saxon to take advantage of services offered by the .NET Common
Language Runtime, for example collation support, URI handling, and XML parsing.

Both the basic and schema-aware versions of Saxon are available on .NET, with the same functionality
as the Java versions.

When Saxon-EE is used on .NET, queries and stylesheets are selectively compiled to IL code
for faster execution. Internally, the Saxon compiler generates Java bytecode; the IKVM runtime
automatically translates this to IL code when it is loaded. Code generation typically improves
the performance of queries by around 25%. The code is transient (in memory): it cannot be
saved as a persistent executable.

Installation of Saxon on the .NET platform is described at Installation (.NET).

The commands Transform, Query, and Validate have the same format as their Java
counterparts. They are described in the following places:

1. Transform

2. Query

3. Validate

An introduction to the API for Saxon on .NET is provided at Saxon API for .NET; full specifications
are available here [../dotnetdoc/index.html].

For information about writing extension functions using .NET languages, see Writing extension
functions for .NET.

Saxon has been successfully run under the Mono environment (Mono is a .NET emulation for
non-Microsoft platforms). However, it has not been comprehensively validated under Mono
and there may be undiscovered restrictions.

Saxon API for .NET
A new API has been developed providing access to XSLT, XQuery, XPath, and XML Schema
processing on the .NET platform. This is available from any .NET-supported language, although the
examples are all expressed in C# terms.

../dotnetdoc/index.html
../dotnetdoc/index.html

Saxon on .NET

186

This section provides a brief introduction to the structure and concepts of the API. Full specifications
are available here [../dotnetdoc/index.html].

A set of example C# programs illustrating various use cases for the API is available in the samples/
cs directory.

All the classes referred to below are in the namespace Saxon.Api, and can be loaded from the
assembly saxonapi.dll.

The first thing the application needs to do is to create a Processor. The Processor holds
configuration information for Saxon, and shared resources such as the name pool and schema pool. It
is possible to run multiple processors concurrently if required, but it is usually more economical for
all Saxon processes within a single application to use the same Processor.

XSLT, XQuery, and XPath processing all follow the same pattern:

• From the Processor, create a Compiler for the appropriate language, using one of the methods
NewXsltCompiler, NewXQueryCompiler, or NewXPathCompiler.

• Set any required properties or configuration options on the resulting Compiler object (these establish
the static evaluation context), and then call its Compile method to create an Executable. The
Compile methods are overloaded to accept input from a variety of sources.

• The Executable object represents the compiled stylesheet, query, or XPath expression. It can
be evaluated as often as required, in the same thread or in different threads. The first stage in
this evaluation is to call the Load method on the Executable. The resulting loaded object is an
XsltTransformer, XQueryEvaluator, or XPathSelector depending on the language
in use.

• Properties and configuration methods can then be set on the loaded object to establish the dynamic
evaluation context, and the real processing is then finally invoked using another method: this may
be Run in the case of XSLT or XQuery where the output is a newly constructed XML document, or
Evaluate, EvaluateSingle, or GetEnumerator in the case of XQuery and XPath where
the output is an arbitrary sequence.

The API includes a number of classes that reflect the XSLT/XQuery/XPath data model (XDM). These
are as follows:

1. XdmValue: an XPath value. This is in general a sequence, whose items are nodes or atomic values.
You can supply an XdmValue as the value of a stylesheet or query parameter, and receive an
XdmValue as the result of evaluating a query or XPath expression.

2. XdmItem: an XPath item. This is a subtype of XdmValue, since any item can be treated as a
sequence of length one. You can call GetEnumeration on an XdmValue object to iterate over
the items in the sequence.

3. XdmNode: a node. This object provides access to most of the properties of nodes defined in the
XDM model: the node kind, the string value, the name, the typed value, the base URI. It also
provides a method EnumerateAxis which allows you to find related nodes using any of the 13
XPath axes. For convenience, the OuterXml property provides a simple way to serialize the node.

4. XdmAtomicValue: an atomic value, as defined in the XDM model. You can construct an atomic
value directly from common objects such as an integer, a string, a double, or a Uri; or you can
construct one by specifying a string containing the lexical representation, and a QName identifying
the required type.

The Processor provides a method NewDocumentBuilder which, as the name implies, returns a
DocumentBuilder. This may be used to construct a document (specifically, an XdmNode) from a
variety of sources. The input can come from raw lexical XML by specifying a Stream or a Uri, or it
may come from a DOM document built using the Microsoft XML parser by specifying an XmlNode,
or it may be supplied programmatically by nominating an XmlReader. Various processing options

../dotnetdoc/index.html
../dotnetdoc/index.html

Saxon on .NET

187

can be set as properties of the DocumentBuilder: these determine, for example, how whitespace is
handled and whether schema validation is performed. The resulting document can be used as the input
to a transformation, a query, or an XPath expression. It might also contain a stylesheet or a schema
which can then be used as input to the XsltCompiler or the SchemaManager.

The SchemaManager exists only in the Saxon-EE product, and its job is to compile schema
documents and to maintain a cache containing the compiled schemas. It thus contains method
to compile schemas from a variety of document sources. It also contains a factory method
NewSchemaValidator, which returns a SchemaValidator. The SchemaValidator, in
turn, is used to validate a source document against the set of schema definitions held in the
SchemaManager's cache.

Finally, the API offers a class XmlDestination to define the possible ways of handling a document
constructed as the output of a transformation, query, or validation episode. Various subtypes of
XdmDestination allow such results to be serialized as XML (using either the Saxon serializer or
an XmlTextWriter), or to be materialized as a Saxon XdmNode or as a DOM XmlNode.

These classes are designed to be combined in arbitrary ways. For example, you might run an XQuery
whose result is a sequence of newly-constructed document nodes. You could then iterate over these
nodes, and for each one, apply an XSLT transformation whose result is then serialized.

There are several places where the classes in the Saxon.Api package provide an "escape hatch" into
the underlying implementation classes. These are provided for the benefit of applications that for some
reason need to mix use of the .NET API with the established Java API. The underlying implementation
classes are documented in Java terms and use Java calling conventions, but this does not stop them
being used from any .NET language: you may need to consult the IKVM [http://www.ikvm.net]
documentation for details of the mappings. The places where such escape hatches are provided are
shown below:

Table 10.1.

Interface class Property Implementation class

Saxon.Api.Processor Implementation net.sf.saxon.Configuration

Saxon.Api.XdmNode Implementation net.sf.saxon.om.NodeInfo

Saxon.Api.XsltTransformer Implementation net.sf.saxon.Controller

Saxon.Api.XQueryCompiler Implementation net.sf.saxon.query.StaticQueryContext

XML Parsing in .NET
When you run Saxon on the .NET platform, there are two XML parsers available: the System.Xml
parser supplied with the .NET platform, and the Xerces Apache parser, which is supplied as part of
the Saxon product.

Saxon generally uses the Xerces parser by preference. However, you can force Saxon to use
the OpenJDK parser by calling processor.SetProperty("http://saxon.sf.net/
feature/preferJaxpParser", "false"). Or from the command line, set the option --
preferJaxpParser:off.

Note that the Microsoft parser does not notify ID or IDREF values from the DTD, or expand
attributes with fixed or default values, unless DTD validation is requested. This can be requested
using the -v option on the command line, or via the API. (See the DtdValidation property of the
DocumentBuilder class)

Unparsed entities are not notified to Saxon by the Microsoft parser. The XSLT functions unparsed-
entity-system-id() and unparsed-entity-public-id()will therefore not work.

Support for OASIS catalogs is provided at the command-line level by means of the command-
line option -catalog:filename. To enable this to work, the Apache catalog resolver is

http://www.ikvm.net
http://www.ikvm.net

Saxon on .NET

188

integrated in the Saxon DLL. This works only with the JAXP (Xerces) parser. To use catalogs
when running an application using the Saxon API, the interface is not quite so convenient. Call
the static method net.sf.saxon.trans.XmlCatalogResolver.setCatalog() (found
in saxon9he.dll) with three arguments: the filename of the catalog file, the Saxon Configuration
object, and a boolean indicating whether tracing is required.

189

Chapter 11. Extensibility
Introduction

This section describes how to extend the capability of Saxon XSLT stylesheets and XQuery queries
by adding extension functions and other user hooks.

The first two columns of the table below indicate which sections of this page are applicable to XSLT
and which are applicable to XQuery. The next three columns indicate which Saxon editions the
information applies to.

Table 11.1.

XSLT XQuery HE PE EE

§ § § § § Integrated
extension
functions

§ § § § Reflexive
extension
functions
(Java)

§ § § § Reflexive
extension
functions
(.NET)

§ § § Writing XSLT
extension
instructions

§ § § § § Customizing
serialization

§ § § § § Implementing a
collating
sequence

§ § § § § Implementing
localized
numbers and
dates

§ § § § § Writing a URI
Resolver for
input files

§ § § § Writing a URI
Resolver for
output files

Integrated extension functions
There are two ways of writing extension functions. The traditional way is to map the name of the
function to a Java or .NET method: specifically, the namespace URI of the function name maps to the
Java or .NET class name, and the local part of the function name maps to the Java or .NET method
name. These are known as extension functions, and are described in later pages.

From Saxon 9.2, this technique is supplemented by a new mechanism, referred to as .

Extensibility

190

There are several advantages in this approach:

• You can choose any function name you like, in any namespace.

• The function signature is made explicit, in terms of XPath types for the arguments and result.

• There is no ambiguity about which of several candidate Java or .NET methods is invoked.

• There is less scope for configuration problems involving dynamic loading of named classes.

• All conversions from XPath values to Java or .NET values are entirely under user control.

• The function implementation is activated at compile time, allowing it to perform optimization based
on the expressions supplied as arguments, or to save parts of the static context that it needs, such
as the static base URI or the current namespace context.

• The function declares its properties, for example whether it uses the context item and whether it has
side-effects, making it easier for the optimizer to manipulate the function call intelligently.

• Integrated extension functions are more secure, because the function must be explicitly registered
by the calling application before it can be called.

There are two ways of writing integrated extension functions: the simple API and the full API. The
full API is available for both the Java and .NET platforms; the simple API is available only for Java.
The resulting combinations are described on the following pages.

• Java extension functions: simple interface

• Java extension functions: full interface

• .NET extension functions

Java extension functions: simple interface
The simple API for integrated Java extension functions is available via the s9api class
ExtensionFunction [Javadoc: net.sf.saxon.s9api.ExtensionFunction].
Here is an example that defines an extension function to calculate square roots, registers this extension
function with the s9api Processor, and then invokes it from an XPath expression:

 Processor proc = new Processor(false);
 ExtensionFunction sqrt = new ExtensionFunction() {
 public QName getName() {
 return new QName("http://math.com/", "sqrt");
 }

 public SequenceType getResultType() {
 return SequenceType.makeSequenceType(
 ItemType.DOUBLE, OccurrenceIndicator.ONE
);
 }

 public net.sf.saxon.s9api.SequenceType[] getArgumentTypes() {
 return new SequenceType[]{
 SequenceType.makeSequenceType(
 ItemType.DOUBLE, OccurrenceIndicator.ONE)};
 }

 public XdmValue call(XdmValue[] arguments) throws SaxonApiException {
 double arg = ((XdmAtomicValue)arguments[0].itemAt(0)).getDoubleValue();
 double result = Math.sqrt(arg);
 return new XdmAtomicValue(result);

Extensibility

191

 }
 };

 proc.registerExtensionFunction(sqrt);
 XPathCompiler comp = proc.newXPathCompiler();
 comp.declareNamespace("mf", "http://math.com/");
 comp.declareVariable(new QName("arg"));
 XPathExecutable exp = comp.compile("mf:sqrt($arg)");
 XPathSelector ev = exp.load();
 ev.setVariable(new QName("arg"), new XdmAtomicValue(2.0));
 XdmValue val = ev.evaluate();
 String result = val.toString();

Full details of the interface are defined in the Javadoc for class ExtensionFunction [Javadoc:
net.sf.saxon.s9api.ExtensionFunction].

The main restrictions of the simple interface are (a) that the extension function has no access to static
or dynamic context information, and (b) that it does not support pipelined evaluation of the arguments
or result. To avoid these restrictions, use the full interface described on the next page.

Java extension functions: full interface
With this approach, each extension function is implemented as a pair of Java
classes. The first class, the ExtensionFunctionDefinition [Javadoc:
net.sf.saxon.lib.ExtensionFunctionDefinition], provides general static
information about the extension function (including its name, arity, and the types of its
arguments and result). The second class, an ExtensionFunctionCall [Javadoc:
net.sf.saxon.lib.ExtensionFunctionCall], represents a specific call on the extension
function, and includes the call() method that Saxon invokes to evaluate the function.

When a stylesheet or query uses integrated extension functions and is run from the command
line, the classes that implement these extension functions must be registered with the
Configuration [Javadoc: net.sf.saxon.Configuration]. On Saxon-PE and
Saxon-EE this can conveniently be done by declaring them in a configuration file. It can also be
achieved (on all editions including Saxon-HE) by subclassing net.sf.saxon.Transform
[Javadoc: net.sf.saxon.Transform] or net.sf.saxon.Query [Javadoc:
net.sf.saxon.Query], overriding the method applyLocalOptions() so that it
makes the appropriate calls on config.registerExtensionFunction(); or it can be
done in a user-defined class that implements the interface net.sf.saxon.Initializer
[Javadoc: net.sf.saxon.lib.Initializer], and that is nominated on the
command line using the -init option.

The arguments passed in a call to an integrated extension function are type-checked against the
declared types in the same way as for any other XPath function call, including the standard conversions
such as atomization and numeric promotion. The return value is checked against the declared return
type but is not converted: it is the responsibility of the function implementation to return a value of
the correct type.

Here is an example extension written to the Java version of this interface. It takes two integer arguments
and performs a "shift left" operation, shifting the first argument by the number of bit-positions
indicated in the second argument:

private static class ShiftLeft extends ExtensionFunctionDefinition {
 @Override
 public StructuredQName getFunctionQName() {
 return new StructuredQName("eg", "http://example.com/saxon-extension", "shift-left");

Extensibility

192

 }

 @Override
 public SequenceType[] getArgumentTypes() {
 return new SequenceType[] {SequenceType.SINGLE_INTEGER, SequenceType.SINGLE_INTEGER};
 }

 @Override
 public SequenceType getResultType(SequenceType[] suppliedArgumentTypes) {
 return SequenceType.SINGLE_INTEGER;
 }

 @Override
 public ExtensionFunctionCall makeCallExpression() {
 return new ExtensionFunctionCall() {
 public SequenceIterator call(SequenceIterator[] arguments, XPathContext context) throws XPathException {
 long v0 = ((IntegerValue)arguments[0].next()).longValue();
 long v1 = ((IntegerValue)arguments[1].next()).longValue();
 long result = v0<<v1;
 return Value.asIterator(Int64Value.makeIntegerValue(result));
 }
 };
 }
 }

The extension must be registered with the configuration:

configuration.registerExtensionFunction(new ShiftLeft())

and it can then be called like this:

declare namespace eg="http://example.com/saxon-extension";
 for $i in 1 to 10 return eg:shift-left(2, $i)"

The methods that must be implemented (or that may be implemented) by an integrated extension
function are listed in the table below. Further details are in the Javadoc.

First, the ExtensionFunctionDefinition [Javadoc:
net.sf.saxon.lib.ExtensionFunctionDefinition] class:

Table 11.2.

getFunctionQName Returns the name of the function, as a
QName (represented by the Saxon class
StructuredQName). Like all other functions,
integrated extension functions must be in a
namespace. The prefix part of the QName is
immaterial.

getMinumumNumberOfArguments Indicates the minimum number of arguments that
must be supplied in a call to the function. A call
with fewer arguments than this will be rejected as
a static error.

getMaximumNumberOfArguments Indicates the maximum number of arguments that
must be supplied in a call to the function. A call
with more arguments than this will be rejected as
a static error.

getArgumentTypes Returns the static type of each argument
to the function, as an array with one

Extensibility

193

member per argument. The type is returned
as an instance of the Saxon class
net.sf.saxon.type.SequenceType.
Some of the more commonly-used types
are represented by static constants in the
SequenceType class. If there are fewer
members in the array than there are arguments
in the function call, Saxon assumes that all
arguments have the same type as the last one
that is explicitly declared; this allows for function
with a variable number of arguments, such as
concat().

getResultType Returns the static type of the result of the
function. The actual result returned at runtime
will be checked against this declared type, but
no conversion takes place. Like the argument
types, the result type is returned as an instance of
net.sf.saxon.type.SequenceType.When
Saxon calls this method, it supplies an array
containing the inferred static types of the
actual arguments to the function call. The
implementation can use this information to return
a more precise result, for example in cases where
the value returned by the function is of the same
type as the value supplied in the first argument.

trustResultType This method normally returns false. It can
return true if the implementor of the extension
function is confident that no run-time checking of
the function result is needed; that is, if the method
is guaranteed to return a value of the declared
result type.

dependsOnFocus This method must return true if the
implementation of the function accesses the
context item, context position, or context size
from the dynamic evaluation context. The method
does not need to be implemented otherwise, as its
default value is false.

hasSideEffects This method should be implemented, and return
true, if the function has side-effects of any kind,
including constructing new nodes if the identity of
the nodes is signficant. When this method returns
true, Saxon will try to avoid moving the function
call out of loops or otherwise rearranging the
sequence of calls. However, functions with side-
effects are still discouraged, because the optimizer
cannot always detect their presence if they are
deeply nested within other calls.

makeCallExpression This method must be implemented; it is called
at compile time when a call to this extension
function is identified, to create an instance of the
relevant ExtensionFunctionCall object to
hold details of the function call expression.

The methods defined on the second object, the ExtensionFunctionCall [Javadoc:
net.sf.saxon.lib.ExtensionFunctionCall], are:

Extensibility

194

Table 11.3.

supplyStaticContext Saxon calls this method fairly early on during
the compilation process to supply details of the
static context in which the function call appears.
The method may in some circumstances be called
more than once; it will always be called at least
once. As well as the static context information
itself, the expressions supplied as arguments are
also made available. If evaluation of the function
depends on information in the static context,
this information should be copied into private
variables for use at run-time.

rewrite Saxon calls this method at a fairly
late stage during compilation to give the
implementation the opportunity to optimize
itself, for example by performing partial
evaluation of intermediate results, or if all the
arguments are compile-time constants (instances
of net.sf.saxon.expr.Literal) even by
early evaluation of the entire function call. The
method can return any Expression (which
includes the option of returning a Literal to
represent the final result); the returned expression
will then be evaluated at run-time in place of
the original. It is entirely the responsibility of
the implementation to ensure that the substitute
expression is equivalent in every way, including
the type of its result.

copyLocalData Saxon occasionally needs to make a copy of
an expression tree. When it copies an integrated
function call it will invoke this method, which
is responsible for ensuring that any local data
maintained within the function call objects is
correctly copied.

call Saxon calls this method at run-time to evaluate the
function.The value of each argument is supplied
in the form of a SequenceIterator, that
is, an iterator over the items in the sequence
that make up the value of the argument. This
may use lazy evaluation, which means that a
dynamic error can occur when reading the next
item from the SequenceIterator; it also means that
if the implementation does not require all the
items from the value of one of the arguments,
they will not necessarily be evaluated at all
(it is good practice to call the close() method
on the iterator if it is not read to completion.)
The implementation delivers the result also in
the form of a SequenceIterator, which in
turn means that the result may be subject to
delayed evaluation: the calling code will only
access items in the result as they are required,
and may not always read the result to completion.
To return a singleton result, use the class
net.sf.saxon.om.SingletonIterator;

Extensibility

195

to return an empty sequence,
return the unique instance of
net.sf.saxon.om.EmptyIterator.

Having written an integrated extension function, it must be registered with Saxon so that calls on the
function are recognized by the parser. This is done using the registerExtensionFunction
method available on the Configuration [Javadoc: net.sf.saxon.Configuration]
class, and also on the s9api Processor [Javadoc: net.sf.saxon.s9api.Processor]
class. It can also be registered via an entry in the configuration file. The function can be given any
name, although names in the fn:, xs:, and saxon: namespaces are strongly discouraged and may
not work.

It is also possible to register integrated extension functions under XQJ: this is done by locating
the Configuration that underpins the XQDataSource or XQConnection by casting it to
the Saxon implementation class (SaxonXQDataSource or SaxonXQConnection) and calling
getConfiguration().

.NET extension functions
The API for integrated .NET extension functions is available via the .NET classes
ExtensionFunctionDefinition and ExtensionFunctionCall, both defined in the
Saxon.API module. Here is a simple example that defines an extension function to calculate square
roots, registers this extension function with the s9api Processor, and then invokes it from an XPath
expression:

 public class Sqrt : ExtensionFunctionDefinition {

 public override QName FunctionName {
 get { return new QName("http://math.com/", "sqrt") };
 }

 public override int MinimumNumberOfArguments {
 get { return 1 };
 }

 public override int MaximumNumberOfArguments {
 get { return 1 };
 }

 public override XdmSequenceType[] ArgumentTypes {
 get { return new XdmSequenceType[] {
 new XdmSequenceType(XdmAtomicType.BuiltInAtomicType(QName.XS_DOUBLE), '?')
 }
 }
 }

 public override XdmSequenceType ResultType(XdmSequenceType[] ArgumentTypes) {
 return new XdmSequenceType(XdmAtomicType.BuiltInAtomicType(QName.XS_DOUBLE), '?');
 }

 public override bool TrustResultType {
 get { return true };
 }

 public override ExtensionFunctionCall MakeFunctionCall() {
 return new SqrtCall();
 }

Extensibility

196

 }

 public class SqrtCall : ExtensionFunctionCall {

 public override IXdmEnumerator Call(IXdmEnumerator[] arguments, DynamicContext context) {
 Boolean exists = arguments[0].MoveNext();
 if (exists) {
 XdmAtomicValue arg = (XdmAtomicValue)arguments[0].Current;
 double val = (double)arg.Value;
 double sqrt = System.Math.Sqrt(val);
 XdmAtomicValue result = new XdmAtomicValue(sqrt);
 return (IxdmEnumerator)result.GetEnumerator();
 } else {
 return EmptyEnumerator.INSTANCE;
 }
 }
 }

 Processor proc = new Processor();
 proc.RegisterExtensionFunction(new Sqrt());
 XPathCompiler xpc = proc.NewXPathCompiler();
 xpc.DeclareNamespace("mf", "http://math.com/");
 XdmItem result = xpc.EvaluateSingle("mf:sqrt(2)", null);
 Console.WriteLine("Square root of 2 is " + result);

Full details of the interface are defined in the .NET API documentation.

Writing reflexive extension functions in Java

This section applies to Saxon-PE and Saxon-EE only

Reflexive extension functions written in Java map the namespace of the XPath function name to a
Java fully-qualified class name, and the local name of the function to a Java method or field name.

Java extension functions can also be used when you are running on the .NET platform, provided
the class implementing the function is a standard class in the OpenJDK class library (which
covers nearly all the classes defined in the JDK). In other cases, you should compile the Java
code into a .NET assembly using the IKVMC compiler, in which case it behaves in the same
way as an extension function written in any other .NET language and compiled into CIL: see
Writing extension functions under .NET

An extension function is invoked using a name such as prefix:localname(). The prefix must
be the prefix associated with a namespace declaration that is in scope. The namespace URI is used
to identify a Java class, and the local name is used to identify a method, field, or constructor within
the class.

There are a number of extension functions supplied with the Saxon product: for details, see
Extensions. The source code of these methods, which in most cases is extremely simple,
can be used as an example for writing other user extension functions. It is found in class
net.sf.saxon.functions.Extensions.

Extensibility

197

Identifying the Java Class
There are various ways a mapping from URIs to Java classes can be established. The simplest is to
use a URI that identifies the Java class explicitly. The namespace URI should be "java:" followed
by the fully-qualified class name (for example xmlns:date="java:java.util.Date"). The
class must be on the classpath.

For compatibility with other products and previous Saxon releases, Saxon also supports
certain other formats of URI. The URI may be a string containing a "/", in which the fully-
qualified class name appears after the final "/". (for example xmlns:date="http://
www.jclark.com/xt/java/java.util.Date"). The part of the URI before the final
"/" is immaterial. The format xmlns:date="java.util.Date" is also supported. To
permit this extended syntax for namespaces, you need to set a property on the Configuration:
config.setConfigurationProperty(FeatureKeys.ALLOW_OLD_JAVA_URI_FORMAT,
true). The flag can also be set in the configuration file.

The Saxon namespace URI http://saxon.sf.net/ is recognised as a special case. In most cases
it causes the function to be loaded from the class net.sf.saxon.functions.Extensions
but in a few cases, such as saxon:evaluate, the function is recognized by the compiler as if it
were a built-in function. The various EXSLT namespaces are also recognized specially.

In XSLT, the system function function-available(String name) returns true if there
appears to be a method available with the right name. The function also has an optional second
argument to test whether there is a method with the appropriate number of arguments. However, it
is not possible to test whether the arguments are of appropriate types. If the function name is "new"
it returns true so long as the class is not an abstract class or interface, and so long as it has at least
one constructor.

Identifying the Java constructor, method, or field
The local name used in the XPath function call determines which constructor, method, or field of the
Java class is invoked. This decision (called binding) is always made at the time the XPath expression
is compiled. (In previous Saxon releases it was sometimes delayed until the actual argument values
were known at run-time).

• If the local name is new, a constructor is invoked. If several constructors are available, the one that
is chosen is based on the number and types of the supplied arguments.

• In other cases, the system looks for a matching method or field.

Firstly, the name must match, after converting hyphenated names to camelCase, which is done
by removing any hyphen in the XPath name and forcing the immediately following character
to upper case. For example the XPath function call to-string() matches the Java method
toString(); but the function call can also be written as toString() if you prefer.

Secondly, the number of arguments must match, after taking into account that (a) if the Java
method expects a first argument of class net.sf.saxon.expr.XPathContext then this
will be supplied automatically by the system and does not correspond to any explicit argument in
the XPath function call, and (b) when invoking an instance-level (non-static) method or field, the
XPath function call must supply an extra first argument, which identifies the target object for the
invocation.

A public field in a class is treated as if it were a zero-argument method, so public static fields can
be accessed in the same way as public static methods, and public instance-level fields in the same
way as instance-level methods.

Extensibility

198

• If there are several matching methods, the one that is chosen is determined by comparing the static
types of the supplied arguments with the required types in the method signature. See Choosing
among overloaded methods.

• Choosing among overloaded methods

• Calling Static Methods in a Java Class

• Calling Java Constructors

• Calling Java Instance-Level Methods

Choosing among overloaded methods
If there is no method with the required name and number of parameters, Saxon reports a compile-
time error.

If there is only one method with the required name and number of parameters, then Saxon chooses it,
and goes on to the next stage, which allocates converters for the supplied arguments.

If there are several methods in the class that match the localname, and that have the correct number
of arguments, then the system attempts to find the one that is the best fit to the types of the supplied
arguments: for example if the call is f(1,2) then a method with two int arguments will be preferred
to one with two float arguments. The rules for deciding between methods are quite complex.
Essentially, for each candidate method, Saxon calculates the "distance" between the types of the
supplied arguments and the Java class of the corresponding method in the method's signature, using a
set of tables. For example, the distance between the XPath data type xs:integer and the Java class
long is very small, while the distance between an XPath xs:integer and a Java Object is much
larger. If there is one candidate method where the distances of all arguments are less-than-or-equal-
to the distances computed for other candidate methods, and the distance of at least one argument is
smaller, then that method is chosen.

If there are several methods with the same name and the correct number of arguments, but none is
preferable to the others under these rules, an error is reported: the message indicates that there is more
than one method that matches the function call.

This binding is carried out statically, using the static types of the supplied arguments, not the dynamic
types obtained when the arguments are evaluated. If there is insufficient static type information to
distinguish the candidate methods, an error is reported. You can supply additional type information
using the treat as expression, or by casting. Often it is enough simply to declare the types of the
variables used as arguments to the function call.

The distances are calculated using the following rules (in order).

• If the required type is Object, the distance is 100.

• If the required type is one of the following Saxon-specific classes (or is a superclass of that class),
then the distance is as given:

• net.sf.saxon.om.SequenceIterator [Javadoc:
net.sf.saxon.om.SequenceIterator]: 26

• net.sf.saxon.om.ValueRepresentation [Javadoc:
net.sf.saxon.om.ValueRepresentation]: 25

• net.sf.saxon.value.Value [Javadoc: net.sf.saxon.value.Value]: 24

• net.sf.saxon.om.Item [Javadoc: net.sf.saxon.om.Item]: 23

• net.sf.saxon.om.NodeInfo [Javadoc: net.sf.saxon.om.NodeInfo]: 22

Extensibility

199

• net.sf.saxon.om.DocumentInfo [Javadoc:
net.sf.saxon.om.DocumentInfo]: 21

• net.sf.saxon.value.AtomicValue [Javadoc:
net.sf.saxon.value.AtomicValue], 20

• If the static type of the supplied argument allows more than one item, the distance is the first one
of the following that applies:

• If the method expects java.lang.Collection or a class that implements Collection:
30

• If the method expects an array: 31

• In all other cases: 80

Note that the item type of the supplied value plays no role in choosing the method to call,
even though it could potentially be used to disambiguate overloaded methods when arrays or
parameterized collection types are used.

• Otherwise (the static type allows only one item):

• If the static type of the supplied value matches node(): 80

• If the static type of the supplied value is a wrapped Java object, then 10 if the class of the object
matches the required Java class, else -1 (meaning this method is not a candidate)

• Otherwise, the value given in the table of atomic types below.

The distances for atomic types are given below. If there is no entry for the combination of supplied
type and required type, the method is removed from consideration. For unboxed types (int, float, etc)
the distance is always one less than the corresponding boxed type (java.lang.Integer, java.lang.Float).

Table 11.4.

xs:boolean , Boolean

xs:dateTime , Date

xs:date , Date

xs:decimal , BigDecimal, Double, Float

xs:double , Double

xs:duration

xs:float , Float, Double

xs:integer , BigInteger, BigDecimal, Long, Integer, Double,
Float

xs:short , BigInteger, BigDecimal, Long, Integer, Short,
Double, Float

xs:byte , BigInteger, BigDecimal, Long, Integer, Short,
Byte, Double, Float

xs:string , (String, CharSequence)

xs:anyURI , java.net.URI, java.net.URL, (String,
CharSequence)

xs:QName , javax.xml.namespace.QName

Extensibility

200

Saxon tries to select the appropriate method based on the of the arguments to the function call. If there
are several candidate methods, and there is insufficient information available to decide which is most
appropriate, an error is reported. The remedy is to cast the arguments to a more specific type.

A required type of one of the Java primitive types such as int or bool is treated as equivalent to
the corresponding boxed type (Integer or Boolean), except that with the boxed types, an empty
sequence can be supplied in the function call and is translated to a Java null value as the actual
argument.

The fact that a particular method is chosen as the target does not give a guarantee that conversion of
the arguments will succeed at run-time. This is particularly true with methods that expect a node in
an external object model such as DOM or XOM.

Calling Static Methods in a Java Class
can be called directly.

For example (in XSLT):

<xsl:value-of select="math:sqrt($arg)"
 xmlns:math="java:java.lang.Math"/>

This will invoke the static method java.lang.Math#sqrt(), applying it to the value of the
variable $arg, and copying the value of the square root of $arg to the result tree.

Similarly (in XQuery):

<a xmlns:double="java:java.lang.Double">
 {double:MAX_VALUE()}

This will output the value of the static field java.lang.Double#MAX_VALUE. (In practice, it is
better to declare the namespace in the query prolog, because it will then not be copied to the result tree.)

A static Java method called as an extension function may have an extra
first argument of class net.sf.saxon.expr.XPathContext [Javadoc:
net.sf.saxon.expr.XPathContext]. This argument is not supplied by the calling XPath or
XQuery code, but by Saxon itself. The XPathContext object provides methods to access many
internal Saxon resources, the most useful being getContextItem() which returns the context item
from the dynamic context. The XPathContext object is available with static or instance-level methods,
but not with constructors.

The following example shows a function that obtains the line number of the context node (this is
actually a built-in Saxon extension):

 /**
 * Return the line number of the context node.
 */
 public static int lineNumber(XPathContext c) {
 Item item = c.getCurrentIterator().current();
 if (item instanceof NodeInfo) {
 return ((NodeInfo)item).getLineNumber();
 } else {
 return -1;
 }
 }

If this method appears in class com.example.code.NodeData, then it can be accessed using
the following code in XSLT:

<xsl:value-of select="nd:line-number()"
 xmlns:nd="java:com.example.code.NodeData"/>

Extensibility

201

or the following in XQuery:

<line xmlns:nd="java:com.example.code.NodeData">
 { nd:line-number() }
</line>

Calling Java Constructors
are called by using the function named new(). If there are several constructors, then again the system
tries to find the one that is the best fit, according to the types of the supplied arguments. The result of
calling new() is an XPath value whose type is denoted by a QName whose local name is the actual
Java class (for example java.sql.Connection or java.util.List) and whose namespace
URI is http://saxon.sf.net/java-type (conventional prefix class). Any '$' characters
in the class name are replaced by '-' characters in the QName. The only things that can be done with
a wrapped Java Object are to assign it to a variable, to pass it to an extension function, and to convert
it to a string, number, or boolean, using the rules given below.

The use of external object types in namespace http://saxon.sf.net/java-type reflects the
Java type hierarchy. For example, if a variable is declared to accept a type of jt:java.util.List,
then a value of type jt:java.util.ArrayList will be accepted, but a value of type
jt:java.util.HashMap will not.

Calling Java Instance-Level Methods
(that is, non-static methods) are called by supplying an extra first argument of type Java Object which
is the object on which the method is to be invoked. A Java Object is usually created by calling an
extension function (e.g. a constructor) that returns an object; it may also be passed to the style sheet
as the value of a global parameter. Matching of method names is done as for static methods. If there
are several methods in the class that match the localname, the system again tries to find the one that
is the best fit, according to the types of the supplied arguments.

For example, the following XSLT stylesheet prints the date and time. (In XSLT 2.0, of course, this no
longer requires extension functions, but the example is still valid.)

<xsl:stylesheet
 version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:date="java:java.util.Date">

<xsl:template match="/">
 <html>
 <xsl:if test="function-available('date:to-string') and
 function-available('date:new')">
 <p><xsl:value-of select="date:to-string(date:new())"/></p>
 </xsl:if>
 </html>
</xsl:template>

</xsl:stylesheet>

The equivalent in XQuery is:

declare namespace date="java:java.util.Date";
<p>{date:to-string(date:new())}</p>

As with static methods, an instance-level Java method called as an extension function may
have an extra first argument of class net.sf.saxon.expr.XPathContext [Javadoc:

Extensibility

202

net.sf.saxon.expr.XPathContext]. This argument is not supplied by the calling XPath or
XQuery code, but by Saxon itself. The XPathContext object provides methods to access many
internal Saxon resources, the most useful being getContextItem() which returns the context item
from the dynamic context. The XPathContext object is not available with constructors.

If any exceptions are thrown by the method, or if a matching method cannot be found, processing
of the stylesheet will be abandoned. If the tracing option has been set (-T) on the command line, a
full stack trace will be output. The exception will be wrapped in a TransformerException and
passed to any user-specified ErrorListener object, so the ErrorListener can also produce
extra diagnostics.

Converting Arguments to Java Extension
Functions

This section describes how XPath values supplied in a call to a Java extension function are converted
to Java values.

There are three phases of decision-making:

• First, Saxon decides which method to call. If there are several methods with the same name, this
takes into account the static types of the supplied arguments and the Java types expected by the
method signature. However, this process does not influence how the arguments are subsequently
converted.

• Saxon allocates a converter, wherever possible at compile time, based on the static type of the
supplied argument and the Java type expected by the method.

• At run-time the converter performs the conversion from the supplied value to the required type.
Some converters will make further decisions based on run-time types at this stage.

These stages are described further in the following pages.

• Converting Method Arguments - General Rules

• Converting Atomic Values

• Converting Nodes

• Converting Wrapped Java Objects

Converting Method Arguments - General Rules
Having decided which method to call, Saxon has to convert the supplied XPath argument values to
the Java objects required by this method.

If the expected type is Object, the supplied value must either be a singleton, or an empty
sequence. If it is an empty sequence, null will be passed. If it is a singleton node, an instance
of net.sf.saxon.om.NodeInfo [Javadoc: net.sf.saxon.om.NodeInfo] will be
passed. If it is a wrapped Java object, that Java object will be passed. If it is a singleton atomic
value, the value will be converted to the nearest equivalent Java object: for example an xs:boolean
becomes java.lang.Boolean, an xs:string becomes java.lang.String, and so on.
An untyped atomic value is treated as a string. An xs:integer (even if it belongs to a
subtype such as xs:short) is converted to a Java BigInteger. The more specialized XML
Schema primitive types such as xs:hexBinary and xs:duration are passed in their native
Saxon representation (a subclass of net.sf.saxon.value.AtomicValue [Javadoc:
net.sf.saxon.value.AtomicValue]).

If the expected type is one of the Saxon-specific classes (SequenceIterator
[Javadoc: net.sf.saxon.om.SequenceIterator], ValueRepresentation
[Javadoc: net.sf.saxon.om.ValueRepresentation], Item [Javadoc:

Extensibility

203

net.sf.saxon.om.Item], Value [Javadoc: net.sf.saxon.value.Value],
AtomicValue [Javadoc: net.sf.saxon.value.AtomicValue], SequenceExtent
[Javadoc: net.sf.saxon.value.SequenceExtent]), then the value is passed
unchanged. An error occurs if the supplied value contains more than one item and the expected type
does not allow this.

If the expected type implements java.util.Collection, Saxon attempts to convert each
value in the supplied sequence to the most appropriate Java class, following the same rules
as when converting a singleton to java.lang.Object. This process takes no account of
parameterized collection types (such as List<String>). If the required collection type accepts
an java.util.ArrayList, Saxon will create an ArrayList to hold the values; otherwise it
will attempt to instantiate the required type of collection, which will only work if it is a concrete
class with a zero-argument public constructor (so it will fail, for example, if the required type is
java.util.Set). If an empty sequence is supplied as the argument value, this is converted to an
empty Collection.

If the required type is an array, Saxon will attempt to create an array of the required type. This will not
always succeed, for example if the array has type X[] where X is an interface rather than a concrete
class. If it is an array of items or nodes, the nodes in the supplied sequence will be inserted into the
array directly; if it is an array of a type such as integer or double, the sequence will first be atomized.

Converting Atomic Values
This section describes the conversions that occur when calling a method that expects an atomic value,
such as a String or a boolean.

If the supplied value is a node, then it is atomized.

If the supplied value contains more than item and only a single item is expected, an error is reported.
There is no implicit extraction of the first value (as happened in earlier Saxon releases).

If the supplied value is an empty sequence, then a null value is passed. However, if the required type is
a primitive Java type such as int or bool, then passing an empty sequence will result in a type error.

In other cases, the supported conversions are as follows. Italicized names are Saxon-specific classes
in package net.sf.saxon.value.

Table 11.5.

boolean , Boolean

dateTime , Date

date , Date

decimal , BigDecimal, Double, Float

double , Double

duration

float , Float, Double

integer, long, int , BigInteger, BigDecimal, Long, Integer, Double,
Float

short , BigInteger, BigDecimal, Long, Integer, Short,
Double, Float

byte , BigInteger, BigDecimal, Long, Integer, Short,
Byte, Double, Float

string , (String, CharSequence)

anyURI , java.net.URI, java.net.URL, (String,
CharSequence)

Extensibility

204

QName , javax.xml.namespace.QName

A required type of one of the Java primitive types such as int or bool is treated as equivalent to
the corresponding boxed type (Integer or Boolean), except that with the boxed types, an empty
sequence can be supplied in the function call and is translated to a Java null value as the actual
argument.

Converting Nodes
If the expected type is a generic collection type, or an array of the Saxon
class NodeInfo [Javadoc: net.sf.saxon.om.NodeInfo], or a Value
[Javadoc: net.sf.saxon.om.Value] or SequenceIterator [Javadoc:
net.sf.saxon.om.SequenceIterator], Saxon will pass the nodes supplied in the call in
their native Saxon representation, that is, as instances of net.sf.saxon.om.NodeInfo.

Saxon recognizes methods that expect nodes in an external object model (DOM, DOM4J, JDOM, or
XOM) only if the supporting JAR file is on the classpath (that is, saxon9-dom.jar, saxon9-dom4j.jar,
saxon9-jdom.jar, or saxon9-xom.jar). In all four cases, if the XPath node is actually a view of a DOM,
DOM4J, JDOM, or XOM node, then the underlying node will be passed to the method. If the XPath
node is a text node that maps to a sequence of adjacent text and/or CDATA nodes in the underlying
model, the first node in this sequence will be passed to the extension function.

In addition, in the case of DOM only (but only if saxon9-dom.jar is on the classpath), if the XPath
node is a view of a DOM node, Saxon will create a DOM wrapper for the native Saxon node, and
pass this wrapper. This is also done if the required type is a DOM NodeList. Note that the wrapper
is a read-only DOM implementation: any attempt to update nodes through the wrapper interface will
throw an exception. A consequence of the way the wrapping works is that it's not safe to rely on object
identity when testing node identity - the same node can be represented by more than one Java object.
Use the DOM method isSameNode() instead.

Converting Wrapped Java Objects
Saxon allows an extension function to return an arbitrary Java object. This will then be wrapped as
an XPath item, so that it can be held in a variable and passed subsequently as an argument to another
extension function. This second extension function will see the original Java object minus its wrapper,
provided it is declared to expect the appropriate Java class.

A wrapped Java object may be converted to another data type as follows.

• It is converted to a string by using its toString() method; if the object is null, the result is the empty
string "".

• It is converted to a number by converting it first to a string, and then applying the XPath number()
conversion. If it is null, the result is NaN.

• It is converted to a boolean as follows: if it is null, the result is false, otherwise it is converted to a
string and the result is true if and only if the string is non-empty.

The type of a wrapped Java object may be declared in a variable declaration or function signature
using a type name whose namespace URI is "http://saxon.sf.net/java-type", and whose local name
is the fully qualified name of the Java class, with any "$" signs replaced by hyphens. For example,
the sql:connection extension function returns a value of type {http://saxon.sf.net/
java-type}java.sql.Connection.

Note that a call on a constructor function (using prefix:new()) always returns a wrapped Java object,
regardless of the class. But a call on a static method, instance-level method, or field will return a
wrapped Java object only if the result is a class that Saxon does not specifically recognize as one
that it can convert to a regular XPath value. Such classes include String, Long, Double, Date,
BigInteger, URI, List and so on.

Extensibility

205

Converting the Result of a Java Extension
Function

This section explains how the value returned by a Java extension function is converted to an XPath
value. The same rules are used in converting a Java object supplied as a parameter to a stylesheet or
query.

The result type of the method is converted to an XPath value as follows.

• If the method returns void, the XPath value is an empty sequence.

• If the method returns null, the XPath value is an empty sequence.

• If the method is a constructor, the XPath value is of type "wrapped Java object". The only way of
using this is by passing it to another external function, or by converting it to one of the standard
XPath data types as described above.

• If the returned value is a Java boolean or Boolean, the XPath result is a boolean.

• If the returned value is a Java double or Double, the XPath result is a double.

• If the returned value is a Java float or Float, the XPath result is a float.

• If the returned value is a Java int, short, long, character, or byte, or one of their object wrapper
equivalents, the XPath result is an integer.

• If the returned value is a Java String, the XPath result is a string.

• If the returned value is an instance of the Saxon class net.sf.saxon.om.NodeInfo
[Javadoc: net.sf.saxon.om.NodeInfo] (a node in a Saxon tree), the XPath value will
be a sequence containing a single node.

• If the returned value is an instance of javax.xml.transform.Source (other than a
NodeInfo), a tree is built from the specified Source object, and the root node of this tree is
returned as the result of the function.

• If the returned value is an instance of the Saxon
class net.sf.saxon.value.ValueRepresentation [Javadoc:
net.sf.saxon.value.ValueRepresentation], the returned value is used unchanged.

• If the returned value is is an instance of the
Saxon class net.sf.saxon.om.SequenceIterator [Javadoc:
net.sf.saxon.om.SequenceIterator] (an iterator over a sequence), the XPath value
will be the sequence represented by this iterator. It is essential that this iterator properly implements
the method getAnother() which returns a new iterator over the same sequence of nodes or
values, positioned at the start of the sequence.

• If the returned value is an instance of the Java class java.util.Collection, or if it is an
array, the XPath value will be the sequence represented by the contents of this Collection or
array. The members of the collection or array will each be converted to an XPath value, as if each
member was supplied from a separate function call. An error is reported if the result contains a list
or array nested within another list or array. The contents of the list or array are copied immediately
on return from the function, so the original List or array object itself may be safely re-used.

• If the returned value is a DOM Node, and it is recognized as a wrapper around a Saxon node, then
the node is unwrapped and the underlying Saxon node is returned. If the returned value is some
other kind of DOM Node, then a Saxon wrapper is added. (This is an imperfect solution, since it
can lead to problems with node identity and document order.)

Extensibility

206

• If the returned value is a DOM NodeList, the list of nodes is returned as a Saxon node-set. Each
node is handled in the same way as a Node that is returned directly as the result.

• If the result is any other Java object (including null), it is returned as a "wrapped Java object".

Writing reflexive extension functions for .NET

Reflexive extension functions involve dynamic loading of assemblies, which can be tricky to
get working. Also, they aren't supported under Saxon-HE. Consider using integrated extension
functions instead.

On the .NET platform extension functions may be implemented in any .NET language (the examples
here assume C#).

Queries and stylesheets running on the .NET platform may also call Java extension functions,
provided the Java class is part of the standard library implemented in the OpenJDK DLL, or
in Saxon itself. For calling conventions, see Writing extension functions in Java. If you want
to write your own extensions in Java, you will need to compile them to .NET assemblies using
IKVMC.

An extension function is invoked using a name such as prefix:localname(). The prefix must
be the prefix associated with a namespace declaration that is in scope. The namespace URI is used
to identify a .NET class, and the local name is used to identify a method, property, or constructor
within the class.

The basic form of the namespace URI is "clitype:" followed by the fully-
qualified type name (for example xmlns:env="clitype:System.Environment").
This form works for system classes and classes in a loaded assembly. If an
assembly needs to be loaded, extra information can be given in the form of URI
query parameters. For example xmlns:env="clitype:Acme.Payroll.Employee?
asm=payroll;version=4.12.0.0".

The parameters that are recognized are:

Table 11.6.

Keyword Value

asm The simple name of the assembly

ver The version number, up to four integers separated
by periods

loc The culture (locale), for example "en-US"

sn The public key token of the assembly's strong
name, as 16 hex digits

from The location of the assembly, as a URI

partialname The partial name of the assembly (as supplied to
Assembly.LoadWithPartialName()).

If the from keyword is present, the other parameters are ignored. The value of from must be the URI
of the DLL to be loaded: if it is relative, it is relative to the base URI of the expression containing the
call to the extension function (regardless of where the namespace is actually declared).

If the partialName keyword is present, the assembly is loaded (if possible) using
Assembly.LoadWithPartialName() and the other parameters are ignored.

Extensibility

207

If the assembly is a library DLL in the global assembly cache, use the gacutil /l command to
list the assemblies present in the GAC, and to extract the required version, culture, and strong name
attributes. For example, suppose you want to call a static method disappear() in class Conjurer
in namespace Magic.Circle, and this class is contained in an assembly Magic listed as:

Magic, Version=7.2.2200.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a4b, Custom=null

Then the URI you would use to identify this class is clitype:Magic.Circle.Conjurer?
asm=Magic;ver=7.2.2200.0;sn=b03f5f7f11d50a4b, and an actual call of the function
might take the form:

<xsl:value-of select="m:disappear()"
 xmlns:m="clitype:Magic.Circle.Conjurer?asm=Magic;ver=7.2.2200.0;sn=b03f5f7f11d50a4b"/>

Tips for Dynamic Loading in .NET"
Here are some hints and tips that might help you to get dynamic loading working under .NET.

.

First decide whether you want to load the assembly (DLL) containing the extension functions from
local filestore or from the Global Assembly Cache.

If you want to load it from the GAC you must compile the assembly with a strong name, and deploy it to
the GAC. For advice on doing this, see http://support.microsoft.com/kb/324168. (In .NET framework
2.0 there was a handy Control Panel tool for this, but it is no longer available for security reasons.)

For local loading, the following techniques work:

• If the query or transformation is controlled from a user-written application in C# or another .NET
language, include the extension function implementation in the same assembly as the controlling
application, or in another assembly which is statically referenced from the controlling application.
In this case it is only necessary to name the assembly, for example <e att="{my:ext()}"
xmlns:my="clitype:Namespace.ClassName?asm=Samples"/>

• Another approach is to copy the assembly into the same directory as the controlling application or, if
using the Saxon Query or Transform command from the command line, the directory containing
the Saxon Query.exe and Transform.exe executables. Again in this case it should simply
be necessary to give the assembly name as above.

• As an alternative, an assembly held in local filestore can be loaded by reference to the
file, for example xmlns:my="clitype:Namespace.ClassName?from=file:///c:/
lib/Samples.dll". The URI can be given as an absolute URI, or as a relative URI which is
interpreted relative to the base URI of the expression containing the function call.

For production running it is probably more appropriate to place the assembly holding extension
functions in the global assembly cache. It can then generally be referenced in one of two ways:

• By partial name, for example xmlns:my="clitype:Namespace.ClassName?
partialname=Samples"

• By fully-qualified name, for example xmlns:my="clitype:Namespace.ClassName?
asm=Samples;ver=3.0.0.1;loc=neutral;sn=e1f2a3b4e1f2a3b4"

The following example shows how to call system methods in the .NET framework:

<out xmlns:Environment="clitype:System.Environment"
 xmlns:OS="clitype:System.OperatingSystem">
 <xsl:variable name="os" select="Environment:OSVersion()"/>
 <v platform="{OS:Platform($os)}" version="{OS:Version($os)}"/>
</out>

http://support.microsoft.com/kb/324168

Extensibility

208

Identifying and Calling Specific Methods
The rest of this section considers how a .NET method, property, or constructor is identified. This
decision (called binding) is always made at the time the XPath expression is compiled.

There are three cases to consider: static methods, constructors, and instance-level methods. In addition,
a public property in a class is treated as if it were a zero-argument method, so static properties can be
accessed in the same way as static methods, and instance-level properties in the same way as instance-
level methods. (Note that the property name is used directly: it is not prefixed by "get".)

• Calling Static Methods in a .NET Class

• Calling .NET Constructors

• Calling .NET Instance-Level Methods

Calling Static Methods in a .NET Class
can be called directly. The localname of the function must match the name of a public static method
in this class. The names match if they contain the same characters, excluding hyphens and forcing any
character that follows a hyphen to upper-case. For example the XPath function call To-string()
matches the .NET method ToString(); but the function call can also be written as ToString()
if you prefer.

If there are several methods in the class that match the localname, and that have the correct number
of arguments, then the system attempts to find the one that is the best fit to the types of the supplied
arguments: for example if the call is f(1,2) then a method with two int arguments will be preferred
to one with two float arguments. The rules for deciding between methods are quite complex.
Essentially, for each candidate method, Saxon calculates the "distance" between the types of the
supplied arguments and the .NET class of the corresponding argument in the method's signature, using
a set of tables given below. For example, the distance between the XPath data type xs:integer and
the .NET type long is very small, while the distance between an XPath xs:integer and a .NET
bool is much larger. If there is one candidate method where the distances of all arguments are less-
than-or-equal-to the distances computed for other candidate methods, and the distance of at least one
argument is smaller, then that method is chosen.

If there are several methods with the same name and the correct number of arguments, but none is
preferable to the others under these rules, an error is reported: the message indicates that there is more
than one method that matches the function call.

This binding is carried out statically, using the static types of the supplied arguments, not the dynamic
types obtained when the arguments are evaluated. If there is insufficient static type information to
distinguish the candidate methods, an error is reported. You can supply additional type information
using the treat as expression, or by casting. Often it is enough simply to declare the types of the
variables used as arguments to the function call.

For example (in XSLT):

<xsl:value-of select="math:Sqrt($arg)" xmlns:math="clitype:System.Math"/>

This will invoke the static method System.Math#Sqrt(), applying it to the value of the variable
$arg, and copying the value of the square root of $arg to the result tree. The value of $arg must be
convertible to a double under the same rules as for a native XPath function call.

Similarly (in XQuery):

<a xmlns:double="type:System.Double"/>
 {double:MaxValue()}

This will output the value of the static field System.Double#MaxValue. (In practice, it is better
to declare the namespace in the query prolog, or predeclare it using the API, because it will then not
be copied to the result tree.)

Extensibility

209

A static method called as an extension function may have an extra
first argument of type net.sf.saxon.expr.XPathContext [Javadoc:
net.sf.saxon.expr.XPathContext]. This argument is not supplied by the calling XPath or
XQuery code, but by Saxon itself. The XPathContext object provides methods to access many
internal Saxon resources, the most useful being getContextItem() which returns the context item
from the dynamic context. The class net.sf.saxon.expr.XPathContext is in the assembly
saxon9.dll, and the module containing the code of the extension function will therefore need to
contain a reference to that DLL. The class itself is written in Java, and is documented in the Javadoc
documentation. The XPathContext object is available with static or instance-level methods, but
not with constructors.

The following example shows a function that obtains the host language from the Saxon evaluation
context:

 public static string HostLanguage(net.sf.saxon.expr.XPathContext context)
 {
 int lang = context.getController().getExecutable().getHostLanguage();
 if (lang == net.sf.saxon.Configuration.XQUERY)
 {
 return "XQuery";
 }
 else if (lang == net.sf.saxon.Configuration.XSLT)
 {
 return "XSLT";
 }
 else if (lang == net.sf.saxon.Configuration.XPATH)
 {
 return "XPath";
 }
 else
 {
 return "unknown";
 }
 }

If this method appears in class com.example.code.Utils, then it can be accessed using the
following code in XSLT:

<xsl:value-of select="nd:HostLanguage()"
 xmlns:nd="java:com.example.code.Utils"/>

or the following in XQuery:

<line xmlns:nd="java:com.example.code.Utils">
 { nd:HostLanguage() }
</line>

Calling .NET Constructors
are called by using the function named new(). If there are several constructors, then
again the system tries to find the one that is the best fit, according to the types of
the supplied arguments. The result of calling new() is an XPath value whose type
is denoted by a QName whose local name is the actual .NET class (for example
System.Data.SqlClient.SqlConnection or System.Collections.ArrayList)
and whose namespace URI is http://saxon.sf.net/clitype. The only things that can be
done with a wrapped .NET Object are to assign it to a variable, to pass it to an extension function, and
to convert it to a string or boolean, using the rules given below.

The use of external object types in namespace http://saxon.sf.net/clitype
reflects the .NET type hierarchy. For example, if a variable is declared to

Extensibility

210

accept a type of net:System.Collections.IList, then a value of type
net:System.Collections.ArrayList will be accepted, but a value of type
net:System.Collections.HashTable will not.

Calling .NET Instance-Level Methods
(that is, non-static methods) are called by supplying an extra first argument of type external .NET
object which is the object on which the method is to be invoked. An external .NET Object may
be created by calling an extension function (e.g. a constructor) that returns an object; it may also be
passed to the query or stylesheet as the value of a global parameter. Matching of method names is done
as for static methods. If there are several methods in the class that match the localname, the system
again tries to find the one that is the best fit, according to the types of the supplied arguments.

For example, the following XSLT stylesheet prints the operating system name and version.

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template name="main">
 <out xmlns:env="clitype:System.Environment" xmlns:os="clitype:System.OperatingSystem">
 <xsl:variable name="os" select="env:OSVersion()"/>
 <v platform="{os:Platform($os)}" version="{os:Version($os)}"/>
 </out>
</xsl:template>
</xsl:stylesheet>

The equivalent in XQuery is:

declare namespace env="clitype:System.Environment";
declare namespace os="clitype:System.OperatingSystem";
let $os := env:OSVersion() return
<v platform="{os:Platform($os)}" version="{os:Version($os)}"/>

As with static methods, an instance-level Java method called as an extension function may
have an extra first argument of class net.sf.saxon.expr.XPathContext [Javadoc:
net.sf.saxon.expr.XPathContext]. This argument is not supplied by the calling XPath or
XQuery code, but by Saxon itself. The XPathContext object provides methods to access many
internal Saxon resources, the most useful being getContextItem() which returns the context
item from the dynamic context.

If any exceptions are thrown by the method, or if a matching method cannot be found, processing
of the stylesheet will be abandoned. If the tracing option has been set (-TJ) on the command line, a
full stack trace will be output. The exception will be wrapped in a TransformerException and
passed to any user-specified ErrorListener object, so the ErrorListener can also produce
extra diagnostics.

Converting Arguments to .NET Extension
Functions

This section describes how XPath values supplied in a call to a .NET extension function are converted
to .NET values.

• Converting Atomic Values and Sequences

• Converting Nodes and Sequences of Nodes

• Converting Wrapped .NET Objects

Extensibility

211

Converting Atomic Values and Sequences
The following conversions are supported between the static type of the supplied value of the argument,
and the declared .NET type of the argument. The mappings are given in order of preference; a type that
appears earlier in the list has smaller "conversion distance" than one appearing later. These priorities
are used to decide which method to call when the class has several methods of the same name.
Simple classes (such as boolean) are acceptable wherever the corresponding wrapper class (Boolean)
is allowed. Class names shown in italics are Saxon-specific classes.

If the value is a (typically the result of a call to another extension function, then the underlying .NET
object is passed to the method. An error will occur if it is the wrong .NET type.

If the required type is one of the types used in the Saxon.Api namespace to represent XPath values
(for example XdmValue, XdmNode, XdmAtomicValue, then the value is converted to an instance
of this class and passed over unchanged. If the expected type is XdmAtomicValue and the supplied
value is a node, the node will be atomized (this must result in a single atomic value). Use of types such
as XdmValue is available only when the query or transformation is invoked using the .NET API, it
does not work when running from the command line.

If the static type of the supplied value allows a sequence of more than one item, then
Saxon looks for a method that expects a net.sf.saxon.om.SequenceIterator, a
net.sf.saxon.value.Value, an ICollection or an array in that order. (The first two
classes are Saxon-specific). In all these cases except the last the item type of the supplied value plays
no role.

Nodes in the supplied sequence are atomized only if the .NET method requires an atomic type such
as an integer or string. If the method requires an ICollection, then the contents of the sequence will be
supplied . The objects in the List will typically be Saxon net.sf.saxon.om.Item [Javadoc:
net.sf.saxon.om.Item] objects. (Saxon does not yet recognize the generic types in .NET 2.0,
which allow the item type of a collection to be declared). If atomization is required, you can force it
by calling the data() function.

If the required type is an array, Saxon will attempt to create an array of the required type. This will not
always succeed, for example if the array has type X[] where X is an interface rather than a concrete
class. If it is an array of items or nodes, the nodes in the supplied sequence will be inserted into the
array directly; if it is an array of a type such as integer or double, the sequence will first be atomized.

If the supplied value is a singleton (a sequence of one item) then the type of that item is decisive. If it
is a sequence of length zero or more than one, then the general rules for a sequence are applied, and
the types of the items within the sequence are irrelevant.

If the supplied value contains more than item and only a single item is expected, an error is reported.
There is no implicit extraction of the first value (as happened in earlier releases).

Table 11.7.

boolean , bool

dateTime , Date

date , Date

decimal , decimal, double, float

double , double

duration

float , float, double

integer , decimal, long, integer, short, byte, double, float

string , string

anyURI , Uri, string

Extensibility

212

QName

node , NodeList, (Element, Attr, Document,
DocumentFragment, Comment, Text,
ProcessingInstruction, CharacterData), Node,
Boolean, Byte, Character, Double, Float, Integer,
Long, Short, (String, CharSequence), Object

sequence , , List, NodeList, , Node, (String, CharSequence),
Boolean, Byte, Character, Double, Float, Integer,
Long, Short, Object

Saxon tries to select the appropriate method based on the of the arguments to the function call. If there
are several candidate methods, and there is insufficient information available to decide which is most
appropriate, an error is reported. The remedy is to cast the arguments to a more specific type.

Converting Nodes and Sequences of Nodes
If the expected type is a generic collection type, or an array of the Saxon class NodeInfo
[Javadoc: net.sf.saxon.om.NodeInfo], or a Value or SequenceIterator
[Javadoc: net.sf.saxon.om.SequenceIterator], Saxon will pass the nodes supplied
in the call in their native Saxon representation.

Saxon also recognizes System.Xml.Node and its subtypes. However, calling a method that expects
an instance if System.Xml.Node will only work if the actual node supplied as the argument value
is a Saxon-wrapped DOM node, that is (a) the input to the stylesheet or query must be supplied in
the form of a wrapped DOM, and (b) the external function must be called supplying a node obtained
from the input document, not some node in a temporary tree created in the course of stylesheet or
query processing.

If an external function returns an System.Xml.Node then it will be wrapped as a Saxon node. This
may be expensive if it is done a lot, since each such node will acquire its own document wrapper.

Converting Wrapped .NET Objects
Saxon allows an extension function to be return an arbitrary .NET object. This will then be wrapped as
an XPath item, so that it can be held in a variable and passed subsequently as an argument to another
extension function. This second extension function will see the original Java object minus its wrapper,
provided it is declared to expect the appropriate Java class.

A wrapped .NET object may be converted to another data type as follows.

• It is converted to a string by using its ToString() method; if the object is null, the result is the empty
string "".

• It is converted to a boolean as follows: if it is null, the result is false, otherwise it is converted to a
string and the result is true if and only if the string is non-empty.

The type of a wrapped Java object may be declared in a variable declaration or function signature
using a type name whose namespace URI is "http://saxon.sf.net/.net-type", and whose local name is
the fully qualified name of the .NET class, with any "$" signs replaced by hyphens. For example,
the sql:connection extension function returns a value of type {http://saxon.sf.net/
clitype}System.Data.SQlClient.SqlConnection.

Converting the Result of a .NET Extension
Function

This section explains how the value returned by a .NET extension function is converted to an XPath
value.

Extensibility

213

The result type of the method is converted to an XPath value as follows.

• If the method returns void, the XPath value is an empty sequence.

• If the method returns null, the XPath value is an empty sequence.

• If the method is a constructor, the XPath value is of type "wrapped .NET object". The only way of
using this is by passing it to another external function, or by converting it to one of the standard
XPath data types as described above.

• If the returned value is an XdmValue or one of its subclasses such as XdmNode or
XdmAtomicValue, then it is used , after unwrapping. (These types are defined in the Saxon.Api
namespace). Note that if the method constructs a new XdmNode and returns it, then it must be built
using the Name Pool that is in use by the transformation or query, which means in practice that it
must be built using a DocumentBuilder derived from the same Saxon.Api.Processor.

• If the returned value is a .NET bool, the XPath result is a boolean.

• If the returned value is a .NET double, the XPath result is a double.

• If the returned value is a .NET float, the XPath result is a float.

• If the returned value is a .NET Int64, Int32, or Int16, or one of their object wrapper equivalents,
the XPath result is an integer.

• If the returned value is a .NET string, the XPath result is a string.

• If the returned value is an instance of the Saxon class net.sf.saxon.om.NodeInfo (a node
in a Saxon tree), the XPath value will be a sequence containing a single node.

• If the returned value is an instance of the Saxon class net.sf.saxon.value.Value, the
returned value is used unchanged.

• If the returned value is is an instance of the Saxon class
net.sf.saxon.om.SequenceIterator (an iterator over a sequence), the XPath value will
be the sequence represented by this iterator. It is essential that this iterator properly implements the
method getAnother() which returns a new iterator over the same sequence of nodes or values,
positioned at the start of the sequence.

• If the returned value is an instance of the .NET interface
System.Collections.IEnumerable, or if it is an array, the XPath value will be the
sequence represented by the contents of this collection or array. The members of the list or array
will each be converted to an XPath value, as if each member was supplied from a separate function
call. An error is reported if the result contains a list or array nested within another list or array.
The contents of the list or array are copied immediately on return from the function, so the original
collection or array object itself may be safely re-used.

• If the result is any other Java object (including null), it is returned as a "wrapped Java object".

In XSLT, the system function function-available(String name) returns true if there
appears to be a method available with the right name. The function also has an optional second
argument to test whether there is a method with the appropriate number of arguments. However, it
is not possible to test whether the arguments are of appropriate types. If the function name is "new"
it returns true so long as the class is not an abstract class or interface, and so long as it has at least
one constructor.

Writing XSLT extension instructions

Extensibility

214

Saxon implements the element extensibility feature defined in the XSLT standard. This feature allows
you to define your own instruction types for use in the stylesheet. These instructions can be used
anywhere within a , for example as a child of xsl:template, xsl:if, xsl:variable, or of
a literal result element.

To implement and use extension instructions, three steps are necessary:

1. There must be a class that implements the interface ExtensionElementFactory
[Javadoc: com.saxonica.xsltextn.ExtensionElementFactory], which
recognizes all the extension elements in a particular namespace and provides the Java code to
implement them.

2. This factory class must be associated with a namespace
URI and registered with the Configuration [Javadoc:
net.sf.saxon.Configuration], which can be done either by calling the method
setExtensionElementNamespace(namespace, classname) [Javadoc:
net.sf.saxon.Configuration#setExtensionElementNamespace], or by means
of an entry in the configuration file.

3. Within the stylesheet, there must be a namespace declaration that binds a prefix to this namespace
URI, and the prefix must be declared as an extension namespace by means of the extension-
element-prefixes attribute, typically on the xsl:stylesheet element. (A rarely-used
alternative is to declare it in the xsl:extension-element-prefixes attribute of an
enclosing literal result element.)

Saxon itself provides a number of stylesheet elements beyond those defined in the XSLT specification,
including saxon:assign, saxon:entity-ref, and saxon:while. To enable these, use
the standard XSLT extension mechanism: define extension-element-prefixes="saxon"
on the xsl:stylesheet element, or xsl:extension-element-prefixes="saxon" on any
enclosing literal result element.

Any element whose prefix matches a namespace listed in the extension-element-prefixes
attribute of an enclosing element is treated as an extension element. If no class can be instantiated
for the element (for example, because no ExtensionElementFactory [Javadoc:
com.saxonica.xsltextn.ExtensionElementFactory] has been registered for the
relevant namespace, or because the ExtensionElementFactory doesn't recognise the local
name), then fallback action is taken as follows. If the element has one or more xsl:fallback
children, they are processed. Otherwise, an error is reported. When xsl:fallback is used in any
other context, it and its children are ignored.

Within the stylesheet it is possible to test whether an extension element is implemented by using
the system function element-available(). This returns true if the namespace of the element
identifies it as an extension element (or indeed as a standard XSLT instruction) and if a class can be
instantiated to represent it. If the namespace is not that of an extension element, or if no class can be
instantiated, it returns false.

The interface net.sf.saxon.style.ExtensionElementFactory [Javadoc:
com.saxonica.xsltextn.ExtensionElementFactory] interface. defines a single
method, getExtensionClass(), which takes the local name of the element (that is, the name
without its namespace prefix) as a parameter, and returns the Java class used to implement this
extension element (for example, return SQLConnect.class). The class returned must be a
subclass of net.sf.saxon.style.StyleElement, and the easiest way to implement it is as a
subclass of net.sf.saxon.style.ExtensionInstruction.

Implementing extension instructions
The best way to see how to implement an extension element is by looking at the
example, for SQL extension elements, provided in package net.sf.saxon.option.sql,
and at the sample stylesheet which uses these extension elements. Start

Extensibility

215

with the class net.sf.saxon.option.sql.SQLElementFactory [Javadoc:
net.sf.saxon.option.sql.SQLElementFactory]

The StyleElement class represents an element node in the stylesheet document.
Saxon calls methods on this class to validate and type-check the element, and to
generate a node in the expression tree that is evaluated at run-time. Assuming
that the class is written to extend ExtensionInstruction [Javadoc:
net.sf.saxon.style.ExtensionInstruction], the methods it should provide are:

Table 11.8.

prepareAttributes() This is called while the stylesheet tree is still
being built, so it should not attempt to navigate
the tree. Its task is to validate the attributes of the
stylesheet element and perform any preprocessing
necessary. For example, if the attribute is an
attribute value template, this includes creating an
Expression that can subsequently be evaluated to
get the AVT's value.

validate() This is called once the tree has been built,
and its task is to check that the stylesheet
element is valid "in context": that is, it may
navigate the tree and check the validity of the
element in relation to other elements in the
stylesheet module, or in the stylesheet as a
whole. By convention, a parent element contains
checks on its children, rather than the other way
around: this allows child elements to be reused
in a new context without changing their code.
The system will automatically call the method
mayContainSequenceConstructor(). If
this returns true, it will automatically check that
all the children are instructions (that is, that their
isInstruction() method returns true).If the
extension element is not allowed to have any
children, you can call checkEmpty() from
the validate() method. However, users will
normally expect that an extension instruction
is allowed to contain an xsl:fallback
child instruction, and you should design for
this.If there are any XPath expressions in
attributes of the extension instruction (for
example a select attribute or an attribute
value template), then the validate() method
should call the typeCheck() method to process
these expressions: for example select =
typeCheck("select", select);

compile() This is called to create an Expression object which
is added to the expression tree. See below for
further details.

isInstruction() This should return true, to ensure that the element
is allowed to appear within a template body.

mayContainSequenceConstructor() This should return true, to ensure that the element
can contain instructions. Even if it can't contain
anything else, extension elements should allow
an xsl:fallback instruction to provide portability
between processors

Extensibility

216

The StyleElement [Javadoc: net.sf.saxon.style.StyleElement] class has
access to many services supplied either via its superclasses or via the XPathContext object. For details,
see the API documentation of the individual classes.

The simplest way to implement the compile() method is to return an instance of
a class that is defined as a subclass of SimpleExpression. However, in principle
any Expression [Javadoc: net.sf.saxon.expr.Expression] object can
be returned, either an expression class that already exists within Saxon, or a user-
written implementation. A subclass of SimpleExpression should implement the methods
getImplementationMethod() and getExpressionType(), and depending on the
value returned by getImplementationMethod(), should implement one of the methods
evaluateItem(), iterate(), or process().

Customizing Serialization
The output of a Saxon stylesheet or query can be directed to a user-defined output filter. This
filter can be defined either as a SAX2 ContentHandler, or as a subclass of the Saxon classes
net.sf.saxon.event.Receiver.

One advantage of using the Saxon classes is that more information is available from the stylesheet,
for example the attributes of the xsl:output element; another is that (if you are using the schema-
aware version of the product) type annotations are available on element and attribute nodes.

A transformation can be invoked from the Java API using the standard JAXP method
transformer.transform(source, result). The second argument must implement the
JAXP class javax.xml.transform.Result. To send output to a SAX ContentHandler,
you can wrap the ContentHandler in a JAXP SAXResult object. To send output to a
Saxon Receiver [Javadoc: net.sf.saxon.event.Receiver] (which might also be
an Emitter [Javadoc: net.sf.saxon.serialize.Emitter]), you can supply the
Receiver directly, since the Saxon Receiver interface extends the JAXP Result interface.

When running XQuery, Saxon offers a similar method on the XQueryExpression [Javadoc:
net.sf.saxon.query.XQueryExpression] object: the run() method. This also takes
an argument of type Result, which may be (among other things) a SAXResult or a Saxon
Receiver.

Some ContentHandler implementations require a sequence of events corresponding to a well-
formed document (that is, one whose document node has exactly one element node and no text
nodes among its children). If this is the case, you can specify the additional output property
saxon:require-well-formed="yes", which will cause Saxon to report an error if the result
tree is not well-formed.

As specified in the JAXP interface, requests to disable or re-enable output escaping are also
notified to the content handler by means of special processing instructions. The names of these
processing instructions are defined by the constants PI_DISABLE_OUTPUT_ESCAPING and
PI_ENABLE_OUTPUT_ESCAPING defined in class javax.xml.transform.Result.

As an alternative to specifying the destination in the transform() or run() methods, the
Receiver [Javadoc: net.sf.saxon.event.Receiver] or ContentHandler to be
used may be specified in the method attribute of the xsl:output element, as a fully-qualified
class name; for example method="prefix:com.acme.xml.SaxonOutputFilter". The
namespace prefix is ignored, but must be present to meet XSLT conformance rules.

An abstract implementation of the Receiver [Javadoc:
net.sf.saxon.event.Receiver] interface is available in the Emitter [Javadoc:
net.sf.saxon.serialize.Emitter] class. This class provides additional functionality
useful if you want to serialize the result to a byte or character output stream. If the Receiver that you
supply as an output destination is an instance of Emitter, then it has access to all the serialization
parameters supplied in the xsl:output declaration, or made available using the Java API.

Extensibility

217

See the documentation of class net.sf.saxon.event.Receiver [Javadoc:
net.sf.saxon.event.Receiver] for details of the methods available, or implementations
such as HTMLEmitter [Javadoc: net.sf.saxon.serialize.HTMLEmitter]
and XMLEmitter [Javadoc: net.sf.saxon.serialize.XMLEmitter] and
TEXTEmitter [Javadoc: net.sf.saxon.serialize.TEXTEmitter] for the standard
output formats supported by Saxon.

It can sometimes be useful to set up a chain of Receivers working as a pipeline. To
write a filter that participates in such a pipeline, the class ProxyReceiver [Javadoc:
net.sf.saxon.event.ProxyReceiver] is supplied. See the class XMLIndenter
[Javadoc: net.sf.saxon.serialize.XMLIndenter], which handles XML indentation,
as an example of how to write a ProxyReceiver.

Saxon sets up such a pipeline when an output file is opened, using a class called the
SerializerFactory [Javadoc: net.sf.saxon.lib.SerializerFactory]. You
can override the standard SerializerFactory with your own subclass, which you can
nominate to the setSerializerFactory() method of the Configuration [Javadoc:
net.sf.saxon.Configuration]. This uses individual methods to create each stage of the
pipeline, so you can either override the method that constructs the entire pipeline, or override a method
that creates one of its stages. For example, if you want to subclass the XMLEmitter [Javadoc:
net.sf.saxon.serialize.XMLEmitter] (perhaps to force all non-ASCII characters to be
output as hexadecimal character references), you can override the method newXMLEmitter()
to return an instance of your own subclass of XMLEmitter, which might override the method
writeEscape().

Rather than writing an output filter in Java, Saxon also allows you to process the output through
another XSLT stylesheet. To do this, simply name the next stylesheet in the saxon:next-in-
chain attribute of xsl:output.

Any number of user-defined attributes may be defined on xsl:output. These attributes must have
names in a non-null namespace, which must not be either the XSLT or the Saxon namespace. The value
of the attribute is inserted into the Properties object made available to the Emitter handling the
output; they will be ignored by the standard output methods, but can supply arbitrary information to
a user-defined output method. The name of the property will be the expanded name of the attribute
in JAXP format, for example {http://my-namespace/uri}local-name, and the value will
be the value as given, after evaluation as an attribute value template.

Implementing a collating sequence
Collations used for comparing strings can be specified by means of a URI. A collation URI may be
used as an argument to many of the standard functions, and also as an attribute of xsl:sort in
XSLT, and in the order by clause of a FLWOR expression in XQuery.

Saxon provides a range of mechanisms for binding collation URIs. The language specifications simply
say that collations used in sorting and in string-comparison functions are identified by a URI, and
leaves it up to the implementation how these URIs are defined.

There is one predefined collation that cannot be changed. This is the Unicode Codepoint Collation
defined in the W3C specifications http://www.w3.org/2005/xpath-functions/
collation/codepoint. This collates strings based on the integer values assigned by Unicode to
each character, for example "ah!" sorts before "ah?" because the Unicode codepoints for "ah!" are (97,
104, 33) while the codepoints for "ah?" are (97, 104, 63).

You can use the Saxon configuration file to define collations: see The collations element.

In addition, by default, Saxon allows a collation URI to take the form http://saxon.sf.net/
collation?keyword=value;keyword=value;.... The query parameters in the URI can
be separated either by ampersands or semicolons, but semicolons are usually more convenient.

Extensibility

218

The same keywords are available on the Java and .NET platforms, but because of differences in
collation support between the two platforms, they may interact in slightly different ways. The same
collation URI may produce different sort orders on the two platforms. (One noteworthy difference is
that the Java collations treat spaces as significant, the .NET collations do not.)

The keywords available in such a collation URI are the same as in the configuration file, and are as
follows:

Table 11.9.

class fully-qualified Java class name
of a class that implements
java.util.Comparator.

This parameter should not
be combined with any other
parameter. An instance of
the requested class is created,
and is used to perform the
comparisons. Note that if the
collation is to be used in
functions such as contains()
and starts-with(), this
class must also be a
java.text.RuleBasedCollator.
This approach allows a
user-defined collation to be
implemented in Java.This option
is also available on the .NET
platform, but the class must
implement the Java interface
java.util.Comparator.

rules details of the ordering required,
using the syntax of the Java
RuleBasedCollator

This defines exactly how
individual characters are
collated. (It's not very
convenient to specify this
as part of a URI, but
the option is provided for
completeness.) This option is
also available on the .NET
platform, and if used will select
a collation provided using the
OpenJDK implementation of
RuleBasedCollator.

lang any value allowed for
xml:lang, for example en-
US for US English

This is used to find the collation
appropriate to a Java locale
or .NET culture. The collation
may be further tailored using the
parameters described below.

ignore-case yes, no Indicates whether the upper and
lower case letters are considered
equivalent. Note that even when
ignore-case is set to "no", case
is less significant than the actual
letter value, so that "XPath" and
"Xpath" will appear next to each
other in the sorted sequence.On
the Java platform, setting ignore-
case sets the collation strength to
secondary.

Extensibility

219

ignore-modifiers yes, no Indicates whether non-spacing
combining characters (such as
accents and diacritical marks)
are considered significant. Note
that even when ignore-modifiers
is set to "no", modifiers are
less significant than the actual
letter value, so that "Hofen" and
"Höfen" will appear next to each
other in the sorted sequence.On
the Java platform, setting ignore-
case sets the collation strength to
primary.

ignore-symbols yes, no Indicates whether symbols such
as whitespace characters and
punctuation marks are to be
ignored. This option currently
has no effect on the Java
platform, where such symbols
are in most cases ignored by
default.

ignore-width yes, no Indicates whether characters that
differ only in width should
be considered equivalent.On the
Java platform, setting ignore-
width sets the collation strength
to tertiary.

strength primary, secondary, tertiary, or
identical

Indicates the differences that
are considered significant when
comparing two strings. A/B is
a primary difference; A/a is
a secondary difference; a/ä is
a tertiary difference (though
this varies by language). So
if strength=primary then A=a
is true; with strength=secondary
then A=a is false but a=ä
is true; with strength=tertiary
then a=ä is false.This option
should not be combined with
the ignore-XXX options. The
setting "primary" is equivalent
to ignoring case, modifiers, and
width; "secondary" is equivalent
to ignoring case and width;
"tertiary" ignores width only;
and "identical" ignores nothing.

decomposition none, standard, full Indicates how the collator
handles Unicode composed
characters. See the JDK
documentation for details. This
option is ignored on the .NET
platform.

alphanumeric yes, no, codepoint If set to yes, the string is split
into a sequence of alphabetic

Extensibility

220

and numeric parts (a numeric
part is any consecutive sequence
of ASCII digits; anything else
is considered alphabetic). Each
numeric part is considered to
be preceded by an alphabetic
part even if it is zero-length.
The parts are then compared
pairwise: alphabetic parts using
the collation implied by the
other query parameters, numeric
parts using their numeric value.
The result is that, for example,
AD985 collates before AD1066.
(This is sometimes called natural
sorting.) The value codepoint
requests alphanumeric collation
with the "alpha" parts being
collated by Unicode codepoint,
rather than by the default
collation for the Locale. This
may give better results in
the case of strings that
contain spaces. Note that an
alphanumeric collation cannot
be used in conjunction with
functions such as contains() and
substring-before().

case-order upper-first, lower-first Indicates whether upper case
letters collate before or after
lower case letters.

This format of URI, http://saxon.sf.net/collation?
keyword=value;keyword=value;..., is handled by Saxon's default
CollationURIResolver [Javadoc:
net.sf.saxon.lib.CollationURIResolver]. It is possible to replace or supplement
this mechanism by registering a user-written CollationURIResolver. This must be an
implementation of the Java interface net.sf.saxon.lib.CollationURIResolver, which
only requires a single method, resolve(), to be implemented. The result of the method is
in general a Java Comparator, though if the collation is to be used in functions such as
contains() which match parts of a string rather than the whole string, then the result must
also be an instance of either java.text.RuleBasedCollator, or of the Saxon interface
net.sf.saxon.sort.SubstringMatcher.

In the Java API, a user-written CollationURIResolver is registered with the Configuration
[Javadoc: net.sf.saxon.Configuration] object, either directly or in the case
of XSLT by using the JAXP setAttribute() method on the TransformerFactory
(the relevant property name is FeatureKeys.COLLATION_URI_RESOLVER [Javadoc:
net.sf.saxon.lib.FeatureKeys#COLLATION_URI_RESOLVER]). This applies to all
stylesheets and queries compiled and executed under that configuration.

It is also possible to register a collation (for example as an instance of the Java class Collator
or Comparator with the Configuration. Such explicitly registered collations (together with
those registered via the configuration file) are used before calling the CollationURIResolver.
In addition, the APIs provided for executing XPath and XQuery expressions allow named collations
to be registered by the calling application, as part of the static context.

Extensibility

221

At present there are no equivalent facilities in the .NET API (other than the use of the configuration
file), though it is possible to manipulate collations by dropping down into the Java interface.

Localizing numbers and dates
It is possible to define a localized numbering sequence for use by xsl:number and format-
date(). This sequence will be used when you specify a language in the lang attribute of the
xsl:number element, or in the third argument of the functions format-date(), format-
time(), and format-dateTime(). The feature is primarily intended to provide language-
dependent numbers and dates, but in fact it can be used to provide arbitrary numbering sequences.

To implement a numberer for language X, you need to define a class that implements the
interface Numberer [Javadoc: net.sf.saxon.lib.Numberer]; usually it will be
convenient to write the class as a subclass of the supplied AbstractNumberer [Javadoc:
net.sf.saxon.number.AbstractNumberer]. Numberer implementations are supplied
for a number of languages, and you can use these as a prototype to write your own.

The languages supplied with the product are:

Table 11.10.

code Language

da Danish

de German

en English

fr French

fr-BE French (Belgium)

it Italian

nl Dutch

nl-BE Flemish (Belgium)

sv Swedish

The numbering sequence for English is used by default if no other can be loaded.

Normally your localization class will extend the class AbstractNumberer so that you can reuse
functionality like roman numerals which do not need to be localized. Alternatively, if you only
want to modify the existing English localization, you could choose to implement a subclass of
Numberer_en.

You can override any of the non-private methods in the base class, but the most useful ones to
implement are the following:

Table 11.11.

Method Effect

ordinalSuffix Supplies a suffix to be appended to a number to
create the ordinal form, for example "1" becomes
"1st" in English

toWords Displays a number in words, in title case: for
example "53" becomes "Fifty Three" in English

toOrdinalWords Displays an ordinal number in words, in title
case: for example "53" becomes "Fifty Third" in
English

Extensibility

222

Method Effect

monthName Displays the name of a month, optionally
abbreviated

dayName Displays the name of a day of the week, optionally
abbreviated

The class name can be anything you like, but by convention the Numberer for language LL is named
net.sf.saxon.number.Numberer_LL.

The way that the numberer is registered with the Saxon Configuration differs between Saxon-HE on the
one hand, and Saxon-PE/EE on the other. On Saxon-HE, you need to supply a LocalizerFactory
that responds the request for a particular language: for example:

Configuration config = new Configuration();
config.setLocalizerFactory(new LocalizerFactory() {
 public Numberer getNumberer(String language, String country) {
 if (language.equals("jp")) {
 return Numberer_JP.getInstance();
 } else {
 return null;
 }
 }
});

You can also use this mechanism on Saxon-PE/HE, but an alternative is to register the localization
module in the configuration file.

Writing a URI Resolver for Input Files
Saxon allows you to write your own URIResolver to handle the URIs of input documents, as
defined in the JAXP specification. Such a URIResolver is used to process the URIs supplied to
the doc() and document() functions. It is also used to process the URIs supplied for the source
document and the stylesheet on the command line. In XSLT it is used to process the URIs used in
the xsl:include and xsl:import and xsl:import-schema declarations, and in XQuery it
supports the location URIs in import schema.

The URIResolver is called to process the supplied URI, and it returns a JAXP Source object,
which Saxon uses as the source of the input. Note that the Source must be one of the implementations
of Source that Saxon recognizes: you cannot write your own implementations of the JAXP Source
class.

The URIResolver is used only for XML files. It is therefore not used to support the unparsed-
text() function in XSLT, or to support import module in XQuery.

Writing a URI Resolver for Output Files
Saxon also allows you to write an OutputURIResolver, which performs an analogous role for
URIs specified in the href attribute of xsl:result-document. This is therefore applicable to
XSLT only. The OutputURIResolver is called when writing of the output document starts, at
which point it must return a JAXP Result object to act as the output destination. It is called again
when writing of an output document is complete.

You can nominate an OutputURIResolver by calling
((Controller)transformer).setOutputURIResolver(new

Extensibility

223

UserOutputResolver()), or by calling factory.setAttribute("http://
saxon.sf.net/feature/outputURIResolver", new UserOutputResolver()).

224

Chapter 12. Saxon Extensions
Introduction

This section describes the extensions and implementation-defined features provided with the Saxon
product.

If you want to implement your own extensions, see Extensibility.

Most of the extensions described in this section require Saxon-PE (Professional Edition) or
higher. A few work with Saxon-HE (Home Edition), and some require Saxon-EE (Enterprise
Edition). Check the details for each extension.

The extensions described here were provided because there are things that are difficult to achieve, or
inefficient, using standard XSLT/XQuery facilities alone. In some cases they are retained from earlier
releases even though equivalent functionality is available using the standard language. As always, it
is best to stick to the standard if you possibly can: and most things possible, even if it's not obvious
at first sight.

All Saxon extensions require a namespace declaration such xmlns:saxon="http://
saxon.sf.net/" to appear. In XSLT this is typically declared on the xsl:stylesheet
element; it is also useful to write exclude-result-prefixes="saxon" to prevent the Saxon
namespace appearing in the result tree. In XQuery the namespace is declared by writing declare
namespace saxon="http://saxon.sf.net/"; in the Query prolog.

If you use XSLT extension instructions such as saxon:doctype, it is also necessary to include the
attribute extension-element-prefixes="saxon".

Before using a Saxon extension, check whether there is an equivalent EXSLT extension
available. EXSLT extensions are more likely to be portable across XSLT processors.

For details of additional extensions available in Query only, see Query Extensions.

Saxon also provides a set of extension elements providing access to SQL databases. These are
described here.

Further information:

• EXSLT Extensions

• Extension attributes (XSLT only)

• Additional serialization parameters

• Extension functions

• The Map Extension

• Extension instructions

EXSLT Extensions
EXSLT [http://www.exslt.org/] is an initiative to define a standardized set of extension functions and
extension elements that can be used across different XSLT processors.

http://www.exslt.org/
http://www.exslt.org/

Saxon Extensions

225

Saxon supports the EXSLT modules Common, Math, Sets, DatesAndTimes, and Random. These
functions are available both in XSLT and in XQuery. The full list of EXSLT extension functions
implemented is:

• node-set(), object-type()

• abs(), acos(), asin(), atan(), atan2(), constant(), cos(), exp(), highest(), log(), lowest(), max(), min(),
power() , random(), sin(), sqrt(), tan().

• difference(), intersection(), leading(), trailing(), has-same-node()

• add(), add-duration(), date(), date-time(), day-abbreviation(), day-in-month(), day-in-week(), day-
in-year(), day-name(), day-of-week-in-month(), difference(), duration(), hour-in-day(), leap-year(),
minute-in-hour(), month-abbreviation(), month-in-year(), month-name(), second-in-minute(),
seconds(), sum(), time(), week-in-month(), week-in-year(), year().

• random-sequence()

There are some known restrictions and local interpretations:

• In the set:leading() and set:trailing() functions, Saxon does not implement the rule
"If the first node in the second node set is not contained in the first node set, then an empty node set
is returned." This rule prevents a pipelined implementation. Saxon returns all nodes that precede/
follow the first/last node of the second node-set in document order, whether or not the two node-
sets intersect.

EXSLT extensions that overlap XSLT 2.0 functionality have sometimes been retained in cases where
they have no impact on the Saxon core code, but in cases (such as func:function) where the
semantics are inconveniently different from XSLT 2.0, they have been withdrawn.

The function math:power() has been extended from the EXSLT definition to handle numeric data
types other than xs:double. The result will now be an xs:integer if the first argument is an xs:integer
and the second argument is a non-negative xs:integer. Otherwise, the result will be an xs:decimal if the
first argument is an xs:decimal or xs:integer, and the second argument is a whole number (a number
of any data type that is equal to some integer). In other cases the arguments are converted to xs:double
and the result is an xs:double.

The specifications of the EXSLT date-and-time handling functions have little to say about timezones.
Saxon generally handles inputs with or without a timezone, and uses the XPath 2.0 concept of implicit
timezone to interpret the meaning of dates/times without a timezone. The current date and time used
by EXSLT functions is the same as that used by the XPath 2.0 current-dateTime() function.

Extension attributes (XSLT only)
An extension attribute is an extra attribute on an XSLT-defined element. These attributes are all in the
Saxon namespace http://saxon.sf.net/. This namespace needs to be declared in a namespace
declaration, but it does not need to be listed in the extension-element-prefixes attribute.

For example, the saxon:assignable attribute can be set as follows:

<xsl:variable name="counter" saxon:assignable="yes"
 xmlns:saxon="http://saxon.sf.net/">

The extension attributes provided with the Saxon product are as follows:

• saxon:assignable: marks a variable as updateable

• saxon:explain: requests display of optimized expression tree

• saxon:memo-function: marks a function as a memo function

Saxon Extensions

226

• saxon:read-once: enables serial processing of source documents

• saxon:threads: enables parallel processing of xsl:for-each instructions

saxon:assignable
This attribute may be set on a global xsl:variable element. The permitted values are "yes" and
"no". If the variable is the subject of a saxon:assign instruction, it must be set to the value "yes". Setting
this value to "yes" also ensures that the variable is actually evaluated, which is useful if the select
expression calls extension functions with side-effects; without this, a variable that is never referenced
may never be evaluated.

saxon:explain
This attribute may be set on any instruction in the stylesheet, including a literal result element,
though the recommended use is to set it on an xsl:template or xsl:function declaration. The
permitted values are "yes" and "no". If the value is "yes", then at compile time Saxon outputs (to the
standard error output) a representation of the optimized expression tree for the template or function
containing that instruction. The tree is represented by indentation. For example, consider this source
code:

 <xsl:variable name="p" select="0"/>

 <xsl:template match="/" saxon:explain="yes" xmlns:saxon="http://saxon.sf.net/" exclude-result-prefixes="saxon">
 <a>
 <xsl:choose>
 <xsl:when test="$p != 0"><xsl:value-of select="1 div $p"/></xsl:when>
 <xsl:otherwise>12</xsl:otherwise>
 </xsl:choose>

 </xsl:template>

This produces the output:

Optimized expression tree for template at line 8 in file:/e:/temp/test.xsl:
<directElement name="a" validation="skip">
 <valueOf>
 <literal value="12" type="xs:string"/>
 </valueOf>
</directElement>

This indicates that the template has been reduced to an instruction to create an element with name a,
whose content is a single text node holding the string "12". This is because Saxon has established at
compile time that it will always take the "otherwise" branch of the xsl:choose instruction. There
is no xsl:value-of instruction in the source code, but the literal text node "12" is compiled to the
same code as if the user had written <xsl:value-of select="'12'"/>

To get this output for all templates and functions in the stylesheet, you can use the -explain option
on the command line.

saxon:memo-function
This attribute may be set on the xsl:function element. The permitted values are "yes" and "no".
Specifying "yes" indicates that Saxon should remember the results of calling the function in a cache,
and if the function is called again with the same arguments, the result is retrieved from the cache
rather than being recalculated. Don't use this if the function has side-effects (for example, if it calls
saxon:assign, or an extension function with side-effects). Don't use it if the function accesses
context information such as the context node or position() or last(). And be careful if the

Saxon Extensions

227

function constructs and returns a temporary tree: the effect will be that the function returns the same
tree each time, rather than a copy of the tree (this difference will only show up if you compare the
identity of nodes in the two trees).

saxon:read-once
This attribute may be set on the xsl:copy-of element. The allowed values are "yes" and "no". If
set to yes, this attribute enables the optimization described in Streaming of Large Documents.

The attribute should be set to "yes" only if any external document read by this instruction is read
at most once by the stylesheet. If this is not the case, the optimization is unsafe, since the functions
doc() and document() are required to return the same results each time they are called.

saxon:threads
This attribute may be set on the xsl:for-each instruction. The value must be an integer. When
this attribute is used with Saxon-EE, the items selected by the select expression of the instruction
are processed in parallel, using the specified number of threads.

The threads are allocated on a round-robin basis: for example if threads="3" is specified, then
the first item will be processed using thread 1, the second using thread 2, the third using thread 3, the
fourth using thread 1 again, and so on. These threads are in addition to the main control thread (so
there will be 4 threads in total). Before firing off the processing of the third item, the control thread
will read off the results of processing the first item, and send them to the destination of the xsl:for-
each instruction.

It is possible to specify saxon:threads="1". In this case all the items in the input will be
processed sequentially, but asynchronously with the thread that reads the items in the input sequence.

Processing using multiple threads can take advantage of multi-core CPUs. However, there is an
overhead, in that the results of processing each item in the input need to be buffered. The overhead
of coordinating multiple threads is proportionally higher if the per-item processing cost is low, while
the overhead of buffering is proportionally higher if the amount of data produced when each item
is processed is high. Multi-threading therefore works best when the body of the xsl:for-each
instruction performs a large amount of computation but produces a small amount of output.

It is possible to combine multi-threading with sorting. However, the input is first read and sorted
synchronously, and the items in the sorted sequence are then processed in parallel.

The effect of using extensions that have side-effects (including saxon:assign) in a multi-threaded
loop is undefined (and probably fatal).

Multi-threaded processing is available only with Saxon-EE. The attribute saxon:threads
is ignored with a warning if Saxon-EE is not in use. Under Saxon-EE it may also be
disabled using the configuration option FeatureKeys.ALLOW_MULTITHREADING or xslt/
@allowMultiThreading='false' in the configuration file. Multi-threaded processing is also
disabled if code is compiled with tracing enabled, for example by using the -T option on the command
line or by using an IDE debugger (this is because otherwise, the trace events would be hopelessly
intermingled).

With multi-threaded processing, the output of different xsl:message instructions may appear in an
unpredictable order. However, Saxon ensures that the xsl:message instruction is atomic, so one
message will be completed before another starts. The same is true of the output from the trace()
function call.

Additional serialization parameters

Saxon Extensions

228

Saxon provides a number of additional serialization parameters, and several additional serialization
methods: these have names in the Saxon namespace. These can be specified as attributes on the
xsl:output and xsl:result-document elements (XSLT-only), in the Query prolog (XQuery
only), or as extra parameters on the Query or Transform command line. They can also be specified
in the query or transformation API.

For example, to request an indentation depth of one column, specify !{http://
saxon.sf.net/}indent-spaces=1 on the command line.

In XQuery, Saxon allows both standard serialization options and Saxon-specific serialization
parameters to be specified by means of a saxon:output option declaration in the query prolog.
For example:

declare namespace saxon="http://saxon.sf.net/";
declare option saxon:output "indent=yes";
declare option saxon:output "saxon:indent-spaces=3";

The standard serialization parameters described in The W3C Serialization specification [http://
www.w3.org/TR/xslt-xquery-serialization/] are all available, namely:

• byte-order-mark

• cdata-section-elements

• doctype-public

• doctype-system

• encoding

• escape-uri-attributes

• include-content-type

• indent

• media-type

• method

• normalization-form

• omit-xml-declaration

• standalone

• undeclare-prefixes

• use-character-maps (only useful in XSLT)

• version

The Saxon-supplied serialization parameters are described on the following pages.

• The method attribute

• The saxon:base64Binary serialization method

• The saxon:hexBinary serialization method

• The saxon:ptree serialization method

http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt-xquery-serialization/

Saxon Extensions

229

• The saxon:character-representation attribute

• The saxon:double-space attribute

• The saxon:indent-spaces attribute

• The saxon:line-length attribute

• The saxon:next-in-chain attribute

• The saxon:recognize-binary attribute

• The saxon:require-well-formed attribute

• The saxon:supply-source-locator attribute

• The saxon:suppress-indentation attribute

• The saxon:xquery serialization method

• User-defined serialization attributes

The method attribute
The method attribute of xsl:output can take the standard values "xml", "html", "xhtml", or "text",
or a .

If a QName in the Saxon namespace is specified, the name must be one of Saxon serialization methods
supported in Saxon-PE and Saxon-EE. These are:

Table 12.1.

saxon:base64Binary The saxon:base64Binary serialization method

saxon:hexBinary The saxon:hexBinary serialization method

saxon:ptree The saxon:ptree serialization method

saxon:xquery The saxon:xquery serialization method

If a QName is specified, the local name must be the fully-qualified class name of a
class that implements either the SAX2 org.xml.sax.ContentHandler interface, or the
net.sf.saxon.event.Receiver interface. If such a value is specified, output is directed to a
newly-created instance of the user-supplied class. You can pass additional information to this class by
means of extra user-defined attributes on the xsl:output element.

The prefix of the must correspond to a valid namespace URI. It is recommended to use the Saxon URI
"http://saxon.sf.net/", but this is not enforced.

When output is sent to a user-specified ContentHandler or Receiver, other serialization options (for
example indentation, addition of meta elements in HTML, and generation of a DOCTYPE declaration)
have no effect.

As an alternative to specifying your own output method, you can customize Saxon's serialization
pipeline. There is a Saxon class net.sf.saxon.event.SerializationFactory
that constructs the pipeline, from individual components that perform the
various stages of serialization. You can define your own subclass of
net.sf.saxon.event.SerializationFactory, and register this using the method
setSerializationFactory() on the Configuration object. This allows you to
insert your own steps into the pipeline, or to override any of the standard pipeline components
with classes of your own.

Saxon Extensions

230

The saxon:base64Binary serialization method

An additional serialization method saxon:base64Binary is available. This is intended to be
useful when creating binary output files, for example images. All serialization properties other than
method are ignored.

As with the text output method, all nodes in the result tree other than text nodes are ignored. Each
text node must hold a string that is in the lexical space of the xs:base64Binary data type. The
sequence of octets corresponding to this base64 value is written to the binary output file.

When invoking this method via an API, use the property value "{http://saxon.sf.net/}base64Binary".

When using this serialization method, the omit-xml-declaration parameter is automatically
set to "yes".

<xsl:template name="main">
 <html>
 <head>
 <title>An image</title>
 </head>
 <body>
 <h1>An image</h1>
 <p></p>
 </body>
 </html>
 <xsl:result-document method="saxon:base64Binary" href="image.gif" media-type="image/gif">
 <xsl:text>iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAA
 LEwAACxMBAJqcGAAAAAd0SU1FB9YGARc5KB0XV+IAAAAddEVYdENvbW1lbnQAQ3JlYXRlZCB3aXRoIFRoZSBH
 SU1Q72QlbgAAAF1JREFUGNO9zL0NglAAxPEfdLTs4BZM4DIO4C7OwQg2JoQ9LE1exdlYvBBeZ7jqch9//q1uH
 4TLzw4d6+ErXMMcXuHWxId3KOETnnXXV6MJpcq2MLaI97CER3N0vr4MkhoXe0rZigAAAABJRU5ErkJggg==
 </xsl:text>
 </xsl:result-document>
</xsl:template>

It is of course possible to construct the base64Binary value programmatically. The extension function
saxon:octets-to-base64Binary may be useful to achieve this.

When writing output that is not entirely binary, but contains mixed binary and text, it may be more
convenient to use the text output method with the saxon:recognize-binary serialization property.

See also the saxon:hexBinary serialization method.

The saxon:hexBinary serialization method

An additional serialization method saxon:hexBinary is available. This is intended to be useful
when creating binary output files, for example images. All serialization properties other than method
are ignored.

As with the text output method, all nodes in the result tree other than text nodes are ignored. Each
text node must hold a string that is in the lexical space of the xs:hexBinary data type. The sequence
of octets corresponding to this base64 value is written to the binary output file.

When invoking this method via an API, use the property value "{http://saxon.sf.net/}hexBinary".

When using this serialization method, the omit-xml-declaration parameter is automatically
set to "yes".

Saxon Extensions

231

<xsl:template name="main">
 <html>
 <head>
 <title>An image</title>
 </head>
 <body>
 <h1>An image</h1>
 <p></p>
 </body>
 </html>
 <xsl:result-document method="saxon:hexBinary" href="image004.gif" media-type="image/gif">
 <xsl:text>89504E470D0A1A0A0000000D49484452</xsl:text>
 <xsl:text>0000000A0000000A08060000008D32CF</xsl:text>
 <xsl:text>BD0000000467414D410000B18F0BFC61</xsl:text>
 <xsl:text>05000000097048597300000B1300000B</xsl:text>
 <xsl:text>1301009A9C180000000774494D4507D6</xsl:text>
 <xsl:text>06011739281D1757E20000001D744558</xsl:text>
 <xsl:text>74436F6D6D656E740043726561746564</xsl:text>
 <xsl:text>2077697468205468652047494D50EF64</xsl:text>
 <xsl:text>256E0000005D4944415418D3BDCCBD0D</xsl:text>
 <xsl:text>825000C4F11F74B4ECE0164CE0320EE0</xsl:text>
 <xsl:text>2ECEC1083626843D2C4D5EC5D958BC10</xsl:text>
 <xsl:text>5E67B8EA721F7FFEAD6E1F84CBCF0E1D</xsl:text>
 <xsl:text>EBE12B5CC31C5EE1D6C4877728E1139E</xsl:text>
 <xsl:text>75D757A309A5CAB630B688F7B0844773</xsl:text>
 <xsl:text>74BEBE0C921A177B4AD98A0000000049</xsl:text>
 <xsl:text>454E44AE426082</xsl:text>
 </xsl:result-document>
</xsl:template>

It is of course possible to construct the hexBinary value programmatically. The extension function
saxon:octets-to-hexBinary may be useful to achieve this.

When writing output that is not entirely binary, but contains mixed binary and text, it may be more
convenient to use the text output method with the saxon:recognize-binary serialization property.

See also the saxon:base64Binary serialization method.

The saxon:ptree serialization method

The serialization method saxon:ptree causes the result tree to be output as a PTree: see The PTree
file format. This is a binary XML format that occupies roughly the same amount of disk space as
standard lexical XML, but which saves time both on serializing and parsing, making it useful if the
data has to be sent to another machine for the next stage of processing.

With this method, all serialization properties other than method are ignored.

The saxon:character-representation attribute
This attribute allows greater control over how non-ASCII characters will be represented on output.

With method="xml", two values are supported: "decimal" and "hex". These control whether numeric
character references are output in decimal or hexadecimal when the character is not available in the
selected encoding.

With HTML, the value may hold two strings, separated by a semicolon. The first string defines how
non-ASCII characters within the character encoding will be represented, the values being "native",

Saxon Extensions

232

"entity", "decimal", or "hex". The second string defines how characters outside the encoding will be
represented, the values being "entity", "decimal", or "hex". Here "native" means output the character
as itself; "entity" means use a defined entity reference (such as "é") if known; "decimal"
and "hex" refer to numeric character references. For example "entity;decimal" (the default) means
that with encoding="iso-8859-1", characters in the range 160-255 will be represented using standard
HTML entity references, while Unicode characters above 255 will be represented as decimal character
references.

This attribute is retained for the time being in the interests of backwards compatibility. However,
the XSLT 2.0 specification makes it technically a non-conformance to provide attributes that
change serialization behavior except in cases where the behavior is implementation-defined;
and this is not such a case (the specification, at least in the case of the XML output method, does
not allow a character to be substituted with a character reference in cases where the character is
present in the chosen encoding). The best way of ensuring that non-ASCII characters are output
using character references is to use encoding="us-ascii".

The saxon:double-space attribute
When the output method is XML with indent="yes", the saxon:double-space attribute may
be used to generate an extra blank line before selected elements. The value is a whitespace-separated
list of element names. The attribute follows the same conventions as cdata-section-elements:
values specified in separate xsl:output or xsl:result-document elements are cumulative,
and if the value is supplied programmatically via an API, or from the command line, then the element
names are given in Clark notation, namely {uri}local. The effect of the attribute is to cause an
extra blank line to be output before the start tag of the specified elements.

The saxon:indent-spaces attribute
When the output method is XML, HTML, or XHTML with indent="yes", the saxon:indent-
spaces attribute may be used to control the amount of indentation. The value must be an integer.
The default value in the absence of this attribute is 3.

The saxon:line-length attribute
The value of saxon:line-length is an integer, with default value 80. With both the HTML and
XML output methods, attributes are output on a new line if they would otherwise extend beyond
this column position. With the HTML output method, furthermore, text lines are split at this line
length when possible. In releases 9.2 and earlier, the HTML output method attempted to split lines
that exceeded 120 characters in length.

The saxon:next-in-chain attribute
The saxon:next-in-chain attribute (XSLT-only) is used to direct the output to another
stylesheet. The value is the URL of a stylesheet that should be used to process the output stream. In this
case the output stream must always be pure XML, and attributes that control the format of the output
(e.g. method, cdata-section-elements, etc) will have no effect. The output of the second stylesheet will
be directed to the destination that would have been used for the first stylesheet if no saxon:next-
in-chain attribute were not present.

Supplying a zero-length string is equivalent to omitting the attribute, except that it can be used to
override a previous setting.

An alternative way of chaining transformations is to use the saxon:compile-stylesheet() and
saxon:transform() extension functions.

Saxon Extensions

233

The saxon:recognize-binary attribute
This attribute is relevant only when using the text output method. If set to yes, the processing
instructions <?hex XXXX?> and <?b64 XXXX?> will be recognized; the value is taken as a
hexBinary or base64 representation of a character string, encoded using the encoding in use by the
serializer, and this character string will be output without validating it to ensure it contains valid XML
characters. Also recognized are <?hex.EEEE XXXX?> and <?b64.EEEE XXXX?>, where EEEE
is the name of the encoding of the base64 or hexBinary data: for example hex.ascii or b64.utf8.

This enables non-XML characters, notably binary zero, to be output.

For example, given <xsl:output method="text" saxon:recognize-
binary="yes"/>, the following instruction:

<xsl:processing-instruction name="hex.ascii" select="'00'"/>

outputs the Unicode character with codepoint zero ("NUL"), while

<xsl:processing-instruction name="b64.utf8" select="securityKey"/>

outputs the value of the securityKey element, on the assumption that this is base64-encoded UTF-8
text.

The saxon:require-well-formed attribute
This attribute affects the handling of result documents that contain multiple top-level elements or top-
level text nodes. The W3C specifications allow such a result document, even though it is not a well-
formed XML document. It is, however, a well-formed , which means it can be incorporated into a
well-formed XML document by means of an entity reference.

The attribute saxon:require-well-formed is available, with values "yes" or "no". The
default is "no". If the value is set to "yes", and a SAX destination (for example a SAXResult,
a JDOMResult, or a user-written ContentHandler) is supplied to receive the results of the
transformation, then Saxon will report an error rather than sending a non-well-formed stream of SAX
events to the ContentHandler. This attribute is useful when the output of the stylesheet is sent
to a component (for example an XSL-FO rendering engine) that is not designed to accept non-well-
formed XML result trees.

Note also that namespace undeclarations of the form xmlns:p="" (as permitted by XML
Namespaces 1.1) are passed to the startPrefixMapping() method of a user-defined
ContentHandler only if undeclare-prefixes="yes" is specified on xsl:output.

The saxon:supply-source-locator attribute
This attribute is relevant only when output is sent to a user-written ContentHandler,
that is, a SAXResult. It causes extra information to be maintained and made available
to the ContentHandler for diagnostic purposes: specifically, the Locator that is passed
to the ContentHandler via the setDocumentLocator method may be cast to a
ContentHandlerProxyLocator, which exposes the method getContextItemStack().
This returns a java.util.Stack. The top item on the stack is the current context
item, and below this are previous context items. Each item is represented by the interface
net.sf.saxon.om.Item. If the item is a node, and if the node is one derived by parsing a source
document with the line-numbering option enabled, then it is possible to obtain the URI and line number
of this node in the original XML source.

For this to work, the code must be compiled with tracing enabled. This can be achieved by setting
the option config.setCompileWithTracing(true) on the Configuration object, or
equivalently by setting the property FeatureKeys.COMPILE_WITH_TRACING on the JAXP

Saxon Extensions

234

TransformerFactory. Note that this compile-time option imposes a substantial run-time
overhead, even if tracing is not switched on at run-time by providing a TraceListener.

The saxon:suppress-indentation attribute
When the output method is XML with indent="yes", the saxon:suppress-indentation
attribute may be used to suppress indentation for certain elements. The value is a whitespace-separated
list of element names. The attribute follows the same conventions as cdata-section-elements:
values specified in separate xsl:output or xsl:result-document elements are cumulative,
and if the value is supplied programmatically via an API, or from the command line, then the element
names are given in Clark notation, namely {uri}local. The effect of the attribute is to suppress
indentation for the content of the specified elements, that is, no whitespace will be inserted within
such elements, at any depth. The option is useful where elements contain mixed content in which
whitespace is significant.

The saxon:xquery serialization method

An additional serialization method saxon:xquery is available. This is intended to be useful when
generating an XQuery query as the output of a query or stylesheet. This method differs from the XML
serialization method in that "<" and ">" characters appearing between curly braces (but not between
quotes) in text nodes and attribute nodes are not escaped. The idea is to allow queries to generated,
or to be written within an XML document, and processed by first serializing them with this output
method, then parsing the result with the XQuery parser. For example, the document <a>{$a <
'<'} will serialize as <a>{$a < '<'}.

When invoking this method via an API, use the property value "{http://saxon.sf.net/}xquery".

When using this serialization method, the omit-xml-declaration parameter is automatically
set to "yes".

User-defined serialization attributes
Any number of user-defined attributes may be defined on xsl:output. These attributes must have
names in a non-null namespace, which must not be either the XSLT or the Saxon namespace. The value
of the attribute is inserted into the Properties object made available to the Receiver handling
the output; they will be ignored by the standard output methods, but can supply arbitrary information
to a user-defined output method. The name of the property will be the expanded name of the attribute
in JAXP format, for example "{http://my-namespace/uri}local-name", and the value will be the value
as given in the stylesheet.

Extension functions

A Saxon extension function is invoked using a name such as saxon:localname().

The saxon prefix (or whatever prefix you choose to use) must be associated with the Saxon
namespace URI http://saxon.sf.net/.

For example, to invoke the saxon:evaluate() function in XSLT, write:

<xsl:variable name="expression"
 select="concat('child::', $param, '[', $index, ']')"/>
..
<xsl:copy-of select="saxon:evaluate($expression)"
 xmlns:saxon="http://saxon.sf.net/"/>

The equivalent in XQuery is:

Saxon Extensions

235

declare namespace saxon="http://saxon.sf.net/";
declare variable $param as xs:string external;
declare variable $index as xs:integer external;
declare variable $expression :=
 concat('child::', $param, '[', $index, ']');
saxon:evaluate($expression)

The extension functions supplied with the Saxon product are as follows:

• saxon:adjust-to-civil-time(): converts an xs:dateTime to the local civil time in a named timezone

• saxon:analyze-string(): analyzes a string using a regular expression

• saxon:base64Binary-to-octets(): converts an xs:base64Binary value to a sequence of octets

• saxon:base64Binary-to-string(): converts an xs:base64Binary value to a string, given its encoding

• saxon:call(): calls a first-class function previously created using saxon:function()

• saxon:column-number(node): gets the column number of a node in the source document

• saxon:compile-query(): compiles a query that can subsequently be used as input to saxon:query()

• saxon:compile-stylesheet(): compiles a stylesheet that can subsequently be used as input to
saxon:transform()

• saxon:current-mode-name(): returns the name of the current mode in XSLT

• saxon:decimal-divide(): performs decimal division with user-specified precision

• saxon:deep-equal(): compares two sequences for deep equality

• saxon:discard-document(): marks a document as being eligible for garbage collection

• saxon:eval(): evaluates a stored expression created using saxon:expression

• saxon:evaluate(): evaluates an XPath expression supplied dynamically as a string

• saxon:evaluate-node(): evaluates an XPath expression held in a node of a source document

• saxon:expression(): creates a stored expression for subsequent evaluation using saxon:eval()

• saxon:find(): finds items that match a given key value within an indexed sequence

• saxon:for-each-group(): groups a set of items on the basis of a grouping key

• saxon:format-dateTime(): formats a date, time, or dateTime value

• saxon:format-number(): formats a number for output

• saxon:function(): creates a first-class function that can be passed as an argument to other functions

• saxon:generate-id(): generates a unique ASCII identifier for a node

• saxon:get-pseudo-attribute(): parses the content of a processing instruction

• saxon:has-same-nodes(): tests whether two sequences contain the same nodes

• saxon:hexBinary-to-octets(): converts an xs:hexBinary value to a sequence of octets

• saxon:hexBinary-to-string(): converts an xs:hexBinary value to a string, given its encoding

• saxon:highest(): finds the nodes having the highest value for some expression

• saxon:index(): creates an indexed sequence, allowing efficient retrieval using a key value

Saxon Extensions

236

• saxon:in-summer-time(): tests whether a given date/time is in summer time (daylight savings time)

• saxon:is-whole-number(): tests whether a given value has no fractional part

• saxon:item-at(): selects the item at a given position in a sequence

• saxon:last-modified(): determines when a file was last modified

• saxon:leading(): returns items in a sequence up to the first one matching a condition

• saxon:line-number(node): gets the line number of a node in the source document

• saxon:lowest(): finds the nodes having the lowest value for some expression

• saxon:namespace-node(): creates a namespace node

• saxon:stream(): evaluates an expression in streaming mode

• saxon:octets-to-base64Binary(): converts a sequence of octets to an xs:base64Binary value

• saxon:octets-to-hexBinary(): converts a sequence of octets to an xs:hexBinary value

• saxon:parse(): parses an XML document supplied as a string

• saxon:parse-html(): parses an HTML document supplied as a string

• saxon:path(): returns an XPath expression that identifies a node

• saxon:print-stack(): returns a formatted string representing the current execution stack

• saxon:query(): Runs an XQuery that was previously compiled using saxon:compile-query()

• saxon:result-document(): constructs a document and serializes it, writing the result to a file in
filestore

• saxon:serialize(): returns the XML representation of a document or element, as a string

• saxon:sort(): sorts a sequence of nodes or atomic values

• saxon:string-to-base64Binary(): encodes a string to an xs:base64Binary value, using a given
encoding

• saxon:string-to-hexBinary(): encodes a string to an xs:hexBinary value, using a given encoding

• saxon:string-to-utf8(): returns the UTF8 representation of a string

• saxon:system-id(): returns the system ID of the document containing the context node

• saxon:transform(): Runs an XSLT transformation

• saxon:try(): allows recovery from dynamic errors

• saxon:type-annotation(): returns the type annotation of a node or atomic value

• saxon:unparsed-entities(): returns a list of the unparsed entities declared within a document

saxon:adjust-to-civil-time()

If the input is an empty sequence, the result is an empty sequence.

Otherwise the input dateTime is adjusted to a dateTime in the civil timezone named in the second
argument. This uses Olson timezone names, for example America/New_York or Europe/
Paris. For example,

Saxon Extensions

237

• adjust-to-civil-time(xs:dateTime('2008-01-10T12:00:00Z',
'America/New_York') returns 2008-01-10T07:00:00-05:00

• adjust-to-civil-time(xs:dateTime('2008-07-10T12:00:00Z',
'America/New_York') returns 2008-07-10T08:00:00-04:00

saxon:analyze-string()

The action of this function is analagous to the xsl:analyze-string instruction in XSLT 2.0. It
is provided to give XQuery users access to regular expression facilities comparable to those provided
in XSLT 2.0. (The function is available in XSLT also, but is unnecessary in that environment.)

The first argument defines the string to be analyzed. The second argument is the regex itself, supplied
in the form of a string: it must conform to the same syntax as that defined for the standard XPath 2.0
functions such as matches().

The third and fourth arguments are functions (created using saxon:function), called the matching
and non-matching functions respectively. The matching function is called once for each substring
of the input string that matches the regular expression; the non-matching function is called once for
each substring that does not match. These functions may return any sequence. The final result of the
saxon:analyze-string function is the result of concatenating these sequences in order.

The matching function takes two arguments. The first argument is the substring that was matched.
The second argument is a sequence, containing the matched subgroups within this substring. The first
item in this sequence corresponds to the value $1 as supplied to the replace() function, the second
item to $2, and so on.

The non-matching function takes a single argument, namely the substring that was not matched.

The detailed rules follow xsl:analyze-string. The regex must not match a zero-length string,
and neither the matching nor non-matching functions will ever be called to process a zero-length string.

The following example is a "multiple match" example. It takes input like this:

<doc>There was a young fellow called Marlowe</doc>

and produces output like this:

<out>Th[e]r[e] was a young f[e]llow call[e]d Marlow[e]</out>

The XQuery code to achieve this is:

declare namespace f="f.uri";

declare function f:match ($c, $gps) { concat("[", $c, "]") };

declare function f:non-match ($c) { $c };

<out>
 {string-join(
 saxon:analyze-string(doc, "e",
 saxon:function('f:match', 2),
 saxon:function('f:non-match', 1)), "")}
</out>

The following example is a "single match" example. Here the regex matches the entire input, and the
matching function uses the subgroups to rearrange the result. The input in this case is the document

Saxon Extensions

238

<doc>12 April 2004</doc> and the output is <doc>2004 April 12</doc>. Here is
the query:

declare namespace f="f.uri";

declare function f:match ($c, $gps) { string-join(($gps[3], $gps[2], $gps[1]), " ") };

declare function f:non-match ($c) { error("invalid date") };

<out> {
 saxon:analyze-string(doc, "([0-9][0-9]) ([A-Z]*) ([0-9]{4})",
 saxon:function('f:match', 2),
 saxon:function('f:non-match', 1), "i")}
</out>

This particular example could be achieved using the replace() function: the difference is that
saxon:analyze-string can insert markup into the result, which replace() cannot do.

saxon:base64Binary-to-octets()

This function takes an xs:base64Binary value as input, and returns a sequence of integers
representing this sequence of octets. The integers will be in the range 0-255.

saxon:base64Binary-to-string()

This function takes as input an xs:base64Binary value and the name of a character encoding (for
example "UTF8"). It interprets the contents of the base64 value as a sequence of bytes representing a
character string in a particular encoding, and returns the corresponding string.

For example, the call saxon:base64Binary-to-
string(xs:base64Binary("RGFzc2Vs"), "UTF8") returns the string "Dassel".

saxon:call()

This function allows a first-class function created using saxon:function() to be invoked. The
function (that is, the value returned by the call on saxon:function()) is passed as the first
argument, and the parameters to be supplied to that function are passed as the second and subsequent
arguments. The value returned by the target function is returned.

A call to saxon:call is typically contained within a , which accepts a parameter indicating the
function to be called.

For examples of how this function is used, see saxon:function.

saxon:column-number(node)

This function returns the column number of a selected element within the XML document (or external
entity) that contains it. If the argument is supplied, it must be a node; if the argument is omitted, the
context item is used, in which case the context item must be a node. If line and column numbers are
not maintained for the current document, the function returns -1.

To ensure that line and column numbers are maintained, use the -l (letter ell) option on the command
line.

Saxon Extensions

239

Note that the value returned is dependent on information supplied by the XML parser. For an element
node, SAX parsers generally report the line and column position of the ">" character at the end of the
start tag. StAX parsers by contrast report the position of the "<" character at the start of the start tag.
SAX parsers report line and column numbers only for element nodes, so for any other kind of node,
the returned value will be -1.

See also saxon:line-number().

saxon:compile-query()

This function takes as input a string containing an XQuery query, and produces as output a compiled
query suitable for use with the saxon:query() extension function.

The static context for the query (for example, its namespace bindings and its base URI) must be defined
within its own query prolog. It does not inherit any context values from the query or stylesheet in which
the saxon:compile-query() function is called. The query cannot access variables or functions
defined in the containing query or stylesheet.

There are several ways the string containing the query might be constructed. It can be built directly
as a dynamic string in the calling application. In the case of XSLT, it can be read from a file using
the unparsed-text() function. It can also be generated by calling saxon:serialize() on an XML
representation of the query, using the serialization method saxon:xquery

The compiled query can be evaluated (repeatedly) using the saxon:query() extension function.

saxon:compile-stylesheet()

This function takes as input a document containing an XSLT stylesheet, and produces as output a
compiled stylesheet suitable for use with the saxon:transform() extension function.

The document node can be supplied as a call on the doc() function to read the stylesheet from filestore
(or from a remote URL), or it can be a variable containing a stylesheet that has been constructed
programmatically. If the document contains any xsl:include or xsl:import declarations these
will be resolved in the usual way (relative to the base URI of the element that contains them).

saxon:current-mode-name()

This function, designed for use in XSLT, returns the name of the current mode. If there is no current
mode, or if the current mode is the default (unnamed) mode, it returns an empty sequence.

The function is useful where a template belongs to multiple modes, in that it allows the template at
run-time to determine in which mode it was activated.

saxon:decimal-divide()

This performs a decimal division to a user-specified precision. The value of the first argument
is divided by the second argument, and the result is returned to the number of decimal places
indicated by the third argument. The exact result is rounded towards zero. For example, decimal-
divide(100, 30, 2) returns 0.33. (The default for decimal division in Saxon using the div
operator is to return decimal places in the result, where is the scale of the first operand and the scale
of the second.)

saxon:deep-equal()

Saxon Extensions

240

This function compares two sequences $seq1 and $seq2 for deep equality. The two sequences are
supplied in the first two arguments. In the absence of any $flags, the function returns the same result
as the deep-equal function in the standard XPath library. The $flags argument is used to modify
the way in which the comparison is performed.

The $collation argument is mandatory. Supply an empty sequence to use the default collation.

The flags argument is a string containing characters acting as flags that cause the function to behave
differently from the standard fn:deep-equal() function. The following flags are defined:

Table 12.2.

N Include namespace nodes in the comparison. For
two elements to be deep-equal, they must have the
same in-scope namespaces (that is, same prefix
and same URI).

F Include namespace prefixes in the comparison.
For two elements or attributes to be equal, their
names must use the same namespace prefix (or
none).

C Include comment nodes in the comparison. For
two element or document nodes to be deep-equal,
they must have the same comment node children.

P Include processing-instruction nodes in the
comparison. For two element or document nodes
to be deep-equal, they must have the same
processing-instruction node children.

J Join adjacent text nodes (for example, nodes
either side of an ignored comment)

S Compare string values rather than typed values of
simple-typed elements and attributes.

A Compare type annotations on elements and
attributes. The type annotations must match
exactly.

I Compare the is-ID and is-IDREF properties on
elements and attributes.

w Exclude whitespace text nodes from the
comparison. Any whitespace text node in either
tree is ignored (except when determining the
typed value of an element annotated with a simple
type or a complex type with simple content).

? Explain reason for a non-match. If the result
is not-equal, a warning message explaining the
reason will be sent to the ErrorListener. (In
general, a sequence of warning messages will be
sent, starting with the lowest-level difference and
moving up the tree).

saxon:discard-document()

This function removes a document from Saxon's internal document pool. The document remains in
memory for the time being, but will be released from memory by the Java garbage collector when
all references to nodes in the document tree have gone out of scope. This has the benefit of releasing
memory, but the drawback is that if the same document is loaded again during the same transformation,

Saxon Extensions

241

it will be reparsed from the source text, and different node identifiers will be allocated. The function
returns the document node that was supplied as an argument, allowing it to be used in a call such as
select="saxon:discard-document(document('a.xml'))".

saxon:eval()

This function returns the result of evaluating the supplied stored expression. A stored expression may
be obtained as the result of calling the saxon:expression function.

The stored expression is evaluated in the current dynamic context, that is, the context node is the
current node, and the context position and context size are the same as the result of calling position()
or last() respectively.

The second and subsequent arguments to saxon:eval supply values for the variables $p1, $p2,
etc within the stored expression. For details see saxon:expression.

saxon:evaluate()

This function allows XPath expressions to be constructed and evaluated dynamically at runtime.

Note that an xsl:evaluate instruction with similar functionality is available as a standard
feature in XSLT 3.0.

The supplied string must contain an XPath expression. The result of the function is the result of
evaluating the XPath expression. This is useful where an expression needs to be constructed at run-time
or passed to the stylesheet as a parameter, for example where a sort key is determined dynamically.

The static context for the expression includes all the in-scope namespaces, types, and functions from
the calling stylesheet or query. It does include any variables from the calling environment. The
base URI and default function namespace are inherited from the calling environment. The default
namespace for elements and types is taken from the value of the xpath-default-namespace
attribute in the stylesheet, if present.

The expression may contain references to variables $p1, $p2, etc., and the values of these variables
may be supplied in the second, third, and subsequent arguments to the saxon:evaluate() call.

The function saxon:evaluate(string) is shorthand for
saxon:eval(saxon:expression(string)). For the rules governing what may and may not
appear in the expression, see saxon:expression.

See also saxon:evaluate-node, which is a similar function intended for evaluating XPath expressions
contained in a source document.

saxon:evaluate-node()

This function allows XPath expressions to be read from a source document and evaluated at run-time.

Note that an xsl:evaluate instruction with similar functionality is available as a standard
feature in XSLT 3.0.

The supplied argument must be a node, and the string-value of the node must contain an XPath
expression. The result of the function is the result of evaluating this XPath expression. This is useful
where XPath expressions are held in source documents, for example to parameterize the calculations
performed by a query or stylesheet, or to provide XPointer-like cross-references within a document.

Saxon Extensions

242

The static context for the expression takes the in-scope namespaces and the base URI from the
node containing the expression (or from its parent element, if it is an attribute or text node). The
default namespace defined using xmlns="xyz.uri" is used as the default namespace for elements
and types, so that unprefixed names in path expressions (for example //data/value) refer to
unprefixed elements in the containing document.

The expression cannot refer to any variables defined outside the expression itself, and it cannot refer
to user-defined types or user-defined functions. However, it has access to the standard function library
(in the default function namespace) and to Saxon extension functions and Java methods.

In the dynamic evaluation context, the context item is the node supplied as the first argument, while
the context position and size are both set to one. This means that the expression can be a relative path
expression referring to nodes reachable from the node that contains the expression. (Note that if this
node is an attribute, the context node is the attribute node itself, not the containing element.)

For example, given the following source document:

<doc xmlns:alpha="http://www.alpha.com/">
 <data>23</data>
 <exp>preceding-sibling::alpha:data + 5</exp>
</doc>

the expression saxon:evaluate-node(//alpha:exp) returns 28.

See also saxon:evaluate, which is a similar function intended for evaluating XPath expressions
constructed dynamically by code in a stylesheet or query.

saxon:expression()

This function creates a stored expression that can be evaluated repeatedly with different argument
values and a different dynamic context.

The supplied string must contain an XPath expression. The result of the function is a , which may be
supplied as an argument to other extension functions such as saxon:eval. The result of the expression
will usually depend on the current node. The context for the expression includes the namespaces in
scope at this point in the stylesheet. The expression may contain references to the nine variables $p1,
$p2, ... $p9 only. It may contain calls on Java extension functions, including Saxon and EXSLT-
defined functions, as well as user-defined function declared within the containing query or stylesheet.
But it does not allow access to stylesheet variables, or functions defined in the XSLT specification
such as key() or format-number().

If the second argument is present, its value must be a single element node. The in-scope namespace
bindings of this element node be used to resolve any namespace prefixes present in the XPath
expression. The default namespace for the element is also used as the default namespace for elements
and types within the XPath expression. In addition, standard namespace bindings are automatically
available for the prefixes xml, xs, xsi, fn, and saxon.

If the second argument is omitted, then the namespace context for the expression is taken from
the stylesheet. (This is also the rule used by saxon:evaluate().) If the expression contains
namespace prefixes, these are interpreted in terms of the namespace declarations in scope at the point
where the saxon:expression() function is called, not those in scope where the stored expression
is evaluated.

The stored expression (if it is to be evaluated using saxon:eval()) may contain references to
variables named $p1, $p2, ... $p9. The values of these variables can be supplied when the expression
is evaluated using saxon:eval. The second argument of saxon:eval supplies the value of $p1,
the third argument supplies the value of $p2, and so on.

Saxon Extensions

243

For example, following <xsl:variable name="add"
select="saxon:expression('$p1 + $p2')"/>, the instruction <xsl:value-of
select="saxon:eval($add, 6, 7)"/> will output 13.

saxon:find()

The first argument must be an indexed sequence created using the function saxon:index(). This will
invariably be provided in the form of a variable reference. The type of this object is {http://
saxon.sf.net/java-type}com.saxonica.expr.IndexedSequence

If the second argument is omitted, the function returns the entire indexed sequence, that is, the value
passed to the first argument of saxon:index().

Otherwise, the second argument is a sequence of atomic values. The result of the function consists of
all items in the indexed sequence that match one or more of these atomic values. Duplicates are not
removed. The order of the result is sorted first by the position of the key value within the sequence of
key values, and then by the order of the result items within the indexed sequence.

If a key value is of type xs:untypedAtomic, it is treated as a string. Values are matched according
to the rules of the eq operator. This means, for example, that if the indexed values are numbers, then
the key value must be supplied as a number. Supplying a value of a non-comparable type results in
a type error.

For examples of use, see saxon:index().

saxon:for-each-group()

The action of this function is analagous to the xsl:for-each-group instruction (with a group-
by attribute) in XSLT 2.0. It is provided to give XQuery users access to grouping facilities comparable
to those provided in XSLT 2.0. (The function is available in XSLT also, but is unnecessary in that
environment.)

The first argument defines the , a collection of items to be grouped. These may be any items (nodes or
atomic values). The second argument is a function (created using saxon:function) that is called once
for each item in the population, to calculate a grouping key for that item. The third argument is another
function (also created using saxon:function) that is called once to process each group of items from
the population.

Two items in the population are in the same group if they have the same value for the grouping key.
Strings are compared using the default collation. If the value of the grouping key is a sequence of more
than one item, then an item in the population may appear in more than one group; if it is an empty
sequence, then the item will appear in no group.

The order in which the groups are processed is subject to change: at present it is the same as the default
order in xsl:for-each-group, namely order of first appearance. There is no way to change this
order; if the groups need to be sorted then it is best to sort the output afterwards. Each group is passed
as an argument to a call on the function supplied as the third argument; the values returned by these
calls form the result of the saxon:for-each-group call. The items within each group are in their
original order (population order).

The following example groups cities by country. It takes input like this:

<doc>
<city name="Paris" country="France"/>
<city name="Madrid" country="Spain"/>

Saxon Extensions

244

<city name="Vienna" country="Austria"/>
<city name="Barcelona" country="Spain"/>
<city name="Salzburg" country="Austria"/>
<city name="Bonn" country="Germany"/>
<city name="Lyon" country="France"/>
<city name="Hannover" country="Germany"/>
<city name="Calais" country="France"/>
<city name="Berlin" country="Germany"/>
</doc>

and produces output like this:

<out>
 <country leading="Paris" size="3" name="France">
 <city name="Calais"/>
 <city name="Lyon"/>
 <city name="Paris"/>
 </country>
 <country leading="Madrid" size="2" name="Spain">
 <city name="Barcelona"/>
 <city name="Madrid"/>
 </country>
 <country leading="Vienna" size="2" name="Austria">
 <city name="Salzburg"/>
 <city name="Vienna"/>
 </country>
 <country leading="Bonn" size="3" name="Germany">
 <city name="Berlin"/>
 <city name="Bonn"/>
 <city name="Hannover"/>
 </country>
</out>

The XQuery code to achieve this is:

declare namespace f="f.uri";

(: Test saxon:for-each-group extension function :)

declare function f:get-country ($c) { $c/@country };

declare function f:put-country ($group) {
 <country name="{$group[1]/@country}" leading="{$group[1]/@name}" size="{count($group)}">
 {for $g in $group
 order by $g/@name
 return <city>{ $g/@name }</city>
 }
 </country>
};

<out>
 {saxon:for-each-group(/*/city,
 saxon:function('f:get-country', 1),
 saxon:function('f:put-country', 1))}
</out>

saxon:format-dateTime()

Saxon Extensions

245

These functions are identical to the XSLT functions of the same name, but are made available in the
Saxon namespace for the benefit of XQuery users. For full details, see the current draft of the XSLT
2.0 specification [http://www.w3.org/TR/xslt20/].

For example, the call saxon:format-date(current-date(), '[D1o] [MNn],
[Y0001]') might produce the output 3rd September, 2004.

saxon:format-number()

This function is identical to the two-argument version of the format-number function in XSLT
2.0, but in the Saxon namespace. It uses the default behavior of the XSLT function when there is no
xsl:decimal-format declaration in the stylesheet, which means that it is not possible to change
the characters used as the decimal point, grouping separator, and so on.

For example, the call saxon:format-number(123.4567, '0000.00') produces the output
0123.46.

For full details, see the XSLT 2.0 specification [http://www.w3.org/TR/xslt20/].

saxon:function()

From Saxon 9.2, provided XQuery 3.0 support is enabled and the query prolog
specifies version "3.0", the syntax my:function#3 can be used in place of the call
saxon:function('my:function', 3). The implementation (with either syntax) has
also been extended so that it works with all functions, not only with user-written functions.

This function takes as its arguments the name and arity of a function, and returns a value that represents
the function and can be used to invoke the function using saxon:call. This allows higher-order functions
to be implemented in XSLT and XQuery, that is, functions that take other functions as arguments. An
example of such a higher-order function is saxon:for-each-group, which provides grouping capability
in XQuery similar to that of the xsl:for-each-group instruction in XSLT.

The arguments must be specified as literals (this function is always evaluated at compile time). The
first argument gives the name of the function as a lexical QName (using the default function namespace
if unprefixed), the second gives the function arity (number of arguments).

Here is an example, the textbook fold function in XSLT:

<xsl:function name="f:fold">
 <xsl:param name="sequence"/>
 <xsl:param name="operation"/>
 <xsl:param name="start-value"/>
 <xsl:sequence select="if (empty($sequence))
 then $start-value
 else f:fold(remove($sequence, 1),
 $operation,
 saxon:call($operation,

http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/

Saxon Extensions

246

 $start-value,
 $sequence[1])"/>
</xsl:function>

<xsl:function name="f:plus">
 <xsl:param name="a"/>
 <xsl:param name="b"/>
 <xsl:sequence select="$a + $b"/>
</xsl:function>

<xsl:function name="f:times">
 <xsl:param name="a"/>
 <xsl:param name="b"/>
 <xsl:sequence select="$a * $b"/>
</xsl:function>

<xsl:function name="f:sum">
 <xsl:param name="sequence"/>
 <xsl:sequence select="f:fold($sequence, saxon:function('f:plus', 2), 0)"/>
</xsl:function>

<xsl:function name="f:product">
 <xsl:param name="sequence"/>
 <xsl:sequence select="f:fold($sequence, saxon:function('f:times', 2), 0)"/>
</xsl:function>

Here is the same example in XQuery (using XQuery 3.0 syntax):

xquery version "3.0";
declare function f:fold (
 $sequence as xs:double*, $operation, $start-value as xs:double) {
 if (empty($sequence))
 then $start-value
 else f:fold(remove($sequence, 1),
 $operation,
 saxon:call($operation, $start-value, $sequence[1]))
};

declare function f:plus ($a as xs:double, $b as xs:double) {$a + $b};

declare function f:times ($a as xs:double, $b as xs:double) {$a * $b};

declare function f:sum ($sequence as xs:double*) as xs:double {
 f:fold($sequence, f:plus#2, 0)
};

declare function f:product ($sequence as xs:double*) as xs:double {
 f:fold($sequence, f:times#2, 1)
};

The result of f:sum(1 to 4) is 10, while the result of f:product(1 to 4) is 24.

Higher-order functions allow many generic functions such as fold to be written, and their availability
in Saxon-EE turns XSLT and XQuery into fully-fledged functional programming languages.

The type of the result of saxon:function is function(), a new type introduced in XQuery 1.1 - it
is a third subtype of item() alongside nodes and atomic values.

Saxon Extensions

247

saxon:generate-id()

This function returns a string that acts as a unique identifier for the supplied node. The identifier will
always consist of ASCII letters and digits and will start with a letter.

The function is identical to the XSLT generate-id() function. It is provided as an extension function
in the Saxon namespace to make it available in contexts other than XSLT, for example in XQuery.

saxon:get-pseudo-attribute()

This function parses the contents of a processing instruction whose content follows the conventional
attribute="value" structure (as defined for the <?xsl-stylesheet?> processing instruction). The context
should be a processing instruction node; the function returns the value of the pseudo-attribute named
in the first argument if it is present, or an empty string otherwise.

If the attribute value contains a sequence of characters in the form of an XML character reference, for
example "
", this is parsed and converted into the corresponding character.

saxon:has-same-nodes()

This function returns a boolean that is true if and only if $nodes-1 and $nodes-2 contain the same
sequence of nodes in the same order. Nodes are compared by identity, not by content. Note this is
quite different from the "=" operator, which tests whether there is a pair of nodes with the same string-
value, and the deep-equal() function, which compares nodes pairwise but by content.

saxon:hexBinary-to-octets()

This function takes an xs:hexBinary value as input, and returns a sequence of integers representing
this sequence of octets. The integers will be in the range 0-255.

saxon:hexBinary-to-string()

This function takes as input an xs:hexBinary value and the name of a character encoding (for
example "UTF8"). It interprets the contents of the hexBinary value as a sequence of bytes representing
a character string in a particular encoding, and returns the corresponding string.

saxon:highest()

This function returns the item or items from the input sequence that have the highest value for the
function $key. If the second argument is omitted, it defaults to the function fn:data#1, that is, it
atomizes the item from the input sequence.

In XQuery 3.0, the function may be obtained in a variety of ways. In other environments, it may be
obtained by calling the saxon:function() extension function.

The $key function is evaluated for each item in $input in turn, with that item supplied as the
parameter to the function. Any NaN values are ignored. If the input sequence is empty, the result is
an empty sequence. If several items have the highest value, the result sequence contains them all.

Saxon Extensions

248

Example: saxon:highest(sale, function($x){$x/@price * $x/@qty'}) will evaluate price times quantity
for each child <sale> element, and return the element or elements for which this has the highest
value.

saxon:index()

The first argument is any sequence. Usually it will be a sequence of nodes, but this is not essential.
This is the sequence being indexed.

The second argument is a compiled XPath expression. Most commonly, the argument will be written
as a call to the saxon:expression() extension function. This expression is evaluated once for each item
in the sequence being indexed, with that item as the context node. (The context position and size
reflect the position of this item in the sequence, but this will not normally be useful.) The result of
the expression is atomized. Each value in the atomized result represents a key value: the item in the
indexed sequence can be efficiently found using any of these key values.

If a key value is of type xs:untypedAtomic, it is treated as a string. If you want to treat the value
as numeric, say, then perform a conversion within the expression.

The optional third argument is the URI of a collation to be used when comparing strings. For example,
if you want string matching to be accent- and case-blind, specify "http://saxon.sf.net/
collation?strength=primary".

The result is an object of type {http://saxon.sf.net/java-
type}com.saxonica.expr.IndexedSequence, that can be supplied as input to the
saxon:find() function.

For example, consider a source document of the form:

<doc>
 <town name="Amherst" state="NH"/>
 <town name="Amherst" state="MA"/>
 <town name="Auburn" state="MA"/>
 <town name="Auburn" state="NH"/>
 <town name="Auburn" state="ME"/>
 <town name="Bristol" state="RI"/>
 <town name="Bristol" state="ME"/>
 <town name="Bristol" state="CT"/>
 <town name="Bristol" state="NH"/>
 <town name="Bristol" state="VT"/>
 <town name="Cambridge" state="ME"/>
 </doc>

and suppose there is a requirement to find town elements efficiently given the abbreviation for the
state. You can do this by first setting up an indexed sequence. In XQuery you can write:

declare namespace saxon="http://saxon.sf.net/";
 declare namespace java="http://saxon.sf.net/java-type";
 declare variable $indexedTowns
 as java:com.saxonica.expr.IndexedSequence
 := saxon:index(//town, saxon:expression("@state"));

This could be a local variable (declared in a let clause) rather than a global variable. The XSLT
equivalent is:

<xsl:variable name="indexedTowns"
 select="saxon:index(//town, saxon:expression('@state'))"
 as="java:com.saxonica.expr.IndexedSequence"/>

Saxon Extensions

249

You can then find all the towns in New Hampshire using the expression:

saxon:find($indexedTowns, "NH")

Indexed sequences are primarily useful in XQuery, where they provide functionality equivalent to the
standard xsl:key mechanism in XSLT. There are some cases, however, where indexed sequences
can also be useful in XSLT. One example is where there is a need for an index to span multiple
documents: the XSLT key() function will only search within a single document.

An indexed sequence can only be used in the first argument to the saxon:find() function. If you
want access to the sequence that was passed as the first argument to saxon:index(), you can get
this by calling saxon:find() with a single argument.

See also: saxon:find().

saxon:in-summer-time()

The $region argument may either be an ISO two-letter country code (for example "de" or "es"), or
an Olsen timezone name (such as "America/New_York" or "Europe/Lisbon"). The function returns
true if the given date/time is in summer time (daylight savings time) in that country or timezone, as far
as can be determined from the Java timezone database. If the information is not available the function
either returns false or an empty sequence.

If a country code is specified for a country that spans different timezones with different daylight
savings rules (for example, the US), then one timezone in that country is chosen arbitrarily.

For reliable results, the supplied date/time should include a timezone. This does not need to correspond
to the timezone named in the second argument; it is there purely to ensure that $date represents a
single point in time unambigously.

saxon:is-whole-number()

This function takes a number as input and returns true if the number has no fractional part, that is, if
it is equal to some integer. If an empty sequence is supplied, the function returns false.

Example:

saxon:is-whole-number(12e0)

will return true.

saxon:item-at()

This function returns the item at a given position in a sequence. The index counts from one. If the
index is an empty sequence, or less than one, or not a whole number, or greater than the length of the
sequence, the result is an empty sequence.

Example:

saxon:item-at(10 to 20, 8)

will return 17.

saxon:last-modified()

Saxon Extensions

250

The specification of this function has changed in Saxon 9.2. To find the last-modified date of
the file from which a given node was loaded, use saxon:last-modified(document-
uri($node))

This function returns the date and time when a file was modified.

If the argument is an empty sequence, the result is an empty sequence.

Otherwise the argument must be a valid URI. If it is a relative URI, this will be resolved against the
base URI from the static context. The function has been tested with URIs using the file and http
schemes, and is not guaranteed to give a result with other URI schemes (or indeed with these, under
all circumstances).

The function returns an xs:dateTime value which will usually be in a specific timezone. The
result can therefore be formatted using the format-dateTime function, or input to arithmetic and
comparisons against other dates and times.

If the URI is not syntactically valid, error FODC0005 is thrown. If the resource identified by the URI
cannot be retrieved, error FODC0002 is thrown. If the resource is successfully retrieved but no date/
time information is available, the function returns an empty sequence.

Example:

format-dateTime(file-last-modified(resolve-uri('lookup.xml', static-base-uri()))

saxon:leading()

This function returns a sequence containing all those nodes from $input up to and excluding the
first one (in order of the input sequence) for which $test has an effective boolean value of false. A
function may be obtained in XQuery 1.1 using any of the new mechanisms for constructing functions;
in other environments, it may be obtained by calling saxon:function.

The $test argument defaults to the function fn:data#1, that is, it atomizes the item.

The $test function is evaluated for item in $input in turn, with that item supplied as the argument
to the function. The result consists of that leading sequence of items for which the effective boolean
value of the function is true.

XQuery 1.1 example:

saxon:leading(following-sibling::*, function($x){$x/self::para})

XSLT 2.0 example:

saxon:leading(following-sibling::*, saxon:function('f:is-para', 1)

where f:is-para is a user-defined function that tests whether the supplied item is a <para>
element

This will return the <para> elements following the current node, stopping at the first element that
is not a <para>.

saxon:line-number(node)

Saxon Extensions

251

This function returns the line number of a selected node within the XML document (or external entity)
that contains it. If the argument is supplied, it must be a node; if the argument is omitted, the context
item is used, in which case the context item must be a node. If line numbers are not maintained for
the current document, the function returns -1.

To ensure that line numbers are maintained, use the -l (letter ell) option on the command line.

Note that the value returned is dependent on information supplied by the XML parser. For an element
node, SAX parsers generally report the line and column position of the ">" character at the end of the
start tag. StAX parsers by contrast report the position of the "<" character at the start of the start tag.
SAX parsers report line and column numbers only for element nodes, so for any other kind of node,
the returned value will be -1.

From release 9.0, the -l option also causes line numbers to be copied from a source document to a
result document when the xsl:copy-of instruction is applied to a document or element node. For
elements created using other instructions, the line number will reflect the position of the instruction
in the stylesheet or query that caused the element to be created.

See also saxon:column-number().

saxon:lowest()

This function returns the item or items from the input sequence that have the lowest value for the
function $key. If the second argument is omitted, it defaults to the function fn:data#1, that is, it
atomizes the item from the input sequence.

In XQuery 3.0, the function may be obtained in a variety of ways. In other environments, it may be
obtained by calling the saxon:function() extension function.

The $key function is evaluated for each item in $input in turn, with that item supplied as the
parameter to the function. Any NaN values are ignored. If the input sequence is empty, the result is
an empty sequence. If several items have the lowest value, the result sequence contains them all.

Example: saxon:lowest(sale, function($x){$x/@price * $x/@qty'}) will evaluate price times quantity
for each child <sale> element, and return the element or elements for which this has the lowest value.

saxon:namespace-node()

This function creates a new namespace node. The first argument gives the name of the namespace
node (that is, the namespace prefix), while the second gives the namespace URI. The prefix may be
"" to create a default namespace; otherwise it must be a valid NCName. The URI must not be the
empty string.

The function serves the same role in XQuery as the xsl:namespace instruction in XSLT 2.0: it
allows a namespace in the result document to be computed dynamically.

The namespace node is typically used as part of the computed content of a constructed element node.
For example:

declare namespace saxon="http://saxon.sf.net/";
<a xsi:type="my:decimal">
 { saxon:namespace-node("my", "http://my.uri/"), 12.4 }

produces the output:

<a xmlns:my="http://my.uri/"

Saxon Extensions

252

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="my:decimal">12.4

In this case the namespace node could equally well be created by adding the namespace declaration
xmlns:my="http://my.uri/" to the direct element constructor for the <a> element. But this is
not always possible, for example (a) if the element name is not known statically, or (b) if the namespace
URI is not known statically, or (c) if the decision whether or not to add the namespace node depends
on input data.

saxon:stream()

Conceptually, this function returns a copy of its input. The intent, however, is to evaluate the supplied
argument in "streaming mode", which allows an input document to be processed without building a tree
represention of the whole document in memory. This allows much larger documents to be processed
using Saxon than would otherwise be the case.

For further details see Streaming of Large Documents.

saxon:octets-to-base64Binary()

This function takes a sequence of integers as input, and treats them as octets. The integers must
therefore all be in the range 0-255. The result of the function is the xs:base64Binary value
representing this sequence of octets.

saxon:octets-to-hexBinary()

This function takes a sequence of integers as input, and treats them as octets. The integers must
therefore all be in the range 0-255. The result of the function is the xs:hexBinary value
representing this sequence of octets.

saxon:parse()

This function takes a single argument, a string containing the source text of a well-formed XML
document. It returns the document node (root node) that results from parsing this text. It throws an
error if the text is not well-formed XML. Applications should not rely on the identity of the returned
document node (at present, if the function is called twice with the same arguments, it returns a new
document node each time, but this may change in future).

This function is useful where one XML document is embedded inside another using CDATA, or as
an alternative way of passing an XML document as a parameter to a stylesheet.

A dynamic error is reported if the supplied string is not well-formed (and namespace-well-formed)
XML. An XML declaration may be included, but is not required: if it is present, the encoding
declaration will be ignored, since the document is supplied in character form rather than in binary.

The XML parser that is used will be the one nominated to the Saxon Configuration as the parser
for source documents. Validation against schemas or DTDs, and whitespace stripping, will take place
according the settings in the Configuration object; if called from XSLT, the xsl:strip-
space and xsl:preserve-space settings in the stylesheet are also taken into account.

saxon:parse-html()

Saxon Extensions

253

This function takes a single argument, a string containing the source text of an HTML document. It
returns the document node (root node) that results from parsing this text using the TagSoup parser.

On the Java platform, the TagSoup jar file must be on the classpath. It may be downloaded from http://
home.ccil.org/~cowan/XML/tagsoup/tagsoup-1.2.jar.

On the .NET platform, the code of TagSoup 1.2 is available automatically: it has been compiled into
the saxon9pe.dll and saxon9ee.dll assemblies.

This function is useful where an HTML document is embedded inside another using CDATA. It can
also be used in conjunction with the unparsed-text() function to read HTML from filestore.
Note that the base URI of the document is not retained in this case.

saxon:path()

The second version of the function (with no arguments) is equivalent to supplying "." as the argument.
In this case there must be a context item and it must be a node.

The function returns a string whose value is an XPath expression identifying the selected node in the
source tree. This can be useful for diagnostics, or to create an XPointer value, or when generating
another stylesheet to process the same document. The resulting string can be used as input to the
evaluate() function, provided that any namespace prefixes it uses are declared.

The generated path will use lexical QNames as written in the original source document. In documents
that use multiple namespaces, this may not be the most suitable representation if there is a requirement
to evaluate the XPath expression later, as any prefixes it uses will need to be declared.

saxon:print-stack()

This function takes no arguments. It returns a string whose value is a formatted representation of the
current state of the execution stack. This is suitable for display using xsl:message or the trace()
function, or it can be inserted as a comment into the result document.

saxon:query()

This function takes as input a compiled XQuery query, and runs the query, returning the result of
evaluating the query. The first argument will generally be the result of calling the saxon:compile-
query() extension function.

If the first argument is an empty sequence, the result is an empty sequence.

If only one argument is supplied, the context item for evaluating the query will be the same as the
context item in the environment where the function is called, that is, the implicit second argument
is ".". If there is no context item, however, no failure occurs unless the query attempts to reference
the context item.

If the second argument is present it can be any item, which is used as the context item for the query.
It can also be the empty sequence, in which case the query runs with no context item.

If the optional third argument is present, it is used to supply parameters (external variables) to the
query. The value is a sequence of nodes. Each node must be an element node, attribute node, or
document node; supplying a document node is equivalent to supplying all its element children. The
name of the node must match an external variable name declared in the query prolog, and the atomized

http://home.ccil.org/~cowan/XML/tagsoup/tagsoup-1.2.jar
http://home.ccil.org/~cowan/XML/tagsoup/tagsoup-1.2.jar

Saxon Extensions

254

value of the node is used as the value of the parameter. If this is untypedAtomic then it is converted
to the required type declared in the query.

The function is available both in XQuery and in XSLT.

The compiled stylesheet can be used repeatedly with different inputs.

Here is an example of how to use the function from XQuery:

declare namespace saxon = "http://saxon.sf.net/";

<out>{
let $q1 := "declare variable $x external; declare variable $y external; <z>{$x + $y + .}</z>"
return saxon:query(saxon:compile-query($q1), 4, (<x>3</x>, <y>2</y>))
}</out>

The result of the query is a sequence containing the single integer 9.

saxon:result-document()

This function takes three arguments:

1. $href is a URI identifying the destination of the serialized result document. Generally speaking, the
file:/ URI scheme works and other schemes usually don't. If the URI is relative, it is interpreted
relative to the which is the destination of the principal output of the query, and which defaults to
the current directory (not the stylesheet directory). When the -t option is used on the command line,
the actual destination of output files is reported as a message on System.err.

2. $content is a sequence of items which makes up the content of the new document, it is processed
in the same way as the content sequence passed to the document{} constructor in XQuery, or
the xsl:document instruction in XSLT.

3. $format is used to define serialization properties; its value is an xsl:output element conforming
to the rules defined in the XSLT specification. This element may be constructed dynamically, and
may therefore be used to decide all the serialization properties dynamically.

For example, the function may be used as follows in XQuery. This example has the effect of writing
each <country> element to a separate file:

declare namespace saxon="http://saxon.sf.net/";
declare namespace xsl="http://www.w3.org/1999/XSL/Transform";
let $input :=
 <data>
 <country name="Austria">Vienna</country>
 <country name="France">Paris</country>
 <country name="Germany">Berlin</country>
 </data>
return
<log> {
 for $c in $input/country return
 let $href := concat($c/@name, '.xml')
 return (
 saxon:result-document($href, $c,
 <xsl:output method="xml" indent="yes"/>),
 <done href="{$href}"/>

Saxon Extensions

255

)
} </log>
}</out>

The function returns no result (technically, it returns an empty sequence). Because it is called only
for its side-effects, some care is needed in how it is used. Generally, the safe approach is to call it
in a position where, if it did produce output, the output would form part of the result of the query.
It is implemented internally using the xsl:result-document instruction from XSLT, and must
follow the same constraints. For example, an error will be reported if it is called while evaluating a
variable or a function, or if you try to write and read the same document within a single query.

saxon:serialize()

This function takes two arguments: the first is a node (generally a document or element node) to
be serialized. The second argument defines the serialization properties. The second argument takes
several possible forms:

• When called within an XSLT stylesheet, the second argument may be the name of an xsl:output
element in the stylesheet, written as a string literal (it must be a literal, or at any rate, an expression
that is evaluated at compile time).

• In non-XSLT environments, the second argument may be the name of the output method (xml, html,
xhtml, text), written as a string literal. In this case the other serialization parameters are defaulted.

• In all environments, the second argument may be an xsl:output element conforming to the
rules defined in the XSLT specification. This element may be constructed dynamically, and may
therefore be used to decide all the serialization properties dynamically.

For example, the function may be used as follows in XQuery:

declare namespace saxon="http://saxon.sf.net/";
declare namespace xsl="http://www.w3.org/1999/XSL/Transform";

<out>{
let $x := <a><c>content</c><?pi?><!--comment-->
return saxon:serialize($x, <xsl:output method="xml"
 omit-xml-declaration="yes"
 indent="yes"
 saxon:indent-spaces="1"/>)
}</out>

The function serializes the specified document, or the subtree rooted at the specified element,
according to the parameters specified, and returns the serialized document as a string.

This function is useful where the stylesheet or query wants to manipulate the serialized output, for
example by embedding it as CDATA inside another XML document, or prefixing it with a DOCTYPE
declaration, or inserting it into a non-XML output file.

Note that because the output is a string, the encoding parameter has no effect on the actual encoding,
though it does affect what is written to the XML declaration.

saxon:sort()
The saxon:sort function is provided primarily for use in XPath, which has no built-in sorting
capability. In XSLT it is preferable to use xsl:sort, in XQuery to use a FLWOR expression with
an order by clause.

Saxon Extensions

256

This form of the function sorts a sequence of nodes and/or atomic values. For atomic values, the value
itself is used as the sort key. For nodes, the atomized value is used as the sort key. The atomized value
must be a single atomic value. The values must all be comparable. Strings are sorted using codepoint
collation.

This form of the function sorts a sequence of nodes and/or atomic values, using the supplied stored
expression to compute the sort key for each item in the sequence. The computed sort key must either
be a single atomic value, or a node that atomizes to a single atomic value, and the sort keys must all
be comparable. Strings are sorted using codepoint collation.

A stored expression may be obtained as the result of calling the saxon:expression function.

The stored expression is evaluated for each item in $seq in turn, with that item as the context node,
with the context position equal to the position of that item in $seq, and with the context size equal
to the size of $seq.

Example: saxon:sort(sale, saxon:expression('@price * @qty')) will evaluate price times quantity for
each child <sale> element, and return the sale elements in ascending numeric order of this value.

saxon:string-to-base64Binary()

This function takes as input a string and the name of a character encoding (for example "UTF8"). It
encodes the contents of the string value as a sequence of bytes using a particular encoding, and returns
the xs:base64Binary representation of this sequence of bytes.

For example, the call saxon:string-to-base64Binary("Dassel", "UTF8") returns the
xs:base64Binary value whose lexical representation is "RGFzc2Vs".

saxon:string-to-hexBinary()

This function takes as input a string and the name of a character encoding (for example "UTF8"). It
encodes the contents of the string value as a sequence of bytes using a particular encoding, and returns
the xs:hexBinary representation of this sequence of bytes.

saxon:string-to-utf8()

This function takes a string as input, and returns a sequence of integers representing the octets in the
UTF8 encoding of the string. The integers are all in the range 0-255.

saxon:system-id()

This returns the system identifier (URI) of the entity in the source document that contains the context
node. There are no arguments.

saxon:transform()

This function takes as input a compiled XSLT stylesheet, and uses it to transform a source document
into a result document. The first argument will generally be the result of calling the saxon:compile-
stylesheet() extension function. The second argument can be any node (usually a document node or

Saxon Extensions

257

element node), either read from external filestore using the doc() or document() function, or
constructed programmatically.

The function is available both in XQuery and in XSLT. It can thus be used for example in XQuery to
pre-process the input using a stylesheet, or to post-process the output using a stylesheet. It can also be
used to chain multiple XSLT transformations together.

The compiled stylesheet can be used repeatedly to transform multiple source documents.

If the optional third argument is present, it is used to supply parameters to the transformation. The
value is a sequence of nodes. Each node must be an element node, attribute node, or document node;
supplying a document node is equivalent to supplying all its element children. The name of the
node must match the parameter name declared in an xsl:param element in the stylesheet, and the
atomized value of the node is used as the value of the parameter. If this is untypedAtomic then it
is converted to the required type declared in the stylesheet.

The stylesheet may contain calls on xsl:result-document. This allows the output of the
stylesheet to be serialized directly to filestore rather than being returned to the calling transformation
or query.

Here is an example of how to use the function from XQuery:

let $results :=
 <customers>{ //customer[location="Scotland"] }</customers>
let $rendition := saxon:compile-stylesheet(doc('show-customers.xsl'))
return saxon:transform($rendition, $results)

The following example uses XSLT's ability to create multiple output files:

let $splitter := saxon:compile-stylesheet(
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">
 <xsl:template match="customer">
 <xsl:result-document href="{{@id}}.xml">
 <xsl:copy-of select="."/>
 </xsl:result-document>
 </xsl:template>
 </xsl:stylesheet>)
let $results :=
 document {
 <customers>{ //customer[location="Scotland"] }</customers>
 }
return saxon:transform($splitter, $results)

Note (a) the need to double the curly braces to ensure that the contained expression is expanded when
the stylesheet is executed by XSLT, not when it is created by XQuery, and (b) the fact that the stylesheet
and source document are supplied as document nodes, not element nodes.

saxon:try()

This function provides a simple way of recovering from dynamic errors (including type errors).

This returns the value of the first argument, unless evaluation of the first argument fails. If a failure
occurs, then the second argument is evaluated and its value is returned.

Here is an example showing the simpler form of call: the expression saxon:try(1 div 0,
"divide by zero") returns the string "divide by zero".

Saxon Extensions

258

To recover from failures occurring in XSLT instructions, for example schema validation errors, wrap
the instructions in a stylesheet function (xsl:function) and call this function within a call of
saxon:try().

The ability to supply a function value as the second argument is withdrawn in Saxon 9.2.

saxon:type-annotation()

This function takes an item as argument.

If the argument is an element or attribute node, the function returns the type annotation of the node,
as a QName. If the type is anonymous, this will be a system-generated internal name.

If the argument is a document node, the function returns xs:anyType if the document has been
schema-validated, or xs:untyped otherwise.

For a text node, the function returns xs:untypedAtomic, and for comment, processing-instruction,
and namespace nodes, it returns xs:string.

If the argument is an atomic value, the function returns the type label of the atomic value, again as
a QName.

The prefix of the returned QName should not be treated as significant.

saxon:unparsed-entities()

This function returns a list of the names of the unparsed entities declared with the document node
supplied as $doc. These names can then be used as arguments to the standard XSLT functions
unparsed-entity-uri() and unparsed-entity-public-id() to determine the system
and public identifiers of the unparsed entity.

The Map Extension
This is a family of extension functions, map:new(), map:put(), map:get(), and
map:keys() that can be used to maintain a general purpose map from atomic values to arbitrary
XDM sequences. The functions are in namespace http://ns.saxonica.com/map, and are
available in Saxon-PE and Saxon-EE only.

The map itself is an object of type
javatype:com.saxonica.functions.map.ImmutableMap [Javadoc:
com.saxonica.functions.map.ImmutableMap], where the prefix javatype
corresponds to the namespace URI http://saxon.sf.net/java-type.

The map is immutable: adding an entry to a map creates a new map, leaving the original map
unchanged. These are therefore pure functions. Under the hood, the implementation avoids copying
data whereever possible to minimise the use of memory when a map is built incrementally.

The individual methods are described below:

Creating a new map

This method creates a new empty map

Saxon Extensions

259

Adding a value to the map

This method creates and returns a new map that differs from the supplied map by adding or replacing
a single entry. The key for the new entry is an atomic value supplied as $key, the value is supplied as
$value. The new entry is added to the map, replacing any existing entry for the same key. Adding
an entry whose value is the empty sequence is equivalent to removing the entry from the map.

Getting a value from the map

This method locates the entry in the map for the given key, if there is one, and returns it. If there is no
entry, it returns the empty sequence. Keys are compared using the XPath eq operator, except that no
error occurs in the case of incomparable types; the collation used is the Unicode codepoint collation.

Example
This example creates a map reflecting the contents of an input file, and then uses it to perform a look-
up.

<xsl:stylesheet ... xmlns:map="http://ns.saxonica.com/map">

<xsl:variable name="transaction-map" as="javatype:com.saxonica.functions.map.ImmutableMap"
 xmlns:javatype="http://saxon.sf.net/java-type">
 <xsl:param name="transactions" as="element(transaction)*"/>
 <xsl:iterate select="doc('transactions.xml')/*/transaction">
 <xsl:param name="map" select="map:new()"/>
 <xsl:next-iteration>
 <xsl:with-param name="map" select="map:put($map, @date, @value)"/>
 </xsl:next-iteration>
 <xsl:on-completion>
 <xsl:sequence select="$map"/>
 </xsl:on-completion>
 </xsl:iterate>
</xsl:variable>

<xsl:variable name="latest-transaction" select="map:get($transaction-map, string(current-date()))"/>

</xsl:stylesheet>

Extension instructions
A Saxon extension instruction is invoked using a name such as <saxon:localname>.

The saxon prefix (or whatever prefix you choose to use) must be associated with the Saxon
namespace URI http://saxon.sf.net/. The prefix must also be designated as an extension
element prefix by including it in the extension-element-prefixes attribute on the
xsl:stylesheet element, or the xsl:extension-element-prefixes attribute on any
enclosing literal result element or extension element.

However, top-level elements such as saxon:collation and saxon:script can be used
without designating the prefix as an extension element prefix.

The extension instructions and declarations are:

• saxon:assign: assigns a new value to a global variable

Saxon Extensions

260

• saxon:break: breaks out of a saxon:iterate loop

• saxon:call-template: calls a template whose name is decided at run-time

• saxon:catch: used within saxon:try to catch dynamic errors

• saxon:collation: names and describes a collating sequence

• saxon:continue: continues execution of a saxon:iterate loop

• saxon:doctype: constructs a serialized DOCTYPE declaration

• saxon:entity-ref: creates an entity reference in the serialized output

• saxon:finally: continues execution of a saxon:iterate loop

• saxon:import-query: imports functions from an XQuery library module

• saxon:iterate: iterates over a sequence in order, allowing parameters to be set

• saxon:mode: declares properties of a mode

• saxon:script: declares an extension function

• saxon:try: evaluates an expression with recovery from dynamic errors

• saxon:while: iterates until a condition becomes false

saxon:assign
The saxon:assign instruction is used to change the value of a global variable that has previously
been declared using xsl:variable (or xsl:param). The variable or parameter must be marked
as assignable by including the extra attribute saxon:assignable="yes"

As with xsl:variable, the name of the variable is given in the mandatory attribute, and the new
value may be given either by an expression in the select attribute, or by expanding the content of
the xsl:assign element.

If the xsl:variable element has an as attribute, then the value is converted to the required type
of the variable in the usual way.

Example:

<xsl:variable name="i" select="0" saxon:assignable="yes"/>
<xsl:template name="loop">
 <saxon:while test="$i < 10">
 The value of i is <xsl:value-of select="$i"/>
 <saxon:assign name="i" select="$i+1"/>
 </saxon:while>
</xsl:template>

The saxon:assign element itself does not allow an as attribute. Instead, it calculates the value of
the variable as if as="item()*" were specified. This means that the result of the construct:

<saxon:assign name="a">London</saxon:assign>

is a single text node, not a document node containing a text node. If you want to create a document
node, use xsl:document.

Using saxon:assign is cheating. XSLT is designed as a language that is free of side-effects, which
is why variables are not assignable. Once assignment to variables is allowed, certain optimizations

Saxon Extensions

261

become impossible. At present this doesn't affect Saxon, which generally executes the stylesheet
sequentially. However, there are some circumstances in which the order of execution may not be
quite what you expect, in which case saxon:assign may show anomalous behavior. In principle
the saxon:assignable attribute is designed to stop Saxon doing optimizations that cause such
anomalies, but you can't always rely on this.

saxon:break
A saxon:break instruction causes early exit from a loop defined using saxon:iterate. The
instruction must appear lexically within the saxon:iterate element.

If the saxon:iterate instruction takes its input from streamed document (using the
saxon:stream() function) then executing saxon:break will cause the parsing and analysis of
that document to terminate. This can be very useful when you only want to examine a small amount
of data near the start of a large document. Note however that it means that any well-formedness or
validity errors appearing later in the source document will not be detected.

For further details and examples see saxon:iterate.

saxon:call-template
The saxon:call-template instruction is identical to xsl:call-template except that the
template name can be written as an attribute value template, allowing the actual template that is called
to be selected at run time.

Typical usage is:

The saxon:call-template instruction allows xsl:fallback as a child element, so that
fallback behaviour can be defined for other XSLT processors when they encounter this instruction.

saxon:catch
This instruction is always used together with saxon:try. It is used to catch dynamic errors occurring
within a saxon:try instruction, and to return an alternative result when an error occurs.

The parent instruction must be saxon:try. A saxon:try element must have at least one
saxon:catch child element (there may be several), and the saxon:catch children must come
last, except perhaps for any xsl:fallback children.

There is a mandatory attribute errors defining which errors are caught. Every error code is identified
by a QName. The attribute is a whitespace-separated list of NameTests which are used to match
this QName. Each NameTest may be in the form * (match all names), *:local (match local
within any namespace), err:* (match all names in namespace err, or err:ABCD9867 (match a
specific error code). The most common namespace, used by all system-defined errors, is http://
www.w3.org/2005/xqt-errors, for which the conventional prefix is err:.

The value to be returned by the saxon:catch element may be calculated in an XPath expression
in the select attribute, or in instructions forming the body of the saxon:catch element.

Within the select expression, or within the body of the saxon:catch element, the following
variables are available. The namespace prefix err in this names must be bound to the namespace URI
http://www.w3.org/2005/xqt-errors.

Table 12.3.

Variable Type Value

err:code xs:QName The error code

Saxon Extensions

262

Variable Type Value

err:description xs:string A description of the error
condition

err:value item()* Value associated with the error.
For an error raised by calling
the error function, this is the
value of the third argument (if
supplied). For an error raised
by evaluating xsl:message
with terminate="yes", this
is the document node at the root
of the tree containing the XML
message body.

err:module xs:string? The URI (or system ID) of
the stylesheet module containing
the instruction where the error
occurred; an empty sequence if
the information is not available.

err:line-number xs:integer? The line number within the
stylesheet module of the
instruction where the error
occurred; an empty sequence if
the information is not available.

err:column-number xs:integer? The column number within
the stylesheet module of the
instruction where the error
occurred; an empty sequence if
the information is not available.

The catch block can throw a new error by calling the error() function.

Variables declared within the saxon:try block are not visible within the saxon:catch block.

For examples, see saxon:try.

saxon:collation

Instead, you can define collations in a configuration file: see The collations element. It is also
possible to specify a collation directly by using a URI of the form http://saxon.sf.net/
collation?keyword=value;keyword=value;.... For details see Collations.

The saxon:collation element is a top-level element used to define collating sequences that may
be used in sort keys and in functions such as compare().

The collation name is a URI, and is defined in the mandatory name attribute. This must be a valid URI.
If it is a relative URI, it is interpreted as being relative to the base URI of the saxon:collation
element itself.

The attribute was used in earlier Saxon releases to identify the default collation. From Saxon
8.8 this attribute is ignored, with a warning. To specify the default collation, use the standard
[xsl:]default-collation attribute.

The other attributes control how the collation is defined. These attributes have the same effect as the
corresponding query parameters in a URI starting with http://saxon.sf.net/collation?,
and are described here.

Saxon Extensions

263

Specifically, these attributes are:

Table 12.4.

class fully-qualified Java class name
of a class that implements
java.util.Comparator.

This parameter should not
be combined with any other
parameter. An instance of
the requested class is created,
and is used to perform
the comparisons. Note that
if the collation is to be
used in functions such as
contains() and starts-with(),
this class must also be a
java.text.RuleBasedCollator.
This approach allows a
user-defined collation to be
implemented in Java.This option
is also available on the .NET
platform, but the class must
implement the Java interface
java.util.Comparator.

rules details of the ordering required,
using the syntax of the Java
RuleBasedCollator

This defines exactly how
individual characters are
collated.This option is also
available on the .NET platform,
and if used will select a
collation provided using the
GNU Classpath implementation
of RuleBasedCollator. At
the time of writing, this is not
100% compatible with the Sun
JDK implementation.

lang any value allowed for xml:lang,
for example en-US for US
English

This is used to find the collation
appropriate to a Java locale
or .NET culture. The collation
may be further tailored using the
parameters described below.

ignore-case yes, no Indicates whether the upper and
lower case letters are considered
equivalent. Note that even when
ignore-case is set to "no", case
is less significant than the actual
letter value, so that "XPath" and
"Xpath" will appear next to each
other in the sorted sequence.On
the Java platform, setting ignore-
case sets the collation strength to
secondary.

ignore-modifiers yes, no Indicates whether non-spacing
combining characters (such as
accents and diacritical marks)
are considered significant. Note
that even when ignore-modifiers
is set to "no", modifiers are
less significant than the actual

Saxon Extensions

264

letter value, so that "Hofen" and
"Höfen" will appear next to each
other in the sorted sequence.On
the Java platform, setting ignore-
case sets the collation strength to
primary.

ignore-symbols yes, no Indicates whether symbols such
as whitespace characters and
punctuation marks are to be
ignored. This option currently
has no effect on the Java
platform, where such symbols
are in most cases ignored by
default.

ignore-width yes, no Indicates whether characters that
differ only in width should
be considered equivalent.On the
Java platform, setting ignore-
width sets the collation strength
to tertiary.

strength primary, secondary, tertiary, or
identical

Indicates the differences that
are considered significant when
comparing two strings. A/B is
a primary difference; A/a is
a secondary difference; a/ä is
a tertiary difference (though
this varies by language). So
if strength=primary then A=a
is true; with strength=secondary
then A=a is false but a=ä
is true; with strength=tertiary
then a=ä is false.This option
should not be combined with
the ignore-XXX options. The
setting "primary" is equivalent
to ignoring case, modifiers, and
width; "secondary" is equivalent
to ignoring case and width;
"tertiary" ignores width only;
and "identical" ignores nothing.

decomposition none, standard, full Indicates how the collator
handles Unicode composed
characters. See the JDK
documentation for details. This
option is ignored on the .NET
platform.

alphanumeric yes, no If set to yes, the string is split
into a sequence of alphabetic
and numeric parts (a numeric
part is any consecutive sequence
of ASCII digits; anything else
is considered alphabetic). Eacn
numeric part is considered to
be preceded by an alphabetic
part even if it is zero-length.

Saxon Extensions

265

The parts are then compared
pairwise: alphabetic parts using
the collation implied by the
other query parameters, numeric
parts using their numeric
value. The result is that,
for example, AD985 collates
before AD1066.Note that an
alphanumeric collation cannot
be used in conjunction with
functions such as contains() and
substring-before().

case-order upper-first, lower-first Indicates whether upper case
letters collate before or after
lower case letters.

Sorting and comparison according to Unicode codepoints can be achieved
by setting up a collator as <saxon:collation name="unicode"
class="net.sf.saxon.sort.CodepointCollator"/>

saxon:continue
A saxon:continue instruction causes continuation of a loop defined using saxon:iterate. The
instruction must appear lexically within the saxon:iterate element.

Typically the instruction will contain a number of xsl:with-param elements defining new values
for the loop iteration parameters.

For further details and examples see saxon:iterate.

saxon:doctype
The saxon:doctype instruction is used to insert a document type declaration into the current output
file. It should be instantiated before the first element in the output file is written. It must be used only
when writing a final result tree (not a temporary tree) and only when writing text nodes. The reason
for these restrictions is that saxon:doctype writes directly to the serialized output stream (internally
it uses disable-output-escaping to achieve this). It is not possible to represent a doctype declaration
as a node on a temporary tree.

The saxon:doctype instruction takes no attributes. The content of the element is a template-body
that is instantiated to create an XML document that represents the DTD to be generated; this XML
document is then serialized using a special output method that produces DTD syntax rather than XML
syntax.

If this element is present the doctype-system and doctype-public attributes of
xsl:output should not be present. Also, the standalone attribute of xsl:output should not
be used. This is because the DOCTYPE declaration generated by saxon:doctype is output as a
text node using disable-output-escaping, and thus appears to the serializer as a document that is not
well-formed; the use of standalone with such documents is prohibited by the W3C serialization
specification.

The generated XML document uses the following elements, where the namespace prefix "dtd" is used
for the namespace URI "http://saxon.sf.net/dtd":

Table 12.5.

dtd:doctype Represents the document type declaration. This is
always the top-level element. The element may

Saxon Extensions

266

contain dtd:element, dtd:attlist, dtd:entity, and
dtd:notation elements. It may have the following
attributes: (mandatory) The name of the document
type The system ID The public ID

dtd:element Represents an element type declaration. This
is always a child of dtd:doctype. The element
is always empty. It may have the following
attributes: (mandatory) The name of the
element type (mandatory) The content model,
exactly as it appears in a DTD, for example
content="(#PCDATA)" or content="(a | b | c)*"

dtd:attlist Represents an attribute list declaration. This is
always a child of dtd:doctype. The element will
generally have one or more dtd:attribute children.
It may have the following attributes: (mandatory)
The name of the element type

dtd:attribute Represents an attribute declaration within an
attribute list. This is always a child of dtd:attlist.
The element will always be empty. It may
have the following attributes: (mandatory) The
name of the attribute (mandatory) The type
of the attribute, exactly as it appears in a
DTD, for example type="ID" or type="(red |
green | blue)" (mandatory) The default value
of the attribute, exactly as it appears in a
DTD, for example value="#REQUIRED" or
value="#FIXED 'blue'"

dtd:entity Represents an entity declaration. This is always
a child of dtd:doctype. The element may be
empty, or it may have content. The content is
a template body, which is instantiated to define
the value of an internal parsed entity. Note
that this value includes the delimiting quotes.
The xsl:entity element may have the following
attributes: (mandatory) The name of the entity
The system identifier The public identifier Set
to "yes" for a parameter entity The name of a
notation, for an unparsed entity

dtd:notation Represents a notation declaration. This is always
a child of dtd:doctype. The element will always
be empty. It may have the following attributes:
(mandatory) The name of the notation The system
identifier The public identifier

Note that Saxon will perform only minimal validation on the DTD being generated; it will output
the components requested but will not check that this generates well-formed XML, let alone that the
output document instance is valid according to this DTD.

Example:

<xsl:template match="/">
 <saxon:doctype xsl:extension-element-prefixes="saxon">
 <dtd:doctype name="booklist"
 xmlns:dtd="http://saxon.sf.net/dtd" xsl:exclude-result-prefixes="dtd">
 <dtd:element name="booklist" content="(book)*"/>
 <dtd:element name="book" content="EMPTY"/>

Saxon Extensions

267

 <dtd:attlist element="book">
 <dtd:attribute name="isbn" type="ID" value="#REQUIRED"/>
 <dtd:attribute name="title" type="CDATA" value="#IMPLIED"/>
 </dtd:attlist>
 <dtd:entity name="blurb">'A <i>cool</i> book with > 200 pictures!'</dtd:entity>
 <dtd:entity name="cover" system="cover.gif" notation="GIF"/>
 <dtd:notation name="GIF" system="http://gif.org/"/>
 <dtd:entity name="ISOEntities"
 public="ISO 8879-1986//ENTITIES ISO Character Entities 20030531//EN//XML"
 system="D:\ent\ISOEntities"
 parameter="yes">
 <xsl:text>%ISOEntities;</xsl:text>
 </dtd:doctype>
 </saxon:doctype>
 <xsl:apply-templates/>
</xsl:template>

Although not shown in this example, there is nothing to stop the DTD being generated as the output
of a transformation, using instructions such as xsl:value-of and xsl:call-template. It is
also possible to use xsl:text to output DTD constructs not covered by this syntax, for example
conditional sections and references to parameter entities. Such text nodes will always be output with
escaping disabled.

saxon:entity-ref
The saxon:entity-ref element is useful to generate entities such as in HTML output. To do
this, write:

<saxon:entity-ref name="nbsp"/>

the preferred way to produce a non-breaking space character in the output is simply to write
or in the stylesheet. By default, with HTML output, this will be serialized as , though
the way it is serialized doesn't actually matter as far as the HTML browser is concerned.

saxon:entity-ref is permitted only in contexts where disable-output-escaping would
be permitted: that is, when writing to a serialized output destination.

saxon:finally
A saxon:finally instruction may be included as the last child of saxon:iterate; it is
executed when the end of the input sequence is reached. It is evaluated if the loop is terminated
using saxon:break. The focus (context node, position, and size) for this instruction is undefined;
however, variables declared within the loop including the loop parameters are available for reference.
The loop parameters have their values as set by the saxon:continue instruction that ended the
last normal iteration.

For further details and examples see saxon:iterate.

saxon:import-query
The saxon:import-query element is a top-level declaration that causes an XQuery library module to
be imported into the stylesheet.

The effect is that the functions defined in the library module become available for calling from any
XPath expression in the stylesheet, as extension functions. They are available in all modules of the
stylesheet.

Saxon Extensions

268

Only the functions actually defined in the given XQuery module are imported. Functions that the
specified module imports from other XQuery modules are not imported. This follows the semantics of
XQuery's import module declaration. Variables defined in an imported module are not (currently)
imported into the stylesheet.

The imported functions do not have any specific import precedence. If a stylesheet contains two
saxon:import-query declarations importing the same namespace, then they are assumed to refer
to the same library module, and all but the first are ignored. As with other extension functions, the
override="yes|no" attribute on xsl:function can be used to determine whether a stylesheet
function overrides an imported XQuery function of the same name.

The saxon:import-xquery declaration has two optional attributes The href attribute is the
(absolute or relative) URI of the XQuery module. The namespace attribute identifies the module
namespace of the imported module. If href alone is specified, then the module is loaded from the
given location. If namespace alone is specified, then the module must already be present in Saxon's
Configuration object (you can share a Configuration between multiple stylesheets, which means
that imported XQuery modules will not need to be recompiled for each one). If both attributes are
specified, then Saxon uses an already-loaded module for the namespace if it can, otherwise it fetches it
from the specified location, and checks that the namespace is correct. I would recommend specifying
both attributes.

saxon:iterate
The saxon:iterate element is used to iterate over a sequence. In simple cases the effect is exactly
the same as xsl:for-each. However, saxon:iterate offers a guarantee that the evaluation
will be sequential. It allows each iteration to set parameters which will be available during the next
iteration, and it allows early exit from the loop when some condition is true.

This extension was new in Saxon 9.1. Some changes have been made in 9.2, and it should still
be regarded as experimental. The primary motivation for introducing it is to enable streamed
processing of input files where there is a need to "remember" data read at the beginning of the
document for use when processing elements encountered later. Streaming is available only in
Saxon-EE, but the basic functionality of saxon:iterate is also available in Saxon-B

The following example shows how a shopping basket may be displayed with the cumulative values
of the items:

 <saxon:iterate select="//ITEM" xmlns:saxon="http://saxon.sf.net/" xsl:extension-element-prefixes="saxon">
 <xsl:param name="basketCost" as="xs:decimal" select="0"/>
 <item cost="{$basketCost}"><xsl:copy-of select="TITLE"/></item>
 <saxon:continue>
 <xsl:with-param name="basketCost" select="$basketCost + (xs:decimal(PRICE), 0)[1]"/>
 </saxon:continue>
 </saxon:iterate>

The initial values of the parameters are taken from the select attribute of the xsl:param elements;
values for subsequent iterations are taken from the xsl:with-param in the saxon:continue
instruction. If any declared parameters are not given a value in the saxon:continue instruction,
they retain their values from the previous iteration.

The following example shows early exit from the loop when the cumulative value reaches 25.00:

 <saxon:iterate select="//ITEM" xmlns:saxon="http://saxon.sf.net/" xsl:extension-element-prefixes="saxon">
 <xsl:param name="basketCost" as="xs:decimal" select="0"/>
 <xsl:choose>

Saxon Extensions

269

 <xsl:when test="$basketCost gt 25.00">
 <saxon:break/>
 </xsl:when>
 <xsl:otherwise>
 <item cost="{$basketCost}"><xsl:copy-of select="TITLE"/></item>
 <saxon:continue>
 <xsl:with-param name="basketCost" select="$basketCost + (xs:decimal(PRICE), 0)[1]"/>
 </saxon:continue>
 </xsl:otherwise>
 </xsl:choose>
 </saxon:iterate>

The instructions saxon:continue and saxon:break must be lexically within the
saxon:iterate instruction and must not be followed by further instructions other than
xsl:fallback. They may appear within xsl:if or xsl:choose (nested to any depth) so long
as none of the intermediate instructions have a following sibling instruction. They must not appear
with a nested xsl:for-each, a nested literal result element, or nested inside any other instruction.

Within the body of the instruction, the context item, position, and size are available just as in
xsl:for-each. The value of last() reflects the size of the input sequence, which may be greater
than the number of iterations if saxon:break is used for early exit.

A saxon:finally instruction may be included as the last child of saxon:iterate; it is
executed when the end of the input sequence is reached. It is evaluated if the loop is terminated
using saxon:break. The focus (context node, position, and size) for this instruction is undefined;
however, variables declared within the loop including the loop parameters are available for reference.
The loop parameters have their values as set by the saxon:continue instruction that ended the
last normal iteration.

saxon:mode
The saxon:mode element is a top-level element. It is used to define properties of a mode, in
particular whether the mode is streamable.

The name attribute indicates the name of the mode (which will normally match the mode attribute of
one or more template rules. Specifying name="#default" is equivalent to omitting the attribute,
and indicates that the declaration applies to the default (unnamed) mode.

The streamable attribute takes the value yes or no, default no. If yes is specified, all template
rules in this mode must be streamable templates, and all processing using these template rules is done
using streaming.

This declaration is available only in Saxon-EE.

saxon:script
The saxon:script element is a top-level element. It is used to define an implementation for an
extension function that will be used by Saxon. With other processors, a different implementation
of the same function can be selected, using mechanisms defined by that processor (for example,
xalan:script).

The attributes for saxon:script are the same as the attributes of the xsl:script element
defined in the (now withdrawn) XSLT 1.1 working draft.

The language attribute is mandatory, and must take the value "java". The values "javascript",
"ecmascript", or a QName are also permitted, but in this case Saxon ignores the saxon:script
element.

Saxon Extensions

270

The implements-prefix attribute is mandatory, its value must be a namespace prefix that maps
to the same namespace URI as the prefix used in the extension function call.

The src attribute is mandatory for language="java", its value must take the form
"java:fully.qualified.class.Name", for example "java:java.util.Date". It defines the class containing the
implementation of extension functions that use this prefix.

The archive attribute is optional, its value is a space-separated list of URLs of folders or JAR files
that will be searched to find the named class. If the attribute is omitted, the class is sought on the
classpath.

saxon:try
The saxon:try instruction evaluates an XPath expression in its select attribute, or a sequence
of child instructions. If any dynamic error occurs while performing this evaluation, the error may be
caught by an xsl:catch instruction that is written as a child of the xsl:try. For example, the
following code catches a failure occurring while executing the document() function, and returns
an <error-document/> element if this occurs.

<xsl:variable name="doc" as="document-node()">
 <saxon:try select="document($input-uri)">
 <saxon:catch errors="*">
 <xsl:document>
 <error-document/>
 </xsl:document>
 </saxon:catch>
 </saxon:try>
</xsl:variable>

The saxon:try element must contain at least one saxon:catch child, and it may contain
several. Each one specifies which errors it is intended to catch in its errors attribute; the
value * catches all errors. The first saxon:catch to match the error code is the one that is
evaluated. The saxon:catch children must come after all other children, with the exception of any
xsl:fallback children (which can be included to define fallback behaviour by processors that do
not recognize the saxon:try instruction.

The saxon:try element may have either a select attribute, or a sequence of child instructions
(preceding the first xsl:catch); it must not have both.

See also saxon:catch.

saxon:while
The saxon:while element is used to iterate while some condition is true.

The condition is given as a boolean expression in the mandatory test attribute. Because this expression
must change its value if the loop is to terminate, the condition will generally reference a variable that
is updated somewhere in the loop using an saxon:assign element. Alternatively, it may test a
condition that is changed by means of a call on an extension function that has side-effects.

Example:

<xsl:variable name="i" select="0" saxon:assignable="yes"/>
<xsl:template name="loop">
 <saxon:while test="$i < 10">
 The value of i is <xsl:value-of select="$i"/>

Saxon Extensions

271

 <saxon:assign name="i" select="$i+1"/>
 </saxon:while>
</xsl:template>

272

Chapter 13. Sample Saxon
Applications
Introduction

Several sample applications are available. They can be downloaded as part of the
saxon-resources file available from SourceForge [http://sourceforge.net/project/showfiles.php?
group_id=29872] or from Saxonica [http://www.saxonica.com/download/download_page_fs.html].

Knight's Tour
This program is available in two forms: as an XSLT stylesheet tour.xsl and as an XQuery
tour.xq.

This is a program whose output is a knight's tour of the chessboard (the knight can start on any square,
and has to visit each square exactly once). The XSLT version was published as an example stylesheet
in my book (Wrox Press [http://www.wrox.com/]) but has been completely reworked so it now makes
extensive use of features in XSLT 2.0, XPath 2.0 and XQuery. It is worth studying the stylesheet
and query as an introduction to the use of the new features in these languages. Comparing the two
versions, it can be seen that they are very similar: the only differences are in the surface syntax of
the two languages.

The stylesheet can be found in the file samples/styles/tour.xsl, the query in samples/
query/tour.xq. No source document is required.

You can run this example with Saxon on the Java platform using a command of the form:

java -jar saxon9.jar -it:main samples\styles\tour.xsl start=e5 >tour.html

or

java -cp saxon9.jar net.sf.saxon.Query samples\query\tour.xq start=e5 >tour.html

On the .NET platform, the equivalent commands are:

Transform -it:main samples\styles\tour.xsl start=e5 >tour.html

or

Query samples\query\tour.xq start=e5 >tour.html

When you display the resulting HTML file in your browser it should look like this:

(Graphic not available)

JAXP Transformation Examples

Saxon supports the Java JAXP Transformation API, originally known as TrAX (package
javax.xml.transform) for invoking the XSLT stylesheet processor. This API is useful when you want
to write your own Java applications that invoke Saxon XSLT transformations.

A sample program that illustrates many features of the TrAX interface (including Saxon-specific
extensions) is included in the distribution as . Source XML and XSLT files for use with this program
are included in the directory. To run the program, use the command:

http://sourceforge.net/project/showfiles.php?group_id=29872
http://sourceforge.net/project/showfiles.php?group_id=29872
http://sourceforge.net/project/showfiles.php?group_id=29872
http://www.saxonica.com/download/download_page_fs.html
http://www.saxonica.com/download/download_page_fs.html
http://www.wrox.com/
http://www.wrox.com/

Sample Saxon Applications

273

cd $saxonhome/samples/trax java TraxExamples

You can supply an argument to indicate which of the examples you want to run; see the source code
for details. By default, they are all executed in turn.

SaxonServlet

This is a general-purpose servlet that takes the name of a source document and XSLT stylesheet as
URL parameters, and uses the stylesheet to process the source document, creating a result document
which is sent back to the browser for display. The result document may have any media type, though
HTML and XML are the most likely.

The servlet maintains a cache of prepared stylesheets; if the same stylesheet is used repeatedly, it is
only parsed and validated once, which will often greatly improve performance. Prepared style sheets
are thread-safe so they can be used to serve documents to several users concurrently.

The URLs for the source document and the stylesheet document are supplied in the URL, which will
typically take the form:

http://server.com/servlets/SaxonServlet?source=doc.xml&style=sheet.xsl

The source and style parameters identify the source document and stylesheet by URL. These are
interpreted relative to the servlet context. This means that specifying say "style=/styles/styleone.xsl"
in the URL will locate the stylesheet in this file relative to the root directory for the web server.

The stylesheet is prepared the first time it is used, and held in memory in a cache. The cache may be
cleared (for example, if a stylesheet has been changed) using a URL such as:

http://server.com/servlets/SaxonServlet?clear-stylesheet-cache=yes

This code is provided purely as a sample, in the expectation that you will customise it to your particular
site requirements.

The Book List Stylesheet
This is a very simple sample stylesheet to illustrate several Saxon extensions. It uses the XML file
(derived from a file issued originally by Microsoft). You will find this in the samples\data directory.
The DTD is in

There is a style sheet that can be used to display the data: run this as follows, with the samples directory
as the current directory:

java net.sf.saxon.Transform data\books.xml styles\books.xsl >

Transform data\books.xml styles\books.xsl >

This produces an HTML page showing the data. (The output isn't very pretty, if you have time to write
an improved version, please send it in).

The stylesheet takes a parameter named "top-author". This is the name of the "author of the week",
and the default value is "Bonner". To run the stylesheet with a different top author, try adding to the
end of the command line:

..... top-author=Danzig >

It is possible (under those operating systems I know of) to write the author's name in quotes if it
contains spaces, e.g. top-author="A. A. Milne".

Sample Saxon Applications

274

There is another style sheet, books-csv.xsl, which converts the data into a comma-separated-values
file.

A query that runs with this data is also supplied. The command to use on the Java platform is:

java net.sf.saxon.Query -s:data\books.xml query\books.xq >

The equivalent on .NET is:

Query -s:data\books.xml query\books.xq >

Shakespeare Example
This example works on an input file containing a Shakespeare play. You can use any of the
Shakespeare plays in Jon Bosak's distribution at http://www.ibiblio.org/bosak/xml/eg/shaks200.zip,
but for convenience one of them, , is included in the Saxon distribution (in the samples\data directory).

Shakespeare stylesheet
There is an XSLT stylesheet, play.xsl, which processes an input play in XML and generates a set
of linked HTML files (one for the play and one for each scene) in an output directory. To run this on
the Java platform, create a directory (say playhtml) and execute the following from the command line:

cd samples java net.sf.saxon.Transform data\othello.xml styles\play.xsl dir=playhtml

The equivalent on .NET is:

cd samples Transform data\othello.xml styles\play.xsl dir=playhtml

The last parameter sets the value of the constant to the value ; this constant is referenced from the
style sheet when creating output files.

Shakespeare XPath Sample Application

In the samples/java directory is an example application called XPathExample.java. This
is designed to illustrate the use of Saxon's implementation of the JAXP 1.3 XPath API from a Java
application. It searches a Shakespeare play for all occurrences of a word entered from the console,
displaying the lines containing that word, and the context where they appear.

To run this example, first ensure that it is on your classpath, and find the location of the
othello.xml file in the samples/data directory. Open a command-line console, and run the
application using the command:

cd samples java XPathExample data\othello.xml

The application prompts for a word. Enter the word (try "castle" or "handkerchief"). The lines
containing the chosen word are displayed on the console. Exit the application by entering ".".

The Bible
The stylesheet takes as input an XML file containing the text of the Old or New Testament. These
files are not included in the Saxon distribution for space reasons, but can be downloaded from http://
www.ibiblio.org/bosak/xml/eg/rel200.zip or from various mirror sites. They were prepared by Jon
Bosak.

The output of the stylesheet is a set of 292 HTML files in a single directory, which together provide a
frames-oriented rendition of the text. The application also works with the Old Testament text, but not
with the other religious texts included in Jon Bosak's distribution.

http://www.ibiblio.org/bosak/xml/eg/shaks200.zip
http://www.ibiblio.org/bosak/xml/eg/rel200.zip
http://www.ibiblio.org/bosak/xml/eg/rel200.zip

Sample Saxon Applications

275

To run the stylesheet on the Java platform first create an output directory (say htmldir), then execute
the following from the command line :

java net.sf.saxon.Transform data\nt.xml styles\bible.xsl dir=htmldir

The equivalent on .NET is:

Transform data\nt.xml styles\bible.xsl dir=htmldir

The final parameter sets the value of the XSLT parameter "dir" to the value "htmldir", which is
referenced within the stylesheet to select a directory for output files.

JDOM Example

Saxon includes an adapter that allows the source tree to be a JDOM document.

To use this facility:

• The JAR file saxon-jdom.jar must be on the classpath

• JDOM must be installed and on the classpath

• You must be using JDK 1.4 or later.

The sample application JDOMExample.java illustrates how a JDOM tree can be used with Saxon.
It combines two scenarios: running XPath expressions directly against a JDOM tree, from the Java
application; and invoking a transformation with the JDOM document supplied as the Source object.

The application is designed to take two arguments, the books.xml file in the samples/data directory,
and the total.xsl file in the samples/styles directory. The application builds a JDOM tree, modifies
it to add extra attributes, and then references these attributes from the stylesheet.

Example applications for .NET
The /samples/cs directory contains somer sample applications written in C#, designed to illustrate
use of the Saxon API available in the Saxon.Api namespace. In particular there are three programs
ExamplesHE.cs, ExamplesPE.cs, and ExamplesEE.cs relevant to Saxon-HE, Saxon-PE,
and Saxon-EE respectively; each shows various ways of invoking XSLT, XQuery, XPath, and schema
validation where appropriate. The idea is that you should be able to cut and paste a suitable fragment
of code into your own application as a quick way of getting started.

The main value of these samples is in reading the source code rather than in actually running them;
however, running them is also a good check that your installation has been set up correctly. a quick
look at the comments in the source should enable you to see how they are executed. Note that they all
require the environment variable SAXON_HOME to be set to the directory where Saxon is installed:
this is used to find the sample data files.

The example applications can be run from the command line. They take the following arguments:

• - provides the name of the samples directory from the saxon-resources download. The default
uses the SAXON_HOME environment variable - but it's normally best to supply this parameter
explicitly.

• - with ask:yes (the default), the application prompts after each test to ask if you want to continue.

• - supplies the name of the test you want to run, or "all" (the default) to indicate all tests.

Also in the same directory is an application TestRunnerProgram.cs which is a test harness for
running the XSLT, XQuery, and XSD test suites published by W3C (in the case of XSLT, the test
data is available to W3C members only).

276

Chapter 14. The Saxon SQL
Extension

Introduction
The Saxon distribution includes a set of extension elements providing access to SQL databases. These
are not intended as being necessarily a production-quality piece of software (there are many limitations
in the design), but more as an illustration of how extension elements can be used to enhance the
capability of the processor.

To use the SQL extension elements in a stylesheet, you need to define a namespace prefix (for
example "sql") in the extension-element-prefixes attribute of the xsl:stylesheet element, and to map
this prefix to a namespace URI, conventionally http://saxon.sf.net/sql. This namespace
must be bound in the Configuration [Javadoc: net.sf.saxon.Configuration]
to the class net.sf.saxon.option.sql.SQLElementFactory. This binding can be done
either by calling Configuration.setExtensionElementNamespace() [Javadoc:
net.sf.saxon.Configuration#setExtensionElementNamespace], or by means of
an entry in the configuration file.

This extension defines eight new stylesheet elements: sql:connect, sql:query, sql:insert,
sql:column, sql:update, sql:delete, sql:execute, and sql:close, described in the
following sections.

sql:connect
sql:connect creates a database connection. It has attributes driver, database, user,
password, and auto-commit all of which are attribute value templates (so the values can be
passed in as parameters).

The driver attribute names the JDBC driver class to be used. The database name must be a name
that JDBC can associate with an actual database.

The auto-commit attribute, if present, should take the value "yes" or "no". This causes a call of
connection.setAutoCommit() on the underlying JDBC connection.

The sql:connect instruction returns a database connection as a value, specifically a value of
type "external object", which can be referred to using the type java:java.sql.Connection.
Typically the value will be assigned to a variable using the construct:

<xsl:variable name="connection"
 as="java:java.sql.Connection"
 xmlns:java="http://saxon.sf.net/java-type">
 <sql:connect database="jdbc:odbc:testdb"
 driver="sun.jdbc.odbc.JdbcOdbcDriver"
 xsl:extension-element-prefixes="sql"/>
</xsl:variable>

This can be a global variable or a local variable; if local, it can be passed to other templates as
a parameter in the normal way. The connection is used on instructions such as sql:insert
and sql:query with an attribute such as connection="$connection"; the value of the
connection attribute is an expression that returns a database connection object.

The Saxon SQL Extension

277

sql:query
sql:query performs a query, and writes the results of the query to the result tree, using elements
to represent the rows and columns. If you want to process the results in the stylesheet, you can write
the results to a temporary tree by using the sql:query instruction as a child of xsl:variable.
The attributes are as follows:

Table 14.1.

connection The database connection. This is mandatory, the
value is an expression, which must evaluate
to a database connection object as returned by
sql:connect.

table The table to be queried (the contents of the FROM
clause of the select statement). This is mandatory,
the value is an attribute value template.

column The columns to be retrieved (the contents of the
SELECT clause of the select statement). May be
"*" to retrieve all columns. This is mandatory, the
value is an attribute value template.

where The conditions to be applied (the contents of the
WHERE clause of the select statement). This is
optional, if present the value is an attribute value
template.

row-tag The element name to be used to contain each
row. Must be a simple name (no colon allowed).
Default is "row".

column-tag The element name to be used to contain each
column. Must be a simple name (no colon
allowed). Default is "col".

disable-output-escaping Allowed values are "yes" or "no", default is "no".
The value "yes" causes the content of all rows/
columns to be output as is, without converting
special characters such as "<" to "<". This
is useful where the database contains XML or
HTML markup that you want to be copied into
the result document. Use this option with care,
however, since it applies to all the columns
retrieved, not only to those that contain XML or
HTML. An alternative is to use the saxon:parse
extension function to process the contents of an
XML column.

sql:insert and sql:column
sql:insert performs an SQL INSERT statement. This causes a row to be added to the table
identified by the table attribute. The table attribute holds the table name as a constant string; it is
not possible to set the name of the table (or of the columns) at run-time.

There is a mandatory connection attribute, used as in the sql:query instruction described above.

sql:column is used as a child element of sql:insert, and identifies the name and value of a
column to be included in the INSERT statement. The name of the column is identified by the name
attribute, the value may be indicated either by evaluating the expression contained in the select

The Saxon SQL Extension

278

attribute, or as the expanded contents of the sql:column element. The value is always interpreted
as a string. (Remember this is purely a demonstration of extensibility, in a real system there would be
a need to cater for SQL columns of other data types).

sql:update and sql:column
sql:update performs an SQL UPDATE statement. This causes a set of rows to be selected from a
given table; columns identified in a child sql:column element are then updated with new values.

The attributes are as follows:

Table 14.2.

connection The database connection. This is mandatory, the
value is an expression, which must evaluate
to a database connection object as returned by
sql:connect.

table The table to be updated. This is mandatory, and
the value must be known statically (it cannot be
defined as an attribute value template).

where The conditions to be applied (the contents of
the WHERE clause of the select statement). This
is optional, if present the value is an attribute
value template whose value is a SQL conditional
expression. If omitted, all rows in the table are
updated.

sql:column is used as a child element of sql:update, and identifies the name and value of a
column to be included in the UPDATE statement. The name of the column is identified by the name
attribute, the value may be indicated either by evaluating the expression contained in the select
attribute, or as the expanded contents of the sql:column element. The value is always interpreted
as a String. (Remember this is purely a demonstration of extensibility, in a real system there would
be a need to cater for SQL columns of other data types).

sql:delete
sql:delete performs an SQL DELETE statement. This causes a set of rows to be selected from
a given table and deleted.

The attributes are as follows:

Table 14.3.

connection The database connection. This is mandatory, the
value is an expression, which must evaluate
to a database connection object as returned by
sql:connect.

table The table containing the rows to be deleted.
This is mandatory, and the value must be known
statically (it cannot be defined as an attribute
value template).

where The conditions to be applied (the contents of
the WHERE clause of the select statement). This
is optional, if present the value is an attribute
value template whose value is a SQL conditional

The Saxon SQL Extension

279

expression. If omitted, all rows in the table are
deleted.

sql:close
sql:close closes the database connection. There is a mandatory connection attribute, used as
in the sql:query instruction described above.

Note that the JDBC documentation advises calling "commit" or "rollback" before closing the
connection; the effects of not doing so are said to be implementation-defined. It is possible to issue a
commit or rollback request using the sql:execute instruction: see sql:execute.

sql:execute
The sql:execute instruction allows arbitrary SQL statements to be executed. There are two
attributes (and no content). The connection attribute is an XPath expression whose value is the
SQL connection created using sql:connection. The statement attribute is an attribute value
template whose effective value is the SQL statement to be executed. No result is returned.

The statements COMMIT WORK and ROLLBACK WORK (spelt exactly like that)
are recognized specially, and cause calls on the JDBC connection.commit() and
connection.rollback() methods respectively.

Example
A specimen stylesheet that uses these XSL extension is . This loads the contents of the books.xml file
into a database table, To use it, you need to create a database database containing a table "Book" with
three character columns, "Title", "Author", and "Category"

Here is the stylesheet:

<xsl:stylesheet
 xmlns:sql="http://saxon.sf.net/sql"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
 xmlns:saxon="http://saxon.sf.net/"
 extension-element-prefixes="saxon sql">

<!-- insert your database details here, or supply them in parameters -->
<xsl:param name="driver" select="'sun.jdbc.odbc.JdbcOdbcDriver'"/>
<xsl:param name="database" select="'jdbc:odbc:test'"/>
<xsl:param name="user"/>
<xsl:param name="password"/>

<!-- This stylesheet writes the book list to a SQL database -->

<xsl:variable name="count" select="0" saxon:assignable="yes"/>

<xsl:output method="xml" indent="yes"/>

<xsl:template match="BOOKLIST">
 <xsl:if test="not(element-available('sql:connect'))">
 <xsl:message>sql:connect is not available</xsl:message>
 </xsl:if>

 <xsl:message>Connecting to <xsl:value-of select="$database"/>...</xsl:message>

The Saxon SQL Extension

280

 <xsl:variable name="connection"
 as="java:java.sql.Connection" xmlns:java="http://saxon.sf.net/java-type">
 <sql:connect driver="{$driver}" database="{$database}"
 user="{$user}" password="{$password}">
 <xsl:fallback>
 <xsl:message terminate="yes">SQL extensions are not installed</xsl:message>
 </xsl:fallback>
 </sql:connect>
 </xsl:variable>

 <xsl:message>Connected...</xsl:message>

 <xsl:apply-templates select="BOOKS">
 <xsl:with-param name="connection" select="$connection"/>
 </xsl:apply-templates>

 <xsl:message>Inserted <xsl:value-of select="$count"/> records.</xsl:message>

 <xsl:variable name="book-table">
 <sql:query connection="$connection" table="Book" column="*" row-tag="book" column-tag="col"/>
 </xsl:variable>

 <xsl:message>There are now <xsl:value-of select="count($book-table//Book)"/> books.</xsl:message>
 <new-book-table>
 <xsl:copy-of select="$book-table"/>
 </new-book-table>

 <sql:close connection="$connection"/>

</xsl:template>

<xsl:template match="BOOKS">
 <xsl:param name="connection"/>
 <xsl:for-each select="ITEM">
 <sql:insert connection="$connection" table="Book">
 <sql:column name="title" select="TITLE"/>
 <sql:column name="author" select="AUTHOR"/>
 <sql:column name="category" select="@CAT"/>
 </sql:insert>
 <saxon:assign name="count" select="$count+1"/>
 </xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Running the example using Microsoft Access
To run this stylesheet you will need to do the following:

1. Create a database (e.g. Microsoft Access) containing a table "Book" with three character columns,
"Title", "Author", and "Category".

2. Register this database as a JDBC data source. (If you use Microsoft Access, register it as an
ODBC data source called, say, Books, and then it will automatically be available under JDBC as
"jdbc:odbc:Books".

3. Modify the <sql:connect> element in the stylesheet to specify the correct JDBC connection
name for the database, and if necessary to supply a username and password. Alternatively you can

The Saxon SQL Extension

281

supply the driver class, database name, username, and password as parameters on the command
line.

4. Execute the stylesheet from the command line, as follows:

java net.sf.saxon.Transform data\books.xml style\books-sql.xsl

The database will be populated with data from the books.xml document.

Running the example using MySQL
The following instructions illustrates how to run the stylesheet using MySQL, under a UNIX platform:

1. Create the database, using MySQL.

2. Register the database as a JDBC data source (same as 2. above). However, change the xsl:param
elements with attribute names "driver" and "database" as follows (we assume machine is localhost):

<xsl:stylesheet
 <xsl:param name="driver" select="'com.mysql.jdbc.Driver'"/>
 <xsl:param name="database" select="'jdbc:mysql://localhost:3306/Book'"/>

3. Download the MySQL connector jar file, if missing.

4. Execute the stylesheet from the command line (same as 4. above). The kind of problems that might
occur are as follows:

• "JDBC Connection Failure: com.mysql.jdbc.Driver": Ensure the MySQL connector jar file is
downloaded and in the classpath

• "SQL extensions are not installed": The binding of the namespace for the SQL extension must be
present in the Configuration object and must match the URI in the stylesheet. For execution
of the stylesheet from the command line, the following is required:

java net.sf.saxon.Transform -config:data/config.xml data/books.xml style/books-
mysql.xsl

where the configuration file data/config.xml includes the entry

<configuration xmlns="http://saxon.sf.net/ns/configuration"
 edition="EE">
 <xslt>
 <extensionElement namespace="http://saxon.sf.net/sql"
 factory="net.sf.saxon.option.sql.SQLElementFactory"/>
 </xslt>
</configuration>

A Warning about Side-Effects
XSLT does not guarantee the order of execution of instructions. In principle, the sql:close
instruction could be evaluated before the sql:query instruction, which would obviously be
disastrous.

In practice, Saxon's order of execution for XSLT instructions is reasonably predictable unless you use
variables, or unless you invoke stylesheet functions from within an XPath expression. Using the SQL
extension instructions within templates that are directly invoked is thus fairly safe, but it is not a good
idea to invoke them as a side-effect of computing a variable or invoking a function. The exceptions are

The Saxon SQL Extension

282

sql:connect and sql:query: if you use these instructions to evaluate the content of a variable,
then of course they will be executed before any instruction that uses the value of the variable.

A Warning about Security (SQL injection)
The instructions in the SQL extension make no attempt to verify that the SQL being executed is correct
and benign. No checks are made against injection attacks; indeed the sql:execute instruction
explicitly allows any SQL statement to be executed.

Therefore, the extension should be enabled only if (a) the stylesheet itself is trusted, and (b) any text
inserted into the stylesheet to construct dynamic SQL statements is also trusted.

283

Chapter 15. XSLT Elements
Introduction

This section of the Saxon documentation lists the standard XSLT elements, all of which are supported
in Saxon stylesheets, and gives brief descriptions of their function. In some cases the text gives
information specific to the Saxon implementation. For extension elements provided with the Saxon
product, see Extensions.

Saxon implements the XSLT version 2.0 Recommendation from the World Wide Web Consortium:
see Conformance. The information here is designed to give a summary of the features: for the full
specification, consult the official standard.

This section of the documentation also describes new elements in the draft XSLT 3.0 specifications,
with notes on the extent to which they are implemented in Saxon.

xsl:analyze-string
The xsl:analyze-string element is new in XSLT 2.0. It applies a regular expression to
a supplied string value. The string is split into a sequence of substrings, each of which is
classified as either a matching substring (if it matches the regular expression) or a non-matching
substring (if it doesn't). The substrings are then processed individually: the matching substrings by
a xsl:matching-substring element that appears as a child of the xsl:analyze-string
instruction, the non-matching substrings by a similar xsl:non-matching-substring element.
If either of these is omitted, the relevant substrings are not processed.

The element has three attributes: select is an XPath expression whose value is the string to be
analyzed; regex is the regular expression (which may be given as an attribute value template), and
flags provides one or more Perl-like flags to control the way in which regular expression matching
is performed, for example the value "m" indicates multi-line mode.

When processing matching substrings, it is possible to call the regex-group() function to find
the parts of the matching substring that matched particular parenthesized groups within the regular
expression.

There are examples [http://www.w3.org/TR/xslt20/#regex-examples] of this element in the XSLT 2.0
Working Draft.

xsl:apply-imports
The xsl:apply-imports element is used in conjunction with imported stylesheets. There are
no attributes. The element may contain zero or more xsl:with-param elements (as permitted in
XSLT 2.0).

At run-time, there must be a . A current template is established when a template is activated as a
result of a call on xsl:apply-templates. Calling xsl:call-template does not change the
current template. Calling xsl:for-each or xsl:for-each-group causes the current template to become
null.

The effect is to search for a template that matches the current node and that is defined in a stylesheet
that was imported (directly or indirectly, possibly via xsl:include) from the stylesheet containing
the current template, and whose mode matches the current mode. If there is such a template, it is
activated using the current node. If not, the call on xsl:apply-imports has no effect.

To supply parameters to the called template, one or more xsl:with-param elements may be included.
The values of these parameters are available to the called template. If the xsl:with-param
element specifies tunnel="yes", then the parameter is passed transparently through to templates

http://www.w3.org/TR/xslt20/#regex-examples
http://www.w3.org/TR/xslt20/#regex-examples

XSLT Elements

284

called at any depth, but it can only be referenced by an xsl:param element that also specifies
tunnel="yes". If the default value, tunnel="no" is used, then the parameter value is
available only in the immediately called template, and only if the xsl:param element specifies
tunnel="no" (explicitly or by defaulting the attribute).

xsl:apply-templates
The xsl:apply-templates element causes navigation from the current element, usually but
not necessarily to process its children. Each selected node is processed using the best-match
xsl:template defined for that node.

The xsl:apply-templates element takes an optional attribute, mode, which identifies the
processing mode. If this attribute is present, only templates with a matching mode parameter will be
considered when searching for the rule to apply to the selected elements.

It also takes an optional attribute, select.

If the select attribute is , apply-templates causes all the immediate children of the current node to
be processed: that is, child elements and character content, in the order in which it appears. Character
content must be processed by a template whose match pattern will be something like */text().
Child elements similarly are processed using the appropriate template, selected according to the rules
given below under xsl:template.

If the select attribute is , the result must be a sequence of nodes. All nodes selected by the expression
are processed.

The xsl:apply-templates element is usually empty, in which case the selected nodes are
processed in the order they are selected (this will usually be document order, but this depends on the
select expression that is used). However the element may include xsl:sort and/or xsl:param
elements:

• For sorted processing, one or more child xsl:sort elements may be included. These define the sort
order to be applied to the selection. The sort keys are listed in major-to-minor order.

• To supply parameters to the called template, one or more xsl:with-param elements may be included.
The values of these parameters are available to the called template. If the xsl:with-param
element specifies tunnel="yes", then the parameter is passed transparently through to templates
called at any depth, but it can only be referenced by an xsl:param element that also specifies
tunnel="yes". If the default value, tunnel="no" is used, then the parameter value is
available only in the immediately called template, and only if the xsl:param element specifies
tunnel="no" (explicitly or by defaulting the attribute).

The selected nodes are processed in a particular . This context includes:

• A current node: the node being processed

• A current node list: the list of nodes being processed, in the order they are processed (this affects
the value of the position() and last() functions)

• A set of variables, which initially is those variable defined as parameters

Some examples of the most useful forms of select expression are listed below:

Table 15.1.

XXX Process all immediate child elements with tag
XXX

* Process all immediate child elements (but not
character data within the element)

../TITLE Process the TITLE children of the parent element

XSLT Elements

285

XXX[@AAA] Process all XXX child elements having an
attribute named AAA

@* Process all attributes of the current element

*/ZZZ Process all grandchild ZZZ elements

XXX[ZZZ] Process all child XXX elements that have a child
ZZZ

XXX[@WIDTH and not(@width="20")] Process all child XXX elements that have a
WIDTH attribute whose value is not "20"

AUTHOR[1] Process the first child AUTHOR element

APPENDIX[@NUMBER][last()] Process the last child APPENDIX element having
a NUMBER attribute

APPENDIX[last()][@NUMBER] Process the last child APPENDIX element
provided it has a NUMBER attribute

The full syntax of select expressions is outlined in XPath Expression Syntax.

In XSLT 3.0, the xsl:apply-templates instruction can select atomic values as well as nodes,
and the match pattern syntax of xsl:template is extended to allow atomic values as well as nodes
to be matched. As of Saxon 9.4, not all the extensions to match pattern syntax are implemented, but
some are, including in particular the construct match="~itemtype" which matches any item of a
specified type, for example match="~xs:integer[. mod 2 = 0]" matches any even integer.

xsl:attribute
The xsl:attribute element is used to add an attribute value to an xsl:element element or
general formatting element, or to an element created using xsl:copy. The attribute must be output
immediately after the element, with no intervening character data. The name of the attribute is indicated
by the name attribute and the value by the content of the xsl:attribute element.

The attribute name is interpreted as an , so it may contain string expressions within curly braces. The
full syntax of string expressions is outlined in XPath Expression Syntax.

The attribute value may be given either by a select attribute or by an enclosed sequence constructor.
If the select attribute is used and the value is a sequence, then the items in the sequence are output
space-separated.

The separator attribute can be used to specify an alternative separator.

For example, the following code creates a element with several attributes:

<xsl:element name="FONT">
 <xsl:attribute name="SIZE">4</xsl:attribute>
 <xsl:attribute name="FACE">Courier New</xsl:attribute>
Some output text
</xsl:element>

A new attribute type was added in XSLT 2.0. This indicates the data type of the value of the
attribute. The value must either be a built-in type defined in XML Schema, for example xs:integer
or xs:date, or a user-defined type defined in a schema imported using xsl:import-schema.
Type annotations are only accessible if the attribute is added to a temporary tree that specifies
validation="preserve". The value given to the attribute must be a string that conforms to the
rules for the data type, as defined in XML Schema.

There are two main uses for the xsl:attribute element:

• It is the only way to set attributes on an element generated dynamically using xsl:element

• It allows attributes of a literal result element to be calculated using xsl:value-of.

XSLT Elements

286

The xsl:attribute must be output immediately after the relevant element is generated: there
must be no intervening character data (other than white space which is ignored). Saxon outputs the
closing ">" of the element start tag as soon as something other than an attribute is written to the output
stream, and rejects an attempt to output an attribute if there is no currently-open start tag. Any special
characters within the attribute value will automatically be escaped (for example, "<" will be output
as "<")

If two attributes are output with the same name, the second one takes precedence.

xsl:attribute-set
The xsl:attribute-set element is used to declare a named collection of attributes, which
will often be used together to define an output style. It is declared at the top level (subordinate to
xsl:stylesheet).

An attribute-set contains a collection of xsl:attribute elements.

The attributes in an attribute-set can be used in several ways:

• They can be added to a literal result element by specifying xsl:use-attribute-sets in the
list of attributes for the element. The value is a space-separated list of attribute-set names. Attributes
specified explicitly on the literal result element, or added using xsl:attribute, override any
that are specified in the attribute-set definition.

• They can be added to an element created using xsl:element, by specifying use-attribute-
sets in the list of attributes for the xsl:element element. The value is a space-separated list of
attribute-set names. Attributes specified explicitly on the literal result element, or added using
xsl:attribute, override any that are specified in the attribute-set definition.

• One attribute set can be based on another by specifying use-attribute-sets in the list
of attributes for the xsl:attribute-set element. Again, attributes defined explicitly in the
attribute set override any that are included implicitly from another attribute set.

Attribute sets named in the xsl:use-attribute-sets or use-attribute-sets attribute
are applied in the order given: if the same attribute is generated more than once, the later value always
takes precedence.

xsl:break
The xsl:break instruction is new in XSLT 3.0; it occurs within xsl:iterate. For details see
xsl:iterate.

xsl:call-template
The xsl:call-template element is used to invoke a named template.

The name attribute is mandatory and must match the name defined on an xsl:template element.

Saxon supports an alternative instruction saxon:call-template. This has the same effect as
xsl:call-template, except that the name attribute may be written as an attribute value template,
allowing the called template to be decided at run-time. The string result of evaluating the attribute
value template must be a valid QName that identifies a named template somewhere in the stylesheet.

To supply parameters to the called template, one or more xsl:with-param elements may be included.
The values of these parameters are available to the called template. If the xsl:with-param
element specifies tunnel="yes", then the parameter is passed transparently through to templates
called at any depth, but it can only be referenced by an xsl:param element that also specifies
tunnel="yes". If the default value, tunnel="no" is used, then the parameter value is
available only in the immediately called template, and only if the xsl:param element specifies
tunnel="no" (explicitly or by defaulting the attribute).

XSLT Elements

287

The context of the called template (for example the current node and current node list) is the same as
that for the calling template; however the variables defined in the calling template are not accessible
in the called template.

xsl:character-map
The xsl:character-map declaration defines a named character map for use during serialization.
The name attribute gives the name of the character map, which can be referenced from the use-
character-maps attribute of xsl:output. The xsl:character-map element contains a
set of xsl:output-character elements each of which defines the output representation of a
given Unicode character. The character is specified using the character attribute, the string which
is to replace this character on serialization is specified using the string attribute. Both attributes
are mandatory.

The replacement string is output , even if it contains special (markup) characters. So, for example,
you can define <xsl:output-character character=" " string=" "/> to ensure that NBSP
characters are output using the entity reference .

Character maps allow you to produce output that is not well-formed XML, and they thus provide a
replacement facility for disable-output-escaping. A useful technique is to use characters in
the Unicode private use area (xE000 to xF8FF) as characters which, if present in the result tree, will
be mapped to special strings on output. For example, if you want to generate a proprietary XML-like
format that uses tags such as <!IF>, <!THEN>, and <!ELSE>, then you could map these to the three
characters xE000, xE001, xE002 (which you could in turn define as entities so they can be written
symbolically in your stylesheet or source document).

Character maps are preferred to disable-output-escaping because they do not rely on an
intimate interface between the transformation engine and the serializer, and they do not distort the data
model. The special characters can happily be stored in a DOM, passed across the SAX interface, or
manipulated in any other way, before finally being rendered by the serializer.

Character maps may be assembled from other character maps using the use-character-maps
attribute. This contains a space-separated list of the names of other character maps that are to be
included in this character map.

Using character maps may be expensive at run-time. Saxon currently makes no special attempts to
optimize their use: if character maps are used, then every character that is output will be looked up in
a hash table to see if there is a replacement string.

xsl:choose
The xsl:choose element is used to choose one of a number of alternative outputs. The element
typically contains a number of xsl:when elements, each with a separate test condition. The first
xsl:when element whose condition matches the current element in the source document is expanded,
the others are ignored. If none of the conditions is satisfied, the xsl:otherwise child element, if any,
is expanded.

The test condition in the xsl:when element is a boolean expression. The full syntax of expressions
is outlined in XPath Expression Syntax.

Example:

<xsl:choose>
 <xsl:when test="@cat='F'">Fiction</xsl:when>
 <xsl:when test="@cat='C'">Crime</xsl:when>
 <xsl:when test="@cat='R'">Reference</xsl:when>
 <xsl:otherwise>General</xsl:otherwise>
</xsl:choose>

XSLT Elements

288

xsl:comment
The xsl:comment element can appear anywhere within an xsl:template. It indicates text that
is to be output to the current output stream in the form of an XML or HTML comment.

The content of the comment may be given either by a select attribute or by an enclosed sequence
constructor. If the select attribute is used and the value is a sequence, then the items in the sequence
are output space-separated.

For example, the text below inserts some JavaScript into a generated HTML document:

<script language="JavaScript">
 <xsl:comment>
 function bk(n) {
 parent.frames['content'].location="chap" + n + ".1.html";
 }
 //</xsl:comment>
</script>

Note that special characters occurring within the comment text will be escaped.

The xsl:comment element will normally contain text only but it may contain other elements such
as xsl:if or xsl:value-of. However, it should not contain literal result elements.

Tip: the xsl:comment element can be very useful for debugging your stylesheet. Use
comments in the generated output as a way of tracking which rules in the stylesheet were
invoked to produce the output.

xsl:copy
The xsl:copy element causes the current XML node in the source document to be copied to the
output. The actual effect depends on whether the node is an element, an attribute, or a text node.

For an element, the start and end element tags are copied; the attributes, character content and child
elements are copied only if xsl:apply-templates is used within xsl:copy.

Attributes of the generated element can be defined by reference to a named attribute set. The optional
use-attribute-sets attribute contains a white-space-separated list of attribute set names. They are
applied in the order given: if the same attribute is generated more than once, the later value always
takes precedence.

The following example is a template that copies the input element to the output, together with all its
child elements, character content, and attributes:

<xsl:template match="*|text()|@*">
 <xsl:copy>
 <xsl:apply-templates select="@*"/>
 <xsl:apply-templates/>
 </xsl:copy>
</xsl:template>

In XSLT 3.0, a new select attribute is added to xsl:copy, allowing a node other than the context
node to be copied. This is useful when the instruction appears inside xsl:function.

xsl:copy-of
The xsl:copy-of element copies the value obtained by evaluating the mandatory select
attribute. It makes an exact copy.

XSLT Elements

289

If this expression is a string, a number, or a boolean, the effect is the same as using xsl:sequence.

There is an optional attribute copy-namespaces whose value is "yes" or "no". The default is "yes".
This controls whether the in-scope namespaces of any element nodes copied by this instruction are
automatically copied to the result. If the value is "no", then namespaces will only be copied if they
are actually used in the names of elements or attributes. This allows you, for example, to copy the
contents of a SOAP message without copying the namespaces declared in its envelope.

xsl:decimal-format
The xsl:decimal-format element is used at the top level of a stylesheet to indicate a set of
localisation parameters. If the xsl:decimal-format element has a name attribute, it identifies
a named format; if not, it identifies the default format.

In practice decimal formats are used only for formatting numbers using the format-number()
function in XPath expressions. For details of the attributes available, see the XSLT specification.

xsl:document
The xsl:document instruction creates a new document node. The content of the new document
node is created using the contained instructions (in the same way as xsl:result-document),
and the new document node is added to the result sequence. The instruction is useful mainly if
you want to validate the document: the element allows attributes validation and type which
perform document-level validation in the same way as the corresponding attributes on xsl:result-
document.

The instruction also allows a function or template to create a temporary tree without the need to create
a variable and then return the value of the variable.

This instruction should not be confused with the instruction of the same name in the withdrawn XSLT
1.1 draft, (which is supported in Saxon 6.5.x). That instruction was a precursor to xsl:result-
document.

xsl:element
The xsl:element instruction is used to create an output element whose name might be calculated
at run-time.

The element has a mandatory attribute, name, which is the name of the generated element. The name
attribute is an , so it may contain string expressions inside curly braces.

The attributes of the generated element are defined by subsequent xsl:attribute elements. The
content of the generated element is whatever is generated between the <xsl:element> and </
xsl:element> tags.

Additionally, attributes of the generated element can be defined by reference to a named attribute set.
The optional use-attribute-sets attribute contains a white-space-separated list of attribute set names.
They are applied in the order given: if the same attribute is generated more than once, the later value
always takes precedence.

For example, the following code creates a element with several attributes:

<xsl:element name="FONT">
 <xsl:attribute name="SIZE">4</xsl:attribute>
 <xsl:attribute name="FACE">Courier New</xsl:attribute>
Some output text
</xsl:element>

XSLT Elements

290

A new attribute type was added in XSLT 2.0. This indicates the data type of the value of the
element. The value may be a built-in type defined in XML Schema, for example xs:integer or
xs:date, or a user-defined type defined in a schema imported using xsl:import-schema. Type
annotations are only accessible if the attribute is added to a temporary tree that specifies type-
information="preserve". The attribute causes the content of the element to be validated
against the schema definition of the type, and will cause a fatal dynamic error if validation fails.

xsl:evaluate
The xsl:evaluate instruction is new in XSLT 3.0. It allows dynamic evaluation of XPath
expressions constructed as a string, in the same way as the saxon:evaluate() extension function
that has been available in Saxon for many years.

The following example sorts product elements according to a sort key supplied (in the form of an
XPath expression) as a parameter to the stylesheet.

 <xsl:apply-templates select="product">
 <xsl:sort>
 <xsl:evaluate select="$product-sort-key"/>
 </xsl:sort>
 </xsl:apply-templates>

The functionality is available as an XSLT instruction, rather than a function, to allow more flexibility
in the syntax, in particular the ability to define parameters using xsl:with-param child elements.

The instruction is fully implemented in Saxon 9.3 with the following exceptions:

• Functions available only in XSLT, such as key(), cannot be used in the target XPath expression.

The instruction may take an xsl:fallback to define fallback behaviour when using an XSLT 2.0
processor.

Attributes:

• xpath: an expression, which is evaluated to return the target expression as a string.

• base-uri: a string (as an AVT), gives the base URI for the target expression. Defaults to the base
URI of the stylesheet instruction.

• namespace-context: an expression returning a node; the in-scope namespaces of this node define
the namespace context for the XPath expression. Defaults to the namespace context of the
xsl:evaluate instruction in the stylesheet

• as: a SequenceType: defines the required type of the result of the XPath expression. Defaults to
item()*

• schema-aware: "yes" or "no", as an AVT: if "yes", the XPath expression has access to the schema
components imported into the stylesheet.

Children:

• xsl:with-param: defines variables that the target expression can use.

• xsl:fallback: defines fallback behaviour when using an XSLT 2.0 (or 1.0) processor.

Before using xsl:evaluate, consider whether higher-order functions (also new in XSLT
3.0) would provide a better solution to the problem. Also think carefully about the possibility
of injection attacks if the expression to be evaluated is formed by string concatenation.

XSLT Elements

291

xsl:fallback
The xsl:fallback element is used to define recovery action to be taken when an instruction
element is used in the stylesheet and no implementation of that element is available. An element is an
instruction element if its namespace URI is the standard URI for XSLT elements or if its namespace
is identified in the xsl:extension-element-prefixes attribute of a containing literal
result element, or in the extension-element-prefixes attribute of the xsl:stylesheet
element.

If the xsl:fallback element appears in any other context, it is ignored, together with all its child
and descendant elements.

There are no attributes.

If the parent element can be instantiated and processed, the xsl:fallback element and its
descendants are ignored. If the parent element is not recognised of if any failure occurs instantiating
it, all its xsl:fallback children are processed in turn. If there are no xsl:fallback children, an error is
reported.

xsl:for-each
The xsl:for-each element causes iteration over the nodes selected by a node-set expression. It can
be used as an alternative to xsl:apply-templates where the child nodes of the current node are
known in advance. There is a mandatory attribute, select, which defines the nodes over which the
statement will iterate. The XSLT statements subordinate to the xsl:for-each element are applied
to each source node selected by the node-set expression in turn.

The full syntax of expressions is outlined in XPath Expression Syntax.

The xsl:for-each element may have one or more xsl:sort child elements to define the order
of sorting. The sort keys are specified in major-to-minor order.

The expression used for sorting can be any string expressions. The following are particularly useful:

• element-name, e.g. TITLE: sorts on the value of a child element

• attribute-name, e.g. @CODE: sorts on the value of an attribute

• ".": sorts on the character content of the element

• "qname(.)": sorts on the name of the element

Example 1:

<xsl:template match="BOOKLIST">
 <TABLE>
 <xsl:for-each select="BOOK">
 <TR>
 <TD><xsl:value-of select="TITLE"/></TD>
 <TD><xsl:value-of select="AUTHOR"/></TD>
 <TD><xsl:value-of select="ISBN"/></TD>
 </TR>
 </xsl:for-each>
 </TABLE>
</xsl:template>

Example 2: sorting with xsl:for-each. This example also shows a template for a BOOKLIST element
which processes all the child BOOK elements in order of their child AUTHOR elements.

<xsl:template match="BOOKLIST">

XSLT Elements

292

 <h2>
 <xsl:for-each select="BOOK">
 <xsl:sort select="AUTHOR"/>
 <p>AUTHOR: <xsl:value-of select="AUTHOR"/></p>
 <p>TITLE: <xsl:value-of select="TITLE"/></p>
 <hr/>
 </xsl:for-each>
 </h2>
 </xsl:template>

Saxon-EE offers an extension to the xsl:for-each instruction: the saxon:threads attribute
allows the items in the input sequence to be processed in parallel. For details see saxon:threads.

xsl:for-each-group
The xsl:for-each-group element selects a sequence of nodes and/or atomic values and
organizes them into subsets called groups. There are four possible ways of defining the grouping:

• This groups together all items having the same value for a grouping key. The grouping key may
have multiple values (a sequence of values) in which case the item is added to more than one group.

• This groups together all items having the same value for a grouping key, provided that they are
also adjacent in the input sequence. This is useful when you need to wrap a new element around
a sequence of related elements in the source documents, for example a consecutive sequence of
<bullet> elements. In this case the grouping key must be single-valued.

• This processes the items in the supplied sequence in turn, starting a new group whenever one of
the items matches a specified pattern. This is useful, for example, when matching an <h2> element
and its following <p> elements.

• This processes the items in the supplied sequence in turn, closing the current group whenever one
of the items matches a specified pattern. This is useful when matching a sequence of items in which
the last item in the group carries some distinguishing attribute such as continued="no".

Saxon implements the xsl:for-each-group instruction in full. For examples of using the
instruction, see the XSLT 2.0 specification [http://www.w3.org/TR/xslt20/#grouping].

In XSLT 3.0, the capabilities of the xsl:for-each-group instruction are extended by virtue of
the fact that the pattern used in group-starting-with or group-ending-with can now
match atomic values as well as nodes.

xsl:function
The xsl:function element defines a function within a stylesheet. The function is written in XSLT
but it may be called from any XPath expression in the stylesheet. It must have a non-default namespace
prefix.

Example:

<xsl:function name="my:factorial" as="xs:integer">
<xsl:param name="number" as="xs:integer"/>
<xsl:sequence
 select="if ($number=0) then 1 else $number * my:factorial($number-1)"/>

In limited circumstances, stylesheet functions (xsl:function) optimise tail-recursion. The
circumstances are that the select expression of the xsl:result instruction must contain a call
on the same function as the then or else part of a conditional expression (which may be nested
in further conditional expressions). It may require a little care to write functions to exploit this. The
example above is not tail-recursive, because the recursive call is within an arithmetic expression: the

http://www.w3.org/TR/xslt20/#grouping
http://www.w3.org/TR/xslt20/#grouping

XSLT Elements

293

multiplication takes place on return from the recursive call. It can be recast in tail-recursive form by
adding an extra parameter (which should be set to 1 on the initial call):

<xsl:function name="x:factorial">
 <xsl:param name="acc" as="xs:integer?"/>
 <xsl:param name="n" as="xs:integer"/>
 <xsl:sequence as="xs:integer"
 select="if ($n = 1)
 then $acc
 else x:factorial($acc*$n, $n - 1)" />
</xsl:function>

The call x:factorial(1, 5) returns 120.

Saxon defines an extra attribute on xsl:function: saxon:memo-function="yes" indicates
that Saxon should remember the results of calling the function in a cache, and if the function is called
again with the same arguments, the result is retrieved from the cache rather than being recalculated.
Further details: see saxon:memo-function.

xsl:if
The xsl:if element is used for conditional processing. It takes a mandatory test attribute, whose
value is a boolean expression. The contents of the xsl:if element are expanded only of the expression
is true.

The full syntax of boolean expressions is outlined in XPath Expression Syntax.

Example:

<xsl:if test="@preface">
 Preface
</xsl:if>

This includes a hyperlink in the output only if the current element has a preface attribute.

xsl:include
The xsl:include element is always used at the top level of the stylesheet. It has a mandatory href
attribute, which is a URL (absolute or relative) of another stylesheet to be textually included within
this one. The top-level elements of the included stylesheet effectively replace the xsl:include element.

xsl:include may also be used at the top level of the included stylesheet, and so on recursively.

To customize the way in which the href attribute is handled, a user-written URIResolver can be
supplied. See also Using XML Catalogs.

xsl:import
The xsl:import element is always used at the top level of the stylesheet, and it must appear before
all other elements at the top level. It has a mandatory href attribute, which is a URL (absolute or
relative) of another stylesheet to be textually included within this one. The top-level elements of the
included stylesheet effectively replace the xsl:import element.

The xsl:import element may also be used at the top level of the included stylesheet, and so on
recursively.

The elements in the imported stylesheet have lower precedence than the elements in the importing
stylesheet. The main effect of this is on selection of a template when xsl:apply-templates is used: if
there is a matching template with precedence X, all templates with precedence less than X are ignored,
regardless of their priority.

XSLT Elements

294

To customize the way in which the href attribute is handled, a user-written URIResolver can be
supplied. See also Using XML Catalogs.

xsl:import-schema
Saxon implements the xsl:import-schema declaration in the enterprise edition product Saxon-
EE only.

The namespace attribute specifies the target namespace of the schema to be imported. The attribute
should be omitted when importing a schema with no target namespace.

The schema-location attribute specifies where the schema document can be found. This URI
is passed through the URIResolver in the same way as the URIs used on xsl:include and
xsl:import. The attribute can be omitted only if a schema for the required namespace has already
been loaded in the Configuration [Javadoc: net.sf.saxon.Configuration], for
example if it has already been imported from another stylesheet module.

For further information see Schema Processing.

xsl:iterate
The xsl:iterate instruction is new in XSLT 3.0. It is similar to xsl:for-each, except that
the items in the input sequence are processed sequentially, and after processing each item in the input
sequence it is possible to set parameters for use in the next iteration. It can therefore be used to solve
problems than in XSLT 2.0 require recursive functions or templates.

Here is an example that computes the running balance of a sequence of financial transactions:

 <xsl:iterate select="transactions/transaction">
 <xsl:param name="balance" select="0.00" as="xs:decimal"/>
 <xsl:variable name="newBalance"
 select="$balance + xs:decimal(@value)"/>
 <balance date="{@date}" value="{$newBalance}"/>
 <xsl:next-iteration>
 <xsl:with-param name="balance" select="$newBalance"/>
 </xsl:next-iteration>
 </xsl:iterate>

As well as xsl:next-iteration, the instruction allows a child element xsl:break which
causes premature completion before the entire input sequence has been processed, and a child element
xsl:on-completion which defines processing to be carried out when the input sequence is
exhausted. The instructions within xsl:on-completion have access to the final values of the
parameters declared in the xsl:next-iteration instruction set while processing the last item
in the sequence.

Here is an example that copies the input sequence up to the first br element:

 <xsl:iterate select="*">
 <xsl:choose>
 <xsl:when test="self::br">
 <xsl:break/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:copy-of select="."/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:iterate>

XSLT Elements

295

xsl:key
The xsl:key element is used at the top level of the stylesheet to declare an attribute, or other value,
that may be used as a key to identify nodes using the key() function within an expression. Each
xsl:key definition declares a named key, which must match the name of the key used in the key()
function.

The set of nodes to which the key applies is defined by a pattern in the match attribute: for example, if
match="ACT|SCENE" then every ACT element and every SCENE element is indexed by this key.

The value of the key, for each of these matched elements, is determined by the use attribute. This is
an expression, which is evaluated for each matched element. If the expression returns a node-set, the
typed value of each node in this node-set acts as a key value. For example, if use="AUTHOR", then
each AUTHOR child of the matched element supplies one key value.

Note that:

1. Keys are not unique: the same value may identify many different nodes

2. Keys are multi-valued: each matched node may have several (zero or more) values of the key, any
one of which may be used to locate that node

3. Keys can only be used to identify nodes within a single XML document: the key() function will
return nodes that are in the same document as the current node.

All three attributes, name, match, and use, are mandatory.

The optional collation attribute can be used when comparing strings.

Saxon does not yet allow the xsl:key element to contain a sequence constructor in place of the
use attribute.

xsl:matching-substring
The xsl:matching-substring element is used within an xsl:analyze-string element
to indicate the default action to be taken with substrings that match a regular expression.

See xsl:analyze-string.

xsl:merge
The xsl:merge instruction is new in XSLT 3.0, and is first implemented in Saxon-EE 9.4. The
purpose of the instruction is to allow streamed merging of two or more pre-sorted input files, but the
current implementation in Saxon is unstreamed.

Each kind of input source is described in an xsl:merge-source child element of the xsl:merge
instruction; and the instances of that kind of input source are selected in a xsl:merge-input child
of the xsl:merge-source element. The processing to be carried out on each group of input items
sharing a value for the merge key is defined in a xsl:merge-action element.

The following example merges a homogenous collection of log files, each already sorted by timestamp:

<xsl:merge>
 <xsl:merge-source select="collection('log-collection')">
 <xsl:merge-input select="events/event"/>
 <xsl:merge-key select="@timestamp" order="ascending"/>
 </xsl:merge-source>

XSLT Elements

296

 <xsl:merge-action>
 <xsl:sequence select="current-group()"/>
 </xsl:merge-action>
</xsl:merge>

The following example merges two log files with different internal structure:

<xsl:merge>
 <xsl:merge-source select="doc('log1.xml')">
 <xsl:merge-input select="transactions/transaction"/>
 <xsl:merge-key select="xs:dateTime(@date, @time)" order="ascending"/>
 </xsl:merge-source>
 <xsl:merge-source select="doc('log2.xml')">
 <xsl:merge-input select="eventdata/transfer"/>
 <xsl:merge-key select="@timestamp" order="ascending"/>
 </xsl:merge-source>
 <xsl:merge-action>
 <xsl:apply-templates select="current-group()"/>
 </xsl:merge-action>
 </xsl:merge>

The function current-merge-inputs() is not yet implemented.

xsl:merge-action
See xsl:merge

xsl:merge-input
See xsl:merge

xsl:merge-source
See xsl:merge

xsl:message
The xsl:message element causes a message to be displayed. The message is the contents of the
xsl:message element.

There is an optional attribute terminate with permitted values yes and no; the default is no. If the
value is set to yes, processing of the stylesheet is terminated after issuing the message. This attribute
may be supplied as an attribute value template.

By default the message is displayed on the standard error output stream. You can supply your
own message receiver if you want it handled differently. This must be a class that implements
the Receiver [Javadoc: net.sf.saxon.event.Receiver] interface. The content of
the message is in general an XML fragment. You can supply the Receiver using the -m option
on the command line, or the setMessageEmitter() method of the Controller [Javadoc:
net.sf.saxon.Controller] class.

The sequence of calls to this Receiver is as follows: there is a single open() call
at the start of the transformation, and a single close() call at the end; and each
evaluation of an xsl:message instruction starts with a startDocument() call and
ends with endDocument(). The startDocument() event has a properties argument
indicating whether terminate="yes" was specified, and the locationId on calls such as

XSLT Elements

297

startElement() and characters() can be used to identify the location in the stylesheet where
the message data originated (this is achieved by passing the supplied locationId in a call to
getPipelineConfiguration().getLocator().getSystemId(locationId), or to
getLineNumber() on the same object).

Select the class MessageWarner [Javadoc:
net.sf.saxon.serialize.MessageWarner] to have xsl:message output notified to the
JAXP ErrorListener, as described in the JAXP documentation.

xsl:mode
The xsl:mode declaration is new in XSLT 3.0. Previously, modes were declared implicitly by
referring to them in the mode attribute of xsl:template or xsl:apply-templates. XSLT
3.0 introduces an xsl:mode declaration to allow properties of the mode to be defined.

The element always appears as a child of xsl:stylesheet (or xsl:transform), and it is empty
(has no children).

The name attribute identifies the name of this mode; if omitted, the element describes the properties
of the unnamed mode.

The attribute streamable="yes" indicates that template rules using this mode must be capable of
being evaluated in a streaming manner. This imposes restrictions on the content of the template rules.
For details, see Streaming of Large Documents. This option is available in Saxon-EE only.

The attribute on-multiple-match indicates what action is taken when a node being processed
by xsl:apply-templates in this mode matches more than one template rule (with the same
precedence and priority). The values are fail indicating that a dynamic error is reported, or use-
last indicating that the template rule appearing last in document order is chosen.

The attribute on-no-match indicates what action is taken when a node being processed by
xsl:apply-templates in this mode matches no template rule. The default value is text-
only-copy. The permitted values are:

• text-only-copy: the XSLT 2.0 behaviour (for elements: apply-templates to the children; for text
nodes: copy the text node to the output)

• shallow-copy: invoke the "identity template", which copies an element node and does apply-
templates to its children

• deep-copy: invoke xsl:copy-of

• shallow-skip: ignores this node, does apply-templates to its children

• deep-skip: ignores this node and all its descendants

• fail: reports a dynamic error

The attribute warning-on-multiple-match="yes" causes a run-time warning when a node
is matched by multiple template rules.

The attribute warning-on-no-match="yes" causes a run-time warning when a node is matched
by no template rules.

xsl:namespace
The xsl:namespace instruction creates a namespace node. The name attribute defines the name
of the namespace node (that is, the namespace prefix) while the content of the instruction defines
the string value of the namespace node (that is, the namespace URI). The semantics thus parallel
xsl:attribute which creates attribute nodes.

XSLT Elements

298

It is rarely necessary to use this instruction explicitly. The only cases it is needed are where the
namespaces to be included in the result document are not known statically, and are not present in the
source document.

xsl:namespace-alias
The xsl:namespace-alias element is a top-level element that is used to control the mapping
between a namespace URI used in the stylesheet and the corresponding namespace URI used in the
result document.

Normally when a literal result element is encountered in a template, the namespace used for the element
name and attribute names in the result document is the same as the namespace used in the stylesheet.
If a different namespace is wanted (e.g. because the result document is a stylesheet using the XSLT
namespace), then xsl:namespace-alias can be used to define the mapping.

Example: This example allows the prefix outxsl to be used for output elements that are to be associated
with the XSLT namespace. It assumes that both namespaces xsl and outxsl have been declared and
are in scope.

<xsl:namespace-alias stylesheet-prefix="outxsl" result-prefix="xsl"/>

xsl:next-iteration
The xsl:next-iteration instruction is new in XSLT 3.0; it occurs within xsl:iterate. For
details see xsl:iterate. The contents are a set of xsl:with-param elements defining the values of
the iteration parameters to be used on the next iteration.

xsl:next-match
The instruction was introduced in XSLT 2.0. It is very similar to xsl:apply-imports, but with a
different algorithm for choosing the next template to execute. It chooses the template rule that matches
the current node and that would have been chosen if the current template rule and all higher precedence/
priority rules were not there.

xsl:non-matching-substring
The xsl:non-matching-substring element is used within an xsl:analyze-string
element to indicate the default action to be taken with substrings that do not match a regular expression.

See xsl:analyze-string.

xsl:number
The xsl:number element outputs the sequential number of a node in the source document.

If the select attribute is present, this is an expression that selects the node to be numbered. The
default is ., the context node.

The instruction takes an attribute count whose value is a pattern indicating which nodes to count;
the default is to match all nodes of the same type and name as the current node.

The level attribute may take three values: "single", "any", or "multiple". The default is "single".
This defines the rules for calculating a number.

There is also an optional from attribute, which is also a pattern. The exact meaning of this depends
on the level.

The calculation is as follows:

XSLT Elements

299

Table 15.2.

level=single If the current node matches the pattern, the
counted node is the current node. Otherwise
the counted node is the innermost ancestor of
the current node that matches the pattern. If no
ancestor matches the pattern, the result is zero.
If the from attribute is present, the counted node
must be a descendant of a node that matches the
"from" pattern.The result is one plus the number
of elder siblings of the counted node that match
the count pattern.

level=any The result is the number of nodes in the document
that match the count pattern, that are at or before
the current node in document order, and that
follow in document order the most recent node
that matches the "from" pattern, if any. Typically
this is used to number, say, the diagrams or
equations in a document, or in some section or
chapter of a document, regardless of where the
diagrams or equations appear in the hierarchic
structure.

level=multiple The result of this is not a single number, but a list
of numbers. There is one number in the list for
each ancestor of the current element that matches
the count pattern and that is a descendant of the
anchor element. Each number is one plus the
number of elder siblings of the relevant element
that match the count pattern. The order of the
numbers is "outwards-in".

There is an optional format attribute which controls the output format. This contains an alternating
sequence of format-tokens and punctuation-tokens. A format-token is any sequence of alphanumeric
characters, a punctuation-token is any other sequence. The following values (among others) are
supported for the format-token:

Table 15.3.

1 Sequence 1, 2, 3, ... 10, 11, 12, ...

001 Sequence 001, 002, 003, ... 010, 011, 012, ... (any
number of leading zeroes)

a Sequence a, b, c, ... aa, ab, ac, ...

A Sequence A, B, C, ... AA, AB, AC, ...

i Sequence i, ii, iii, iv, ... x, xi, xii, ...

I Sequence I, II, III, IV, ... X, XI, XII, ...

There is also support for various Japanese sequences (Hiragana, Katakana, and Kanji) using the format
tokens あ, ア, い, イ, 一, and for Greek and Hebrew sequences.

The format token "w" gives the sequence "one", "two", "three", ... , while "W" gives the same in
upper-case, and "Ww" in title case. The language is determined by the lang attribute, for example
lang="en" for English. Saxon currently supports Belgian French (fr-BE), Danish (da), Dutch
(nl), English (en), Flemish (nl-BE), French (fr), German (de), Italian (it), Swedish (sw). Additional
languages can be achieved by writing a Numberer class, as described in Localizing numbers and
dates.

The default format is "1".

XSLT Elements

300

A sequence of Unicode digits other than ASCII digits (for exaple, Tibetan digits) can be used, and
will result in decimal numbering using those digits.

Similarly, any other character classified as a letter can be used, and will result in "numbering" using
all consecutive Unicode letters following the one provided. For example, specifying "x" will give the
sequence x, y, z, xx, xy, xz, yx, yy, yz, etc. Specifying the Greek letter alpha (²) will cause
"numbering" using the Greek letters up to "Greek letter omega with tonos" (Î). Only "i" and
"I" (for roman numbering), and the Japanese characters listed above, are exceptions to this rule.

Successive format-tokens in the format are used to process successive numbers in the list. If there are
more format-tokens in the format than numbers in the list, the excess format-tokens and punctuation-
tokens are ignored. If there are fewer format-tokens in the format than numbers in the list, the last
format-token and the punctuation-token that precedes it are used to format all excess numbers, with
the final punctuation-token being used only at the end.

Examples:

Table 15.4.

Number(s) Format Result

3 (1) (3)

12 I XII

2,3 1.1 2.3

2,3 1(i) 2(iii)

2,3 1. 2.3.

2,3 A.1.1 B.3.

2,3,4,5 1.1 2.3.4.5

This character may be preceded or followed by arbitrary punctuation (anything other than these
characters or XML special characters such as "<") which is copied to the output verbatim. For example,
the value 3 with format "(a)" produces output "(c)".

It is also possible to use xsl:number to format a number obtained from an expression. This is
achieved using the value attribute of the xsl:number element. If this attribute is present, the count,
level, and from attributes are ignored.

With large numbers, the digits may be split into groups. For example, specify grouping-size="3" and
grouping-separator="/" to have the number 3000000 displayed as "3/000/000".

Negative numbers are always output in conventional decimal notation, regardless of the format
specified.

Example: This example outputs the title child of an H2 element preceded by a composite number
formed from the sequential number of the containing H1 element and the number of the containing
H2 element.

<xsl:template match="H2/TITLE">
 <xsl:number count="H1">.<xsl:number count="H2">
 <xsl:text> </xsl:text>
 <xsl:apply-templates/>
</xsl:template>

xsl:on-completion
The xsl:on-completion instruction is new in XSLT 3.0; it occurs within xsl:iterate. For
details see xsl:iterate. During execution of xsl:on-completion there is no context item, position
or size; the instruction has access to the iteration parameters with the values given on the last iteration
(or the initial values of the xsl:param elements if the input sequence was empty).

XSLT Elements

301

xsl:otherwise
The xsl:otherwise element is used within an xsl:choose element to indicate the default action
to be taken if none of the other choices matches.

See xsl:choose.

xsl:output
The xsl:output element is used to control the format of serial output files resulting from the
transformation. It is always a top-level element immediately below thexsl:stylesheet element.
There may be multiple xsl:output elements; their values are accumulated as described in the
XSLT specification.

The following standard attributes may be specified:

Table 15.5.

name This provides a name for this output format,
which may be referenced in the xsl:result-
document element. By default, the unnamed
output format is used.

method This indicates the format or destination of the
output. The value "xml" indicates XML output
(though if disable-output-escaping or character
maps are used there is no guarantee that it is well-
formed). A value of "html" is used for HTML
output, and "xhtml" for XHTML. The value
"text" indicates plain text output: in this case no
markup may be written to the file using constructs
such as literal result elements, xsl:element,
xsl:attribute, or xsl:comment.Alternatively output
can be directed to a user-defined Java
program by specifying the name of the
class as the value of the method attribute,
prefixed by a namespace prefix, for example
"xx:com.me.myjava.MyEmitter". The class must
be on the classpath, and must implement
either the org.xml.sax.ContentHandler
interface, or the Receiver [Javadoc:
net.sf.saxon.event.Receiver]
interface. The last of these, though proprietary, is
a richer interface that gives access to additional
information.

cdata-section-elements This is used only for XML output. It is
a whitespace-separated list of element names.
Character data belonging to these output elements
will be written within CDATA sections.

doctype-system This is used only for XML output: it is copied
into the DOCTYPE declaration as the system
identifier. If the value is an empty string, Saxon
interprets this as if the attribute were omitted,
which can be useful it you want to override an
actual value with "absent".

doctype-public This is used only for XML output: it is copied
into the DOCTYPE declaration as the public

XSLT Elements

302

identifier. It is ignored if there is no system
identifier. If the value is an empty string, Saxon
interprets this as if the attribute were omitted,
which can be useful it you want to override an
actual value with "absent".

encoding A character encoding, e.g. iso-8859-1 or utf-8.
The value must be one recognised both by the Java
run-time system and by Saxon itself: the encoding
names that Saxon recognises are ASCII, US-
ASCII, iso-8859-1, utf-8, utf8, KOI8R, cp1251.
It is used for three distinct purposes: to control
character conversion by the Java I/O routines; to
determine which characters will be represented as
character entities; and to document the encoding
in the output file itself. The default (and fallback)
is utf-8.

escape-uri-attributes New in XSLT 2.0: values "yes" or "no" are
accepted. This affects HTML output only. It
controls whether non-ASCII characters in HTML
URI-valued attributes (for example, href) are
escaped using the %HH convention. The default
is "yes".

include-content-type New in XSLT 2.0: values "yes" or "no" are
accepted. This affects HTML output only. It
controls whether a meta tag is inserted into the
HTML head element. The default is "yes".

indent as in the XSLT spec: values "yes" or "no" are
accepted. The indentation algorithm is different
for HTML and XML. For HTML it avoids
outputting extra space before or after an inline
element, but will indent text as well as tags,
except in elements such as PRE and SCRIPT.
For XML, it avoids outputting extra whitespace
except between two tags. The emphasis is on
conformance rather than aesthetics!

suppress-indentation This is a new property in XSLT 3.0 (it was
previously available in Saxon as an extension).
The value is a whitespace-separated list of
element names, and it typically identifies "inline"
elements that should not cause indentation; in
XHTML, for example, these would be b, i,
span, and the like.

media-type For example, "text/xml" or "text/html". This
is largely documentary. However, the value
assigned is passed back to the calling application
in the OutputDetails object, where is can be
accessed using the getMediaType() method. The
supplied servlet application SaxonServlet uses
this to set the media type in the HTTP header.

omit-xml-declaration The values are "yes" or "no". For XML output
this controls whether an xml declaration should be
output; the default is "no".

XSLT Elements

303

standalone This is used only for XML output: if it is present,
a standalone attribute is included in the XML
declaration, with the value "yes" or "no".

use-character-maps A space-separated list of the names of character
maps (see xsl:character-map) which will be
applied to transform individual characters during
serialization.

version Determines the version of XML or HTML to be
output. This is largely documentary. However,
for XML the distinction between "1.0" and
"1.1" determines whether or not namespace
undeclarations will be output; and for HTML, the
value "5" can be used to force the HTML5 style
of DOCTYPE declaration.

See Additional Serialization Parameters for descriptions of additional attributes supported by Saxon
on the xsl:output declaration.

xsl:output-character
This element defines one entry in a character map. See xsl:character-map for further details.

xsl:param
The xsl:param element is used to define a formal parameter to a template, or to the stylesheet.

As a template parameter, it must be used as an immediate child of the xsl:template element. As
a stylesheet parameter, it must be used as an immediate child of the xsl:stylesheet element.

There is a mandatory attribute, name, to define the name of the parameter. The default value of
the parameter may be defined either by a select attribute, or by the contents of the xsl:param
element, in the same way as for xsl:variable. The default value is ignored if an actual parameter
is supplied with the same name.

There is an optional attribute, as, to define the type of the parameter. The actual supplied parameter
will be converted to this type if required. If the parameter is omitted, the default value must conform
to the type. Note that if no default is specified, the default is a zero-length string, which may conflict
with the required type.

The type-information attribute is removed at Saxon 7.5

The required attribute can take the values "yes" or "no". This isn't allowed for function parameters,
which are always required. If the parameter is required, no default value may be specified. Failure to
supply a value for a required parameter gives a run-time error (the specification says that in the case
of call-template, it should be a static error).

In XSLT 3.0, xsl:param can also appear as a child of xsl:iterate.

xsl:perform-sort
The xsl:perform-sort instruction takes a sequence as its input and produces a sorted sequence
as its output.

The input sequence may be specified either using the select attribute, or using the instructions
contained within the xsl:perform-sort instruction.

XSLT Elements

304

The sort criteria are specified using xsl:sort elements as children of xsl:perform-sort, in
the usual way.

For example:

<xsl:perform-sort select="//BOOK">
 <xsl:sort select="author/last-name"/>
 <xsl:sort select="author/first-name"/>
</xsl:perform-sort>

It's often useful to use xsl:perform-sort inside a stylesheet function; the function can return the
sorted sequence as its result, and can be invoked directly from an XPath expression.

xsl:preserve-space
The xsl:preserve-space element is used at the top level of the stylesheet to define elements in
the source document for which white-space nodes are significant and should be retained.

The elements attribute is mandatory, and defines a space-separated list of element names. The value
"*" may be used to mean "all elements"; in this case any elements where whitespace is not to be
preserved may be indicated by an xsl:strip-space element.

xsl:processing-instruction
The xsl:processing-instruction element can appear anywhere within an
xsl:template. It causes an XML processing instruction to be output.

There is a mandatory name attribute which gives the name of the PI. This attribute is interpreted as
an , so it may contain string expressions within curly braces.

The data part of the PI may be given either by a select attribute or by an enclosed sequence
constructor. If the select attribute is used and the value is a sequence, then the items in the sequence
are output space-separated.

For example:

<xsl:processing-instruction name="submit-invoice">version="1.0"</xsl:processing-instruction>

Note that special characters occurring within the PI text will be escaped.

xsl:result-document
The xsl:result-document element is new in XSLT 2.0, and replaces the previous extension
element saxon:output. It is used to direct output to a secondary output destination.

The format attribute is optional. If present, it gives the name of an xsl:output element that
describes the serialization format for this output document; if absent, the unnamed xsl:output
declaration is used.

The href attribute gives the URI for the result document. If this is a relative URI, it is interpreted
relative to the base output URI. The base output URI is the systemID of the Result object supplied
as the destination for the transformation, or if you are using the command line, the value of the -o
flag. If the href attribute is omitted, the document is written to the location identified by the base
output URI: this will only work if all the output produced by the stylesheet is within the scope of an
xsl:result-document instruction.

If the base output URI is not known, then the current directory is used, unless the configuration disables
calling of extension functions, in which case it is assumed that the stylesheet is not trusted to overwrite
files relative to the current directory, and an error is then reported.

XSLT Elements

305

This base output URI must be a writable location. Usually it will therefore be a URI that uses the "file:"
scheme. However, Saxon attempts to open a connection whatever URI scheme is used, and it should
therefore work with any URI where the Java VM has the capability to open a writable connection.
Users have reported success in using "ftp:" and "mailto:" URIs.

The optional validation and type attributes determine what happens to any type annotations on
element or attribute nodes. These values must not be used in the basic Saxon product.

The xsl:result-document instruction may also take serialization attributes such as method,
indent, or saxon:indent-spaces. These attributes may be AVTs, so the values can be decided
at run-time. Any values specified on the xsl:result-document instruction override the values
specified on the xsl:output declaration.

Here is an example that uses xsl:result-document:

<xsl:template match="preface">
 <xsl:result-document href="{$dir}/preface.html" method="html">
 <html><body bgcolor="#00eeee"><center>
 <xsl:apply-templates/>
 </center><hr/></body></html>
 </xsl:result-document>
 Preface
</xsl:template>

Here the body of the preface is directed to a file called preface.html (prefixed by a constant that supplies
the directory name). Output then reverts to the previous destination, where an HTML hyperlink to the
newly created file is inserted.

xsl:sequence
The xsl:sequence element is new in XSLT 2.0; it used to construct arbitrary sequences. It may
select any sequence of nodes and/or atomic values, and essentially adds these to the result sequence.
The input may be specified either by a select attribute, or by the instructions contained in the
xsl:sequence instruction, or both (the select attribute is processed first). Nodes and atomic
values are included in the result sequence directly. Unlike xsl:copy-of, no copy is made.

There are two main usage scenarios. The first is copying atomic values into a tree. For example:

<e>
 <xsl:sequence select="1 to 5"/>

 <xsl:sequence select="6 to 10"/>
</e>

which produces the output <e>1 2 3 4 5
6 7 8 9 10</e>.

The second, more important, is constructing a sequence-valued variable. A variable is sequence-valued
if the variable binding element (e.g. xsl:variable has non-empty content, an as attribute, and
no select attribute. For example:

<xsl:variable name="seq" as="xs:integer *">
 <xsl:for-each select="1 to 5">>
 <xsl:sequence select=". * ."/>
 </xsl:for-each/>
</xsl:variable>

This produces the sequence (1, 4, 9, 16, 25) as the value of the variable.

The xsl:sequence instruction may be used to produce any sequence of nodes and/or atomic values.

XSLT Elements

306

If nodes are constructed within a sequence-valued variable, they will be . For example, the following
code creates a variable whose value is a sequence of three parentless attributes:

<xsl:variable name="seq" as="attribute() *">
 <xsl:attribute name="a">10</xsl:attribute>
 <xsl:attribute name="b">20</xsl:attribute>
 <xsl:attribute name="a">30</xsl:attribute>
</xsl:variable>

It is quite legitimate to have two attributes in the sequence with the same name; there is no conflict
until an attempt is made to add them both to the same element. The attributes can be added to an
element by using <xsl:copy-of select="$seq"/> within an xsl:element instruction or
within a literal result element. At this stage the usual rule applies: if there are duplicate attributes, the
last one wins.

xsl:sort
The xsl:sort element is used within an xsl:for-each or xsl:apply-templates or
saxon:group element to indicate the order in which the selected elements are processed.

The select attribute (default value ".") is a string expression that calculates the sort key.

The order attribute (values "ascending" or "descending", default "ascending") determines the sort
order. There is no control over language, collating sequence, or data type.

The data-type attribute determines whether collating is based on alphabetic sequence or numeric
sequence. The permitted values are either "text" or "number", or a built-in type in XML Schema, such
as xs:date or xs:decimal.

The collation attribute is the name of a collating sequence. If present it must be a collation URI
recognized by Saxon: see Implementing a collating sequence.

The case-order attribute (values "upper-first" and "lower-first") is relevant only for data-
type="text"; it determines whether uppercase letters are sorted before their lowercase equivalents, or
vice-versa.

The value of the lang attribute can be an ISO language code such as "en" (English) or "de" (German).
It determines the algorithm used for alphabetic collating. The default is based on the Java system locale.
The value is used to select a collating sequence associated with the Java Locale for that language.

Several sort keys are allowed: they are written in major-to-minor order.

Example 1: sorting with xsl:apply-templates. This example shows a template for a BOOKLIST
element which processes all the child BOOK elements in order of their child AUTHOR elements;
books with the same author are in descending order of the DATE attribute.

<xsl:template match="BOOKLIST">
 <h2>
 <xsl:apply-templates select="BOOK">
 <xsl:sort select="AUTHOR"/>
 <xsl:sort select="@DATE" order="descending" lang="GregorianDate"/>
 </xsl:apply-templates>
 </h2>
</xsl:template>

Example 2: sorting with xsl:for-each. This example also shows a template for a BOOKLIST element
which processes all the child BOOK elements in order of their child AUTHOR elements.

<xsl:template match="BOOKLIST">
 <h2>

XSLT Elements

307

 <xsl:for-each select="BOOK">
 <xsl:sort select="AUTHOR"/>
 <p>AUTHOR: <xsl:value-of select="AUTHOR"></p>
 <p>TITLE: <xsl:value-of select="TITLE"></p>
 <hr/>
 </xsl:for-each>
 </h2>
</xsl:template>

xsl:strip-space
The xsl:strip-space element is used at the top level of the stylesheet to define elements in the
source document for which white-space nodes are insignificant and should be removed from the tree
before processing.

The elements attribute is mandatory, and defines a space-separated list of element names. The value
"*" may be used to mean "all elements"; in this case any elements where whitespace is not to be
stripped may be indicated by an xsl:preserve-space element.

xsl:stylesheet
The xsl:stylesheet element is always the top-level element of an XSLT stylesheet. The name
xsl:transform may be used as a synonym.

The following attributes may be specified:

Table 15.6.

version Mandatory. A value other than "1.0" invokes
forwards compatibility mode.

saxon:trace Value "yes" or "no": default no. If set to "yes",
causes activation of templates to be traced on
System.err for diagnostic purposes. The value
may be overridden by specifying a saxon:trace
attribute on the individual template.

xsl:template
The xsl:template element defines a processing rule for source elements or other nodes of a
particular type.

The type of node to be processed is identified by a pattern, written in the mandatory match attribute.
The most common form of pattern is simply an element name. However, more complex patterns may
also be used: The syntax of patterns is given in more detail in XSLT Pattern Syntax

The following examples show some of the possibilities:

Table 15.7.

XXX Matches any element whose name (tag) is XXX

Matches any element

XXX/YYY Matches any YYY element whose parent is an
XXX

XXX//YYY Matches any YYY element that has an ancestor
named XXX

XSLT Elements

308

/*/XXX Matches any XXX element that is immediately
below the root (document) element

*[@ID] Matches any element with an ID attribute

XXX[1] Matches any XXX element that is the first XXX
child of its parent element. (Note that this kind of
pattern can be very inefficient: it is better to match
all XXX elements with a single template, and then
use xsl:if to distinguish them)

SECTION[TITLE="Contents"] Matches any SECTION element whose first
TITLE child element has the value "Contents"

A/TITLE | B/TITLE | C/TITLE Matches any TITLE element whose parent is of
type A or B or C

text() Matches any character data node

@* Matches any attribute

/ Matches the document node

The xsl:template element has an optional mode attribute. If this is present, the template will
only be matched when the same mode is used in the invoking xsl:apply-templates element.
The value can be a list of mode names, indicating that the template matches more than one mode;
this list can include the token #default to indicate that the template matches the default (unnamed)
mode. Alternatively the mode attribute can be set to #all, to indicate that the template matches all
modes. (This can be useful in conjunction with xsl:next-match: one can write a template rule that
matches in all modes, and then call xsl:next-match to continue processing in the original mode.)

There is also an optional name attribute. If this is present, the template may be invoked directly using
xsl:call-template. The match attribute then becomes optional.

If there are several xsl:template elements that all match the same node, the one that is chosen is
determined by the optional priority attribute: the template with highest priority wins. The priority
is written as a floating-point number; the default priority is 1. If two matching templates have the same
priority, the one that appears last in the stylesheet is used.

Examples:
The following examples illustrate different kinds of template and match pattern.

: a simple XSLT template for a particular element. This example causes all <ptitle> elements in the
source document to be output as HTML <h2> elements.

<xsl:template match="ptitle">
 <h2>
 <xsl:apply-templates/>
 </h2>
</xsl:template>

xsl:text
The xsl:text element causes its content to be output.

The main reason for enclosing text within an xsl:text element is to allow white space to be output.
White space nodes in the stylesheet are ignored unless they appear immediately within an xsl:text
element.

The optional disable-output-escaping attribute may be set to "yes" or "no"; the default is
"no". If set to "yes", special characters such as "<" and "&" will be output as themselves, not as entities.

XSLT Elements

309

Be aware that in general this can produce non-well-formed XML or HTML. It is useful, however,
when generating things such as ASP or JSP pages. Escaping may not be disabled when writing to a
result tree fragment.

xsl:try
The xsl:try instruction is new in XSLT 3.0: in conjunction with xsl:catch it allows recovery
from dynamic errors.

The following example shows how to recover from an error in evaluating an XPath expression (in
this case, divide-by-zero):

<xsl:try select="salary div length-of-service">
 <xsl:catch errors="err:FAOR0001" select="()"/>
 </xsl:try>

The following example shows how to recover from an error in evaluating a sequence of XSLT
instructions (in this case, a validation error):

<xsl:try>
 <xsl:copy-of select="$result" validation="strict"/>
 <xsl:catch>
 <xsl:message>Warning: validation of result document failed:
 Error code: <xsl:value-of select="$err:code"/>
 Reason: <xsl:value-of select="$err:description"/>
 </xsl:message>
 <xsl:sequence select="$result"/>
 </xsl:catch>
</xsl:try>

The errors attribute of xsl:catch indicates which error codes are caught. If absent, or it set
to *, all errors are caught. The value can be a whitespace-separated list of QNames; the wildcards
:local or prefix: can also be used.

It is possible to have more than one xsl:catch within an xsl:try; the first one that matches the
error is used.

Within the xsl:catch, a number of variables are available in the namespace http://
www.w3.org/2005/xqt-errors:

• err:code - the error code as a QName

• err:description - the error description (error message)

• err:value - the error object (if available)

• err:module - the URI of the stylesheet module in which the error occurred

• err:line-number - the line-number of the source stylesheet where the error occurred

• err:column-number - for Saxon this will generally be unknown (-1)

The error can be re-thrown by using the error() function.

xsl:value-of
The xsl:value-of element evaluates an expression as a string, and outputs its value to the current
result tree.

XSLT Elements

310

The full syntax of expressions is outlined in XPath Expression Syntax.

The select attribute identifes the expression. If this is not specified, the value to be output is obtained
by evaluating the sequence constructor contained within the xsl:value-of element.

The optional disable-output-escaping attribute may be set to "yes" or "no"; the default is
"no". If set to "yes", special characters such as "<" and "&" will be output as themselves, not as entities.
Be aware that in general this can produce non-well-formed XML or HTML. It is useful, however,
when generating things such as ASP or JSP pages. Escaping may not be disabled when writing to a
result tree fragment.

If the select expression evaluates to a sequence containing more than one item, the result depends
on whether a separator attribute is present. If the separator is absent when running in 1.0
mode, then only the first item is considered. When running in 2.0 mode, all the items are output. The
separator defaults to a single space if the select attribute is used, or to a zero-length string if a
sequence constructor is used. The separator attribute may be specified as an .

Here are some examples of expressions that can be used in the select attribute:

Table 15.8.

TITLE The character content of the first child TITLE
element if there is one

@NAME The value of the NAME attribute of the current
element if there is one

. The expanded character content of the current
element

../TITLE The expanded character content of the first TITLE
child of the parent element, if there is one

ancestor::SECTION/TITLE The expanded character content of the first TITLE
child of the enclosing SECTION element, if there
is one

ancestor::*/TITLE The expanded character content of the first TITLE
child of the nearest enclosing element that has a
child element named TITLE

PERSON[@ID] The content of the first child PERSON element
having an ID attribute, if there is one

*[last()]/@ID The value of the ID attribute of the last child
element of any type, if there are any

.//TITLE The content of the first descendant TITLE
element if there is one

sum(*/@SALES) The numeric total of the values of the SALES
attributes of all child elements that have a SALES
attribute

xsl:variable
The xsl:variable element is used to declare a variable and give it a value. If it appears at the
top level (immediately within xsl:stylesheet) it declares a global variable, otherwise it declares a local
variable that is visible only within the stylesheet element containing the xsl:variable declaration.

The mandatory name attribute defines the name of the variable.

The value of the variable may be defined either by an expression within the optional select
attribute, or by the contents of the xsl:variable element. In the latter case the result is a temporary

XSLT Elements

311

tree. A temporary tree can be used like a source document, for example it can be accessed using path
expressions and processed using template rules.

There is an optional attribute, as, to define the type of the variable. The actual supplied value must
be an instance of this type; it will not be converted.

In standard XSLT, variables once declared cannot be updated. Saxon however provides a saxon:assign
extension element to circumvent this restriction.

The value of a variable can be referenced within an expression using the syntax $name.

Example:

<xsl:variable name="title">A really exciting document"</xsl:variable>
<xsl:variable name="backcolor" expr="'#FFFFCC'" />
<xsl:template match="/*">
 <HTML><TITLE<xsl:value-of select="$title"/></TITLE>
 <BODY BGCOLOR='{$backcolor}'>
 ...
 </BODY></HTML>
</xsl:template>

xsl:when
The xsl:when element is used within an xsl:choose element to indicate one of a number of
choices. It takes a mandatory parameter, test, whose value is a match pattern. If this is the first
xsl:when element within the enclosing xsl:choose whose test condition matches the current element,
the content of the xsl:when element is expanded, otherwise it is ignored.

xsl:with-param
The xsl:with-param element is used to define an actual parameter to a template. It may be used
within an xsl:call-template or an xsl:apply-templates or an xsl:apply-imports
element. For an example, see the xsl:template section.

There is a mandatory attribute, name, to define the name of the parameter. The value of the parameter
may be defined either by a select attribute, or by the contents of the xsl:param element, in the same
way as for xsl:variable.

The attribute tunnel="yes" creates a tunnel parameter which is accessible to called templates at
any depth, whether or not they are declared in intermediate templates. However, the value is only
accessible if tunnel="yes" is also specified on the corresponding xsl:param element.

In XSLT 3.0, xsl:with-param can also appear as a child of xsl:evaluate, to define variables
available for use within the dynamically-evaluated XPath expression, and as a child of xsl:next-
iteration, to define values of iteration parameters to be used on the next iteration.

Literal Result Elements
Any elements in the style sheet other than those listed above are assumed to be literal result elements,
and are copied to the current output stream at the position in which they occur.

Attribute values within literal result elements are treated as attribute value templates: they may contain
string expressions enclosed between curly braces. For the syntax of string expressions, see above.

Where the output is HTML, certain formatting elements are recognised as empty elements: these are
AREA, BASEFONT, BR, COL, FRAME, HR, IMG, INPUT, ISINDEX, LINK, META, and SYSTEM

XSLT Elements

312

(in either upper or lower case, and optionally with attributes, of course). These should be written as
empty XML elements in the stylesheet, and will be written to the HTML output stream without a
closing tag.

With HTML output, if the attribute name is the same as its value, the abbreviated form of output
is used: for example if <OPTION SELECTED="SELECTED"> appears in the stylesheet, it will be
output as <OPTION SELECTED>.

A simple stylesheet may be created by using a literal result element as the top-level element of the
stylesheet. This implicitly defines a single template with a match pattern of "/". In fact, an XHTML
document constitutes a valid stylesheet which will be output as a copy of itself, regardless of the
contents of the source XML document.

XSLT Patterns
This section gives an informal description of the syntax of XSLT patterns. For a formal specification,
see the XSLT recommendation. Pattern syntax did not change significantly in XSLT 2.0, except by
allowing any XPath 2.0 expression to be used within a predicate. XSLT 3.0 introduces extension,
described below, to allow atomic values as well as nodes to be matched, and by removing a number
of restrictions. Some of these changes (but not all) are implemented in Saxon 9.4 when XSLT 3.0
processing is enabled.

Patterns define a condition that a node may or may not satisfy: a node either matches the pattern, or
it does not. The syntax of patterns is a subset of that for the XPath expressions, and formally, a node
matches a pattern if it is a member of the node set selected by the corresponding expression, with some
ancestor of the node acting as the current node for evaluating the expression. For example a TITLE
node matches the pattern "TITLE" because it is a member of the node set selected by the expression
"TITLE" when evaluated at the immediate parent node.

In XSLT stylesheets, patterns are used primarily in the match attribute of the xsl:template
element. They are also used in the count and from attributes of xsl:number, the match
attribute of xsl:key, and the group-starting-with and group-ending-with attributes
of xsl:for-each-group.

The next page gives some examples of match patterns and their meaning. This is followed by a page
that gives a summary of the XSLT 2.0 syntax, and another page that describes the extensions to patterns
in XSLT 3.0.

• Examples of XSLT 2.0 Patterns

• Pattern syntax

• Patterns in XSLT 3.0

Examples of XSLT 2.0 Patterns
The table below gives some examples of patterns, and explains their meaning:

Table 15.9.

PARA Matches any element whose name (tag) is PARA

Matches any element

APPENDIX/PARA Matches any PARA element whose parent is an
APPENDIX

APPENDIX//PARA Matches any PARA element that has an ancestor
named APPENDIX

XSLT Elements

313

/*/SECTION Matches any SECTION element that is an
immediate child of the outermost element in the
document

*[@NAME] Matches any element with a NAME attribute

SECTION/PARA[1] Matches any PARA element that is the first PARA
child of a SECTION element

SECTION[TITLE="Contents"] Matches any SECTION element whose first
TITLE child element has the value "Contents"

A/TITLE | B/TITLE | C/TITLE Matches any TITLE element whose parent is of
type A or B or C (Note that this cannot be written
"(A|B|C)/TITLE", although that is a valid XPath
2.0 path expression.)

/BOOK//* Matches any element in a document provided
the top-level element in the document is named
"BOOK"

A/text() Matches the character content of an A element

A/@* Matches any attribute of an A element

In a schema-aware stylesheet, it can be useful to match elements by their schema-defined type, rather
than by their name. The following table shows some examples of this.

Table 15.10.

schema-element(CHAPTER) Matches any element that has been validated
against the global element declaration named
CHAPTER. More precisely, it matches an
element named CHAPTER that has been
validated against the type of the global element
declaration named CHAPTER, and any element
in the substitution group of the CHAPTER
element.

element(*, ADDRESS-TYPE) Matches any element that has been validated
against the schema-defined global type definition
ADDRESS-TYPE. The "*" indicates that there
are no constraints on the element's name.

attribute(*, xs:date) Matches any attribute that has been validated as
an instance of xs:date, including types derived by
restriction from xs:date.

Pattern syntax
Saxon supports the full XSLT syntax for patterns. The rules below describe a simplified form of this
syntax (for example, it omits the legal but useless pattern '@comment()'):

pattern ::= path ('|' path)*
path ::= anchor? remainder? (Note 1)

anchor ::= '/' | '//' | id | key
id ::= 'id' '(' value ')'
key ::= 'key' '(' literal ',' value ')'
value ::= literal | variable-reference

remainder ::= path-part (sep path-part)*

XSLT Elements

314

sep ::= '/' | '//'
path-part ::= node-match predicate+
node-match ::= kind-match | type-match
kind-match ::= element-match |
 text-match |
 attribute-match |
 pi-match |
 any-node-match
element-match ::= 'child::'? (name | '*')
text-match ::= 'text' '(' ')'
attribute-match ::= ('attribute::' | '@') (name | '*')
pi-match ::= 'processing-instruction' '(' literal? ')'
any-node-match ::= 'node' '(' ')'

type-match ::= ('element'|'attribute')
 '(' ('*'|node-name) (',' type-name) ')'

predicate ::= '[' (boolean-expression |
 numeric-expression) ']'

Note 1: not all combinations are allowed. If the anchor is '//' then the remainder is mandatory.

The form of a literal is as defined in expressions; and a predicate is itself a boolean or numeric
expression. As with predicates in expressions, a numeric predicate [P] is shorthand for the boolean
predicate [position()=P].

Informally, a pattern consists of either a single path or a sequence of paths separated by vertical bars.
An element matches the match-pattern if it matches any one of the paths.

A path consists of a sequence of path-parts separated by either "/" or "//". There is an optional separator
("/" or "//") at the start; a "//" has no effect and can be ignored. The last path-part may be an element-
match, a text-match, an attribute-match, a pi-match, or a node-match; in practice, a path-part other
than the last should be an element-match.

The axis syntax child:: and attribute:: may also be used in patterns, as described in the
XSLT specification.

Patterns in XSLT 3.0
XSLT 3.0 extensions to patterns that are implemented in Saxon 9.4 include the following:

Pattern syntax in the form ~ItemType is supported, for example match="~xs:integer"
matches an integer. Predicates are allowed on such patterns, for example ~xs:integer[. gt 0].

The intersect and except operators are allowed at the top level: for example match="*
except br".

Parentheses may be used in conjunction with a predicate, for example match="(//para)[1]"

Any downwards axis may be used in a pattern, for example descendant or descendant-or-
self.

Other XSLT 3.0 extensions to patterns have yet to be implemented in Saxon, for example patterns that
start with (or consist exclusively of) a variable reference.

315

Chapter 16. XPath 2.0 Expression
Syntax
Introduction

This document is an informal guide to the syntax of XPath 2.0 expressions, which are used in
Saxon both within XSLT stylesheets, and in the Java API. XPath is also a subset of XQuery. For
formal specifications, see the XPath 2.0 specification [http://www.w3.org/TR/xpath20/], except where
differences are noted here.

There is also a summary of new features introduced in XPath 3.0 (originally published as XPath 2.1).

Saxon 9.4 implements XPath extensions to define maps: these extensions have been proposed by the
XSL Working Group, but not yet accepted by the XQuery Working Group. Details are given here:
Maps in XPath 3.0

XPath expressions may be used either in an XSLT stylesheet, or as a parameter to various Java
interfaces. The syntax is the same in both cases. Saxon supports XPath either through the standard
JAXP interface (which is somewhat limiting as it is designed for XPath 1.0 and is not well integrated
with interfaces for XSLT and XQuery), or via Saxon's own s9api interface ("snappy"). In s9api, the
steps are:

1. Create a Processor (which can also be used for XSLT, XQuery, and XSD processing)

2. User the newXPathCompiler() method to create an XPathCompiler, and use its methods
to set the static context for the expression

3. User the compile() method to compile the expression, and the load() method to instantiate it for
use (you can compile the method once and load it as many times as you like for execution)

4. Call methods on the resulting XPathSelector object to set the context item and the values of
any external variables for evaluating the expression

5. Call another method to evaluate the expression. Because XPathSelector is a Java Iterable,
you can simply use the Java for-each construct to iterate over the results of the expression.

6. If the results are sequences of nodes, as is often the case, they are returned as instances of the Saxon
class XdmNode which provides methods to perform further processing of the results.

An important change in XPath 2.0 is that all values are now considered as sequences. A sequence
consists of zero or more items; an item may be a node or a simple-value. Examples of simple-values
are integers, strings, booleans, and dates. A single value such as a number is considered as a sequence
of length 1. The empty sequence is written as (); a singleton sequence may be written as "a" or
("a"), and a general sequence is written as ("a", "b", "c").

The node-sets of XPath 1.0 are replaced in XPath 2.0 by sequences of nodes. Path expressions will
return node sequences whose nodes are in document order with no duplicates, but other kinds of
expression may return sequences of nodes in any order, with duplicates permitted.

This section summarizes the syntactic constructs and operators provided in XPath 2.0. The functions
provided in the function library are listed separately: see the Functions section.

Constants
are written as "London" or 'Paris'. In each case you can use the opposite kind of quotation mark within
the string: 'He said "Boo"', or "That's rubbish". In a stylesheet XPath expressions always appear within

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/

XPath 2.0 Expression Syntax

316

XML attributes, so it is usual to use one kind of delimiter for the attribute and the other kind for the
literal. Anything else can be written using XML character entities. In XPath 2.0, string delimiters
can be doubled within the string to represent the delimiter itself: for example <xsl:value-of
select='"He said, ""Go!"""'/>

follow the Java rules for decimal literals: for example, 12 or 3.05; a negative number can be written
as (say) -93.7, though technically the minus sign is not part of the literal. (Also, note that you may
need a space before the minus sign to avoid it being treated as a hyphen within a preceding name).
The numeric literal is taken as a double precision floating point number if it uses scientific notation
(e.g. 1.0e7), as fixed point decimal if it includes a full stop, or as a integer otherwise. Decimal values
(and integers) in Saxon have unlimited precision and range (they use the Java classes BigInteger and
BigDecimal internally). Note that a value such as 3.5 was handled as a double-precision floating
point number in XPath 1.0, but as a decimal number in XPath 2.0: this may affect the precision of
arithmetic results.

There are no boolean constants as such: instead use the function calls true() and false().

Constants of other data types can be written using constructors, which look like function calls but
require a string literal as their argument. For example, xs:float("10.7") produces a single-
precision floating point number. Saxon implements constructors for all of the built-in data types
defined in XML Schema Part 2.

An example for and values: you can write constants for these data types as
xs:date("2002-04-30") or xs:dateTime("1966-07-31T15:00:00Z").

XPath 2.0 allows the argument to a constructor to contain whitespace, as determined by the whitespace
facet for the target data type.

Variable References
The value of a variable (local or global variable, local or global parameter) may be referred to using
the construct $, where is the variable name.

The variable is always bound at the textual place where the expression containing it appears; for
example a variable used within an xsl:attribute-set must be in scope at the point where the
attribute-set is defined, not the point where it is used.

A variable may be declared to be of a particular type, for example it may be constrained to be an
integer, or a sequence of strings, or an attribute node. In a schema-aware environment, this may also
be a reference to a user-defined type in a schema. If there is no type declared for the variable, it may
take a value of any data type, and in general it is not possible to determine its data type statically.

It is an error to refer to a variable that has not been declared.

Starting with XPath 2.0, variables (known as range variables) may be declared within an XPath
expression, not only using xsl:variable elements in an XSLT stylesheet. The expressions that
declare variables are the for, some, and every expressions. In XQuery, variables can also be
declared in a let or typeswitch expression, as well as in the signature of a user-written function.

Function Calls
A function call in XPath 2.0 takes the form F (arg1, arg2, ...) . In general, the function
name is a QName. A library of core functions is defined in the XPath 2.0 and XSLT 2.0 specifications.
For details of these functions, including notes on their implementation in this Saxon release, see the
Functions section. Additional functions are available (in a special namespace) as Saxon extensions:
these are listed in the Extensions. Further functions may be implemented by the user, either as XSLT
(see xsl:function), as XQuery functions, or as Java (see the Extensibility section).

XPath 2.0 Expression Syntax

317

Axis steps
The basic primitive for accessing a source document is the . Axis steps may be combined into path
expressions using the path operators / and //, and they may be filtered using filter expressions in the
same way as the result of any other expression.

An axis step has the basic form axis :: node-test, and selects nodes on a given axis that satisfy
the node-test. The axes available are:

Table 16.1.

ancestor Selects ancestor nodes starting with the current
node and ending with the document node

ancestor-or-self Selects the current node plus all ancestor nodes

attribute Selects all attributes of the current node (if it is an
element)

child Selects the children of the current node, in
documetn order

descendant Selects the children of the current node and their
children, recursively (in document order)

descendant-or-self Selects the current node plus all descendant nodes

following Selects the nodes that follow the current node in
document order, other than its descendants

following-sibling Selects all subsequent child nodes of the same
parent node

namespace Selects all the in-scope namespaces for an element
(this axis is deprecated in XPath 2.0, but Saxon
continues to support it)

parent Selects the parent of the current node

preceding Selects the nodes that precede the current node in
document order, other than its ancestors

preceding-sibling Selects all preceding child nodes of the same
parent node

self Selects the current node

When the child axis is used, child:: may be omitted, and when the attribute axis is used,
attribute:: may be abbviated to @. The expression parent::node() may be shortened to ..

The node-test may be, for example:

• a node name

• prefix:* to select nodes in a given namespace

• *:localname to select nodes with a given local name, regardless of namespace

• text() (to select text nodes)

• node() (to select any node)

• processing-instruction() (to select any processing instruction)

• processing-instruction('literal') to select processing instructions with the given
name (target)

XPath 2.0 Expression Syntax

318

• comment() to select comment nodes

• element() or element(*) to select any element node

• element(N) to select any element node named N

• element(*, T) to select any element node whose type annotation is T, or a subtype of T

• element(N, T) to select any element node whose name is N and whose type annotation is T,
or a subtype of T

• schema-element(N) to select any element node whose name is N, or an element in the
substitution group of N, that conforms to the schema-defined type for a global element declaration
named N in an imported schema

• attribute or attribute(*) to select any attribute node

• attrbute(N) to select any attribute node named N

• attribute(*, T) to select any attribute node whose type annotation is T, or a subtype of T

• attribute(N, T) to select any attribute node whose name is N and whose type annotation is
T, or a subtype of T

• schema-attribute(N) to select any attribute node whose name is N, that conforms to the
schema-defined type for a global attribute declaration named N in an imported schema

Parentheses and operator precedence
In general an expression may be enclosed in parentheses without changing its meaning.

If parentheses are not used, operator precedence follows the sequence below, starting with the
operators that bind most tightly. Within each group the operators are evaluated left-to-right

Table 16.2.

[] predicate

/, // path operator

unary -, unary + unary plus and minus

cast as dynamic type conversion

castable as type test

treat as static type conversion

instance of type test

except, intersect set difference and intersection

|, union union operation on sets

*, div, idiv, mod multiply, divide, integer divide, modulo

+, - plus, minus

to range expression

=, !=, is, <, <=;, >, >=, eq, ne, lt, le, gt, ge comparisons

and Boolean and

or Boolean or

if conditional expressions

some, every quantified expressions

XPath 2.0 Expression Syntax

319

for iteration (mapping) over a sequence

, (comma) Sequence concatenation

The various operators are described, in roughly the above order, in the sections that follow.

Filter expressions
The notation E[P] is used to select items from the sequence obtained by evaluating E. If the predicate
P is numeric, the predicate selects an item if its position (counting from 1) is equal to P; otherwise,
the of P determines whether an item is selected or not. The effective boolean value of a sequence is
false if the sequence is empty, or if it contains a single item that is one of: the boolean value false, the
zero-length string, or a numeric zero or NaN value. If the first item of the sequence is a node, or if the
sequence is a singleton boolean, number or string other than those listed above, the effective boolean
value is true. In other cases (for example, if the sequence contains two booleans or a date), evaluating
the effective boolean value causes an error.

In XPath 2.0, E may be any sequence, it is not restricted to a node sequence. Within the predicate, the
expression . (dot) refers to the context item, that is, the item currently being tested. The XPath 1.0
concept of context node has thus been generalized, for example . can refer to a string or a number.

Generally the order of items in the result preserves the order of items in E. As a special case, however,
if E is a step using a reverse axis (e.g. preceding-sibling), the position of nodes for the purpose of
evaluating the predicate is in reverse document order, but the result of the filter expression is in
forwards document order.

Path expressions
A path expression is a sequence of steps separated by the / or // operator. For example, ../@desc
selects the desc attribute of the parent of the context node.

In XPath 2.0, path expressions have been generalized so that any expression can be used as an operand
of /, (both on the left and the right), so long as its value is a sequence of nodes. For example, it is
possible to use a union expression (in parentheses) or a call to the id() or key() functions. The
right-hand operand is evaluated once for each node in the sequence that results from evaluating the
left-hand operand, with that node as the context item. In the result of the path expression, nodes are
sorted in document order, and duplicates are eliminated.

In practice, it only makes sense to use expressions on the right of / if they depend on the context item.
It is legal to write $x/$y provided both $x and $y are sequences of nodes, but the result is exactly
the same as writing ./$y.

Note that the expressions ./$X or $X/. can be used to remove duplicates from $X and sort the results
into document order. The same effect can be achieved by writing $X|()

The operator // is an abbreviation for /descendant-or-self::node()/. An expression of
the form /E is shorthand for root(.)/E, and the expression / on its own is shorthand for root(.).

The expression on the left of the / operator must return a node or sequence of nodes. The expression
on the right can return either a sequence of nodes or a sequence of atomic values (but not a mixture
of the two). This allow constructs such as $x/number(), which returns the sequence obtained by
converting each item in $x to a number.

Cast as, Treat as
The expression E cast as T converts the value of expression E to type T. Whether T is a built-in
type or a user-defined type, the effect is exactly the same as using the constructor function T (E).

XPath 2.0 Expression Syntax

320

The expression E treat as T is designed for environments that perform static type checking.
Saxon doesn't do static type checking, so this expression has very little use, except to document an
assertion that the expression E is of a particular type. A run-time failure will be reported if the value
of E is not of type T; no attempt is made to convert the value to this type.

Set difference and intersection
These operators are new in XPath 2.0.

The expression E1 except E2 selects all nodes that are in E1 unless they are also in E2. Both
expressions must return sequences of nodes. The results are returned in document order. For example,
@* except @note returns all attributes except the note attribute.

The expression E1 intersect E2 selects all nodes that are in both E1 and E2. Both
expressions must return sequences of nodes. The results are returned in document order. For example,
preceding::fig intersect ancestor::chapter//fig returns all preceding fig
elements within the current chapter.

Union
The | operator was available in XPath 1.0; the keyword union has been added in XPath 2.0 as a
synonym, because it is familiar to SQL users.

The expression E1 union E2 selects all nodes that are in either E1 or E2 or both. Both expressions
must return sequences of nodes. The results are returned in document order. For example, /book/
(chapter | appendix)/sections returns all section elements within a chapter or
appendix of the selected book element.

Arithmetic expressions
• Unary plus and minus

• Multiplication and division

• Addition and subtraction

Unary plus and minus
The unary minus operator changes the sign of a number. For example -1 is minus one, and -0e0 is
the double value negative zero.

Unary plus has very little effect: the value of +1 is the same as the value of 1. It does,
however, provide a quick way of forcing untyped values to be numeric, for example you can
write <xsl:sort select="+@price"/> to force a numeric sort, if you find <xsl:sort
select="number(@price)"/> too verbose for your tastes.

Multiplication and division
The operator * multiplies two numbers. If the operands are of different types, one of them is promoted
to the type of the other (for example, an integer is promoted to a decimal, a decimal to a double). The
result is the same type as the operands after promotion.

The operator div divides two numbers. Dividing two integers produces a double; in other cases the
result is the same type as the operands, after promotion. In the case of decimal division, the precision
is the sum of the precisions of the two operands, plus six.

The operator idiv performs integer division. For example, the result of 10 idiv 3 is 3.

XPath 2.0 Expression Syntax

321

The mod operator returns the modulus (or remainder) after division. See the XPath 2.0 specification
for details of the way that negative numbers are handled.

The operators * and div may also be used to multiply or divide a duration by a number. For example,
fn:dayTimeDuration('PT12H') * 4 returns the duration two days.

Addition and subtraction
The operators + and - perform addition and subtraction of numbers, in the usual way. If the operands
are of different types, one of them is promoted, and the result is the same type as the operands after
promotion. For example, adding two integers produces an integer; adding an integer to a double
produces a double.

Note that the - operator may need to be preceded by a space to prevent it being parsed as part of the
preceding name.

XPath 2.0 also allows these operators to be used for adding durations to durations or to dates and times.

Range expressions
The expression E1 to E2 returns a sequence of integers. For example, 1 to 5 returns the sequence
1, 2, 3, 4, 5. This is useful in for expressions, for example the first five nodes of a node
sequence can be processed by writing for $i in 1 to 5 return (//x)[$i].

If you prefer, you can write this as (//x)[position() = 1 to 5]. This works because
comparison of a single integer (position()) to a sequence of integers (1 to 5) is true if the
integer on the left is equal to any integer in the sequence.

Comparisons
The simplest comparison operators are eq, ne, lt le, gt, ge. These compare two atomic values of
the same type, for example two integers, two dates, or two strings. In the case of strings, the default
collation is used (see saxon:collation). If the operands are not atomic values, an error is raised.

The operators =, !=, <, <=, >, and >= can compare arbitrary sequences. The result is true if any
pair of items from the two sequences has the specified relationship, for example $A = $B is true if
there is an item in $A that is equal to some item in $B. If an argument is a node, the effect depends
on whether the source document has been validated against a schema. In Saxon-EE, with a validated
source document, Saxon will use the typed value of the node in the comparison. Without schema
validation, the type of the node is untypedAtomic, and the effect is that the value is converted to
the type of the other operand.

The operator is tests whether the operands represent the same (identical) node. For example,
title[1] is *[@note][1] is true if the first title child is the first child element that has a
@note attribute. If either operand is an empty sequence the result is an empty sequence (which will
usually be treated as false).

The operators << and >> test whether one node precedes or follows another in document order.

Instance of and Castable as
The expression E instance of T tests whether the value of expression E is an instance of type
T, or of a subtype of T. For example, $p instance of attribute+ is true if the value of $p
is a sequence of one or more attribute nodes. It returns false if the sequence is empty or if it contains
an item that is not an attribute node. The detailed rules for defining types, and for matching values
against a type, are given in the XPath 2.0 specification.

XPath 2.0 Expression Syntax

322

Saxon also allows testing of the type annotation of an element or attribute node using tests of the
form element(*, T), attribute(*, T). This is primarily useful with a schema-aware query
or stylesheet, since the only way a node can acquire a type annotation (other than the special values
xs:untyped and xs:untypedAtomic) is by validating a document against a schema.

The expression E castable as T tests whether the expression E cast as T would succeed.
It is useful, for example, for testing whether a string contains a valid date before attempting to cast
it to a date. This is because XPath and XSLT currently provide no way of trapping the error if the
cast is attempted and fails.

Conditional Expressions
XPath 2.0 allows a conditional expression of the form if (E1) then E2 else E3. For
example, if (@discount) then @discount else 0 returns the value of the discount
attribute if it is present, or zero otherwise.

Quantified Expressions
The expression some $x in E1 satisfies E2 returns true if there is an item in the sequence
E1 for which the of E2 is true. Note that E2 must use the range variable $x to refer to the item being
tested; it does not become the context item. For example, some $x in @* satisfies $x eq
"" is true if the context item is an element that has at least one zero-length attribute value.

Similarly, the expression every $x in E1 satisfies E2 returns true if every item in the
sequence given by E1 satisfies the condition.

For Expressions
The expression for $x in E1 return E2 returns the sequence that results from evaluating E2
once for every item in the sequence E1. Note that E2 must use the range variable $x to refer to the
item being tested; it does not become the context item. For example, sum(for $v in order-
item return $v/price * $v/quantity) returns the total value of (price times quantity)
for all the selected order-item elements.

Boolean expressions: AND and OR
The expression E1 and E2 returns true if the of E1 and E2 are both true.

The expression E1 or E2 returns true if the of either or both of E1 and E2 are true.

Sequence expressions
The expression E1 , E2 returns the sequence obtained by concatenating the sequences E1 and E2.

For example, $x = ("London", "Paris", "Tokyo") returns true if the value of $x is one
of the strings listed.

New features in XPath 3.0

These features are available in Saxon only if explicitly enabled, either directly, or by requesting
support for XSLT 3.0 or XQuery 3.0. In both cases, this requires Saxon-PE or above.

Some of the new features in XPath 3.0 are as follows. For full details, see the W3C specifications.

XPath 2.0 Expression Syntax

323

1. The concatenation operator || is available (as in SQL). For example, ('$' || 12.5) returns
the string '$12.5'.

2. A new simple mapping operator is available, !. This works rather like /, except there is no
restriction that the left hand operand must be a node-set, and there is no sorting of results into
document order. For example, (1 to 7)!(.*.) returns the sequence (1, 4, 9, 16, 25,
36, 49).

3. Local variables can be declared in a let expression, for example let $x := /*/@version
return //e[@version = $x]

4. Inline function items can be declared, and used as arguments to higher-order functions. For example
map(//employee, function($e){$e/salary + $e/bonus}). A is a third kind of
item, alongside nodes and atomic values. The function represented by a function item $f can be
invoked using a dynamic function call $f(args).

5. Maps are available (for more details see Maps. They provide a similar capability to "objects" in
Javascript, or "associative arrays" in some other languages. But as befits a function language like
XPath, they are immutable. A collection of functions is available to operate on maps (see XSLT
2.0 and XPath 2.0 Functions), and in addition there is new syntax for a map constructor (of the
form map{ key := value, key := value } where both the keys and values are arbitrary
expressions. There is a sequenceType for maps: map(K, V) defining the types of the key and
value parts. Maps are functions, so given a map $M, the entry for a key $K can be obtained as the
result of the function call $M($K).

6. Expanded QNames can be written in the notation "uri":local, allowing XPath expressions to
be written that do not depend on an externally-supplied namespace context.

A number of new functions are available, including head, tail, map, filter, map-pairs, pi,
sin, cos, tan, asin, acos, atan, sqrt, format-integer, and others. For details see XSLT
2.0 and XPath 2.0 Functions.

Maps in XPath 3.0
The XSL Working Group has proposed extensions to XPath to handle maps. These extensions have
not yet been accepted into the XPath 3.0 working drafts, but they are implemented in Saxon 9.4.

A map is a new kind of XDM item (alongside nodes and atomic values). In fact, a map is a kind of
function: you can think of it as a function defined extensionally (by tabulating the value of the function
for all possible arguments) rather than intensionally (by means of an algorithm).

A map is a set of entries. Each entry is a key-value pair. The key is always an atomic value. The "value"
is any XDM value: a sequence of nodes, atomic values, functions, or maps.

Maps, like sequences, are immutable. When you add an entry to a map, you get a new map; the original
is unchanged. Saxon provides an efficient implementation of maps that achieves this without copying
the whole map every time an entry is added.

Also like sequences, maps do not have an intrinsic type of their own, but rather have a type that can be
inferred from what they contain. A map conforms to the type map(K, V) if all the keys are of type K
and all the values are of type V. For example if the keys are all strings, and the values are all employee
elements, then the map conforms to the type map(xs:string, element(employee)).

There are several ways to create a map:

• If the number of entries is known, you can use the constructor syntax map { key := value;
key := value; ... }. Here the keys and values can be any "simple expression" (an expression
not containing a top-level comma). If the keys and values are all known statically, you might write:
map { "a" := 1; "e: := 2; "i" := 3; "o" := 4; "u" := 5 }. You can

XPath 2.0 Expression Syntax

324

use this construct anywhere an XPath expression can be used, for example in the select attribute
of an xsl:variable element.

• The function map:new() takes a number of maps as input, and combines them into a single map.
This can be used to construct a map where the number of entries is not known statically: for example
for $i in 1 to 10 return map{$i := codepoints-to-string($i)}.

• A single-entry map can also be constructed using the function map:entry($key, $value)

Given a map $M, the value corresponding to a given key $K can be found either by invoking the map
as a function: $M($K), or by calling map:get($M, $K).

The full list of functions that operate on maps is as follows. The prefix map represents the namespace
URI http://www.w3.org/2005/xpath-functions/map

• map:new($maps as map(*)) as map(*): takes a sequence of maps as input and combines them into
a single map.

• map:new($maps as map(*), $collation as xs:string) as map(*): takes a sequence of maps as input
and combines them into a single map, using the specified collation to compare key values.

• map:collation($map as map(*)) as xs:string: returns the collation of a map.

• map:keys($map as map(*)) as xs:anyAtomicType*: returns the keys that are present in a map, in
unpredictable order.

• map:contains($map as map(*), $key as xs:anyAtomicType) as xs:boolean: returns true if the given
key is present in the map.

• map:get($map as map(*), $key as xs:anyAtomicType) as xs:item()*: returns the value associated
with the given key if present, or the empty sequence otherwise. Equivalent to calling $map($key).

• map:entry($key as xs:anyAtomicType, $value as item()*): creates a singleton map. Useful as an
argument to map:new()

• map:remove($map as map(*), $key as xs:anyAtomicType) as map(*): removes an entry from a map
(if it was present), returning a new map; if not present, returns the existing map unchanged.

325

Chapter 17. XSLT 2.0 and XPath 2.0
Functions
Index of Functions

The information in this section indicates which functions are implemented in this Saxon release, and
any restrictions in the current implementation.

It includes both the core functions defined in XPath, and the additional functions defined in the XSLT
specification.

Table 17.1.

abs acos adjust-dateTime-to-timezone
adjust-date-to-timezone adjust-time-to-timezone
analyze-string asin atan available-environment-
variables avg base-uri boolean ceiling codepoint-
equal codepoints-to-string collection compare
concat contains cos count current current-
date current-dateTime current-group current-
grouping-key current-time data dateTime
day-from-date day-from-dateTime days-from-
duration deep-equal default-collation distinct-
values doc doc-available document document-uri
element-available element-with-id empty encode-
for-uri ends-with environment-variable error
escape-html-uri exactly-one exists exp exp10
false filter floor fold-left fold-right format-date
format-dateTime format-integer format-number
format-time function-arity function-available
function-lookup function-name generate-id has-
children head hours-from-dateTime hours-from-
duration hours-from-time id idref implicit-
timezone index-of innermost in-scope-prefixes
insert-before iri-to-uri lang last local-name local-
name-from-QName log

log10 lower-case map map-pairs matches
max min minutes-from-dateTime minutes-
from-duration minutes-from-time month-from-
date month-from-dateTime months-from-
duration name namespace-uri namespace-uri-for-
prefix namespace-uri-from-QName nilled node-
name normalize-space normalize-unicode not
number one-or-more outermost parse-json parse-
xml path pi position pow prefix-from-QName
put QName regex-group remove replace resolve-
QName resolve-uri reverse root round round-half-
to-even seconds-from-dateTime seconds-from-
duration seconds-from-time serialize serialize-
json sin sqrt starts-with static-base-uri string
string-join string-length string-to-codepoints
subsequence substring substring-after substring-
before sum system-property tail tan timezone-
from-date timezone-from-dateTime timezone-
from-time tokenize trace translate true type-
available unordered unparsed-entity-public-id
unparsed-entity-uri unparsed-text unparsed-text-
available unparsed-text-lines upper-case uri-
collection year-from-date year-from-dateTime
years-from-duration zero-or-one

abs
Returns the absolute value of a given number. Returns the same type as the supplied argument.

abs($arg as numeric?) # numeric?

Table 17.2.

$arg numeric? The input value

numeric?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

XSLT 2.0 and XPath 2.0 Functions

326

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-abs]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-abs]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

acos
Returns the arc cosine of the argument, the result being in the range zero to +# radians.

acos($arg as xs:double?) # xs:double?

Table 17.3.

$arg xs:double? The supplied angle in
radians

xs:double?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions/math

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-acos]

Notes on the Saxon implementation

Implemented since Saxon 9.3; available whether or not support for XPath 3.0 is enabled

adjust-dateTime-to-timezone

adjust-dateTime-to-timezone($arg as xs:dateTime?) #
xs:dateTime

Returns a dateTime value equivalent to the original dateTime, but with the timezone removed.

Table 17.4.

$arg xs:dateTime? The input date/time

xs:dateTime

adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as
xs:dayTimeDuration?) # xs:dateTime

Returns a dateTime value equivalent to the original dateTime, but adjusted to a different timezone.

Table 17.5.

http://www.w3.org/TR/xpath-functions/#func-abs
http://www.w3.org/TR/xpath-functions/#func-abs
http://www.w3.org/TR/xpath-functions-30/#func-abs
http://www.w3.org/TR/xpath-functions-30/#func-abs
http://www.w3.org/TR/xpath-functions-30/#func-acos
http://www.w3.org/TR/xpath-functions-30/#func-acos

XSLT 2.0 and XPath 2.0 Functions

327

$arg xs:dateTime? The input date/time

$timezone xs:dayTimeDuration? The new time zone, as
an offset from UTC, or
() to denote the implicit
timezone

xs:dateTime

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-adjust-dateTime-
to-timezone]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-adjust-
dateTime-to-timezone]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

adjust-date-to-timezone

adjust-date-to-timezone($arg as xs:date?) # xs:date?

Returns a date value equivalent to the original date, but with the timezone removed.

Table 17.6.

$arg xs:date? The input date

xs:date?

adjust-date-to-timezone($arg as xs:date?, $timezone as
xs:dayTimeDuration?) # xs:date?

Returns a date value equivalent to the original date, but adjusted to a different timezone.

Table 17.7.

$arg xs:date? The input date

$timezone xs:dayTimeDuration? The new time zone, as
an offset from UTC, or
() to denote the implicit
timezone

xs:date?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

http://www.w3.org/TR/xpath-functions/#func-adjust-dateTime-to-timezone
http://www.w3.org/TR/xpath-functions/#func-adjust-dateTime-to-timezone
http://www.w3.org/TR/xpath-functions/#func-adjust-dateTime-to-timezone
http://www.w3.org/TR/xpath-functions-30/#func-adjust-dateTime-to-timezone
http://www.w3.org/TR/xpath-functions-30/#func-adjust-dateTime-to-timezone
http://www.w3.org/TR/xpath-functions-30/#func-adjust-dateTime-to-timezone

XSLT 2.0 and XPath 2.0 Functions

328

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-adjust-date-to-
timezone]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-adjust-date-to-
timezone]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

adjust-time-to-timezone

adjust-time-to-timezone($arg as xs:time?) # xs:time?

Returns a time value equivalent to the original time, but with the timezone removed.

Table 17.8.

$arg xs:time? The input time

xs:time?

adjust-time-to-timezone($arg as xs:time?, $timezone as
xs:dayTimeDuration?) # xs:time?

Returns a time value equivalent to the original time, but adjusted to a different timezone.

Table 17.9.

$arg xs:time? The input time

$timezone xs:dayTimeDuration? The new time zone, as
an offset from UTC, or
() to denote the implicit
timezone

xs:time?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-adjust-time-to-
timezone]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-adjust-time-to-
timezone]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

analyze-string
Analyzes a string using a regular expression, returning an XML structure that identifies which parts
of the input string matched or failed to match the regular expression, and in the case of matched
substrings, which substrings matched each capturing group in the regular expression.

http://www.w3.org/TR/xpath-functions/#func-adjust-date-to-timezone
http://www.w3.org/TR/xpath-functions/#func-adjust-date-to-timezone
http://www.w3.org/TR/xpath-functions/#func-adjust-date-to-timezone
http://www.w3.org/TR/xpath-functions-30/#func-adjust-date-to-timezone
http://www.w3.org/TR/xpath-functions-30/#func-adjust-date-to-timezone
http://www.w3.org/TR/xpath-functions-30/#func-adjust-date-to-timezone
http://www.w3.org/TR/xpath-functions/#func-adjust-time-to-timezone
http://www.w3.org/TR/xpath-functions/#func-adjust-time-to-timezone
http://www.w3.org/TR/xpath-functions/#func-adjust-time-to-timezone
http://www.w3.org/TR/xpath-functions-30/#func-adjust-time-to-timezone
http://www.w3.org/TR/xpath-functions-30/#func-adjust-time-to-timezone
http://www.w3.org/TR/xpath-functions-30/#func-adjust-time-to-timezone

XSLT 2.0 and XPath 2.0 Functions

329

analyze-string($input as xs:string?, $pattern as xs:string) #
element(fn:analyze-string-result)

Table 17.10.

$input xs:string? The input string

$pattern xs:string A regular expression

element(fn:analyze-
string-result)

analyze-string($input as xs:string?, $pattern as xs:string, $flags
as xs:string) # element(fn:analyze-string-result)

Table 17.11.

$input xs:string? The input string

$pattern xs:string A regular expression

$flags xs:string Flags controlling the
interpretation of the
regular expression

element(fn:analyze-
string-result)

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-analyze-string]

Notes on the Saxon implementation

New in Saxon 9.3

asin
Returns the arc sine of the argument, the result being in the range -#/2 to +#/2 radians.

asin($arg as xs:double?) # xs:double?

Table 17.12.

$arg xs:double? The supplied angle in
radians

xs:double?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions/math

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

http://www.w3.org/TR/xpath-functions-30/#func-analyze-string
http://www.w3.org/TR/xpath-functions-30/#func-analyze-string

XSLT 2.0 and XPath 2.0 Functions

330

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-asin]

Notes on the Saxon implementation

Implemented since Saxon 9.3; available whether or not support for XPath 3.0 is enabled

atan
Returns the arc tangent of the argument, the result being in the range -#/2 to +#/2 radians.

atan($arg as xs:double?) # xs:double?

Table 17.13.

$arg xs:double? The supplied angle in
radians

xs:double?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions/math

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-atan]

Notes on the Saxon implementation

Implemented in Saxon 9.3; available whether or not support for XPath 3.0 is enabled

available-environment-variables
Returns a list of environment variable names that are suitable for passing to environment-
variable(), as a (possibly empty) sequence of strings.

available-environment-variables() # xs:string*

Table 17.14.

xs:string*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-available-
environment-variables]

Notes on the Saxon implementation

Implemented in Saxon 9.4, but without enforcing the rule that the result must be deterministic.

avg
Returns the average of a set of numbers or durations

http://www.w3.org/TR/xpath-functions-30/#func-asin
http://www.w3.org/TR/xpath-functions-30/#func-asin
http://www.w3.org/TR/xpath-functions-30/#func-atan
http://www.w3.org/TR/xpath-functions-30/#func-atan
http://www.w3.org/TR/xpath-functions-30/#func-available-environment-variables
http://www.w3.org/TR/xpath-functions-30/#func-available-environment-variables
http://www.w3.org/TR/xpath-functions-30/#func-available-environment-variables

XSLT 2.0 and XPath 2.0 Functions

331

avg($arg as xs:anyAtomicType*) # xs:anyAtomicType?

Table 17.15.

$arg xs:anyAtomicType* The input sequence of
numbers or durations

xs:anyAtomicType?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-avg]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-avg]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

base-uri

base-uri() # xs:anyURI?

Returns the base URI of the context node

Table 17.16.

xs:anyURI?

base-uri($arg as node()?) # xs:anyURI?

Returns the base URI of a specified node

Table 17.17.

$arg node()? The node whose base
URI is required

xs:anyURI?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-base-uri]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-base-uri]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

http://www.w3.org/TR/xpath-functions/#func-avg
http://www.w3.org/TR/xpath-functions/#func-avg
http://www.w3.org/TR/xpath-functions-30/#func-avg
http://www.w3.org/TR/xpath-functions-30/#func-avg
http://www.w3.org/TR/xpath-functions/#func-base-uri
http://www.w3.org/TR/xpath-functions/#func-base-uri
http://www.w3.org/TR/xpath-functions-30/#func-base-uri
http://www.w3.org/TR/xpath-functions-30/#func-base-uri

XSLT 2.0 and XPath 2.0 Functions

332

boolean
Obtains the effective boolean value of the supplied argument. The result is true if the argument value
is a sequence starting with a node, or the singleton boolean true(), a singleton non-zero number, or a
singleton non-zero-length string (or untypedAtomic). The result is false if the argument is an empty
sequence, the singleton boolean false, a singleton number zero or NaN, or a singleton zero-length
string (or untypedAtomic). In all other cases the result is an error.

boolean($arg as item()*) # xs:boolean

Table 17.18.

$arg item()* The sequence whose
effective boolean value
is required

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-boolean]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-boolean]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

ceiling
Rounds a value towards positive infinity

ceiling($arg as numeric?) # numeric?

Table 17.19.

$arg numeric? The supplied number

numeric?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-ceiling]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-ceiling]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

http://www.w3.org/TR/xpath-functions/#func-boolean
http://www.w3.org/TR/xpath-functions/#func-boolean
http://www.w3.org/TR/xpath-functions-30/#func-boolean
http://www.w3.org/TR/xpath-functions-30/#func-boolean
http://www.w3.org/TR/xpath-functions/#func-ceiling
http://www.w3.org/TR/xpath-functions/#func-ceiling
http://www.w3.org/TR/xpath-functions-30/#func-ceiling
http://www.w3.org/TR/xpath-functions-30/#func-ceiling

XSLT 2.0 and XPath 2.0 Functions

333

codepoint-equal
Compares two strings using the Unicode codepoint collation

codepoint-equal($comparand1 as xs:string?, $comparand2 as
xs:string?) # xs:boolean?

Table 17.20.

$comparand1 xs:string? The first value to be
compared

$comparand2 xs:string? The second value to be
compared

xs:boolean?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-codepoint-equal]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-codepoint-
equal]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

codepoints-to-string
Converts a sequence of integers representing Unicode characters to the corresponding string.

codepoints-to-string($arg as xs:integer*) # xs:string

Table 17.21.

$arg xs:integer* A sequence of Unicode
codepoint values

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-codepoints-to-
string]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-codepoints-to-
string]

http://www.w3.org/TR/xpath-functions/#func-codepoint-equal
http://www.w3.org/TR/xpath-functions/#func-codepoint-equal
http://www.w3.org/TR/xpath-functions-30/#func-codepoint-equal
http://www.w3.org/TR/xpath-functions-30/#func-codepoint-equal
http://www.w3.org/TR/xpath-functions-30/#func-codepoint-equal
http://www.w3.org/TR/xpath-functions/#func-codepoints-to-string
http://www.w3.org/TR/xpath-functions/#func-codepoints-to-string
http://www.w3.org/TR/xpath-functions/#func-codepoints-to-string
http://www.w3.org/TR/xpath-functions-30/#func-codepoints-to-string
http://www.w3.org/TR/xpath-functions-30/#func-codepoints-to-string
http://www.w3.org/TR/xpath-functions-30/#func-codepoints-to-string

XSLT 2.0 and XPath 2.0 Functions

334

Notes on the Saxon implementation

The function throws an error if any of the integers doesn't represent a valid XML character. With
Saxon, the set of valid XML characters depends on whether XML 1.0 or 1.1 is the chosen version in
the Configuration.

collection

collection() # node()*

Returns the nodes making up the default collection

Table 17.22.

node()*

collection($arg as xs:string?) # node()*

Returns the nodes making up the collection whose URI is supplied

Table 17.23.

$arg xs:string? The supplied collection
URI

node()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-collection]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-collection]

Notes on the Saxon implementation

Saxon implements the zero-argument function by passing a null URI to the registered
CollectionURIResolver. The default CollectionURIResolver implementation supplied
with the product handles this by returning an empty sequence, but a user-supplied
CollectionURIResolver is free to handle this case any way it wishes.

If a user-defined CollectionURIResolver has been registered, the action of this function
is entirely user-defined. A resolver may be registered using the setCollectionResolver()
method on the Configuration object, or (in XSLT) using setAttribute() on the
TransformerFactory. The CollectionURIResolver may also be nominated using the -cr
option on the command line.

For details of the behavior of the standard CollectionURIResolver, see Collections.

compare

compare($comparand1 as xs:string?, $comparand2 as
xs:string?) # xs:integer?

Compares two strings using the default collation

http://www.w3.org/TR/xpath-functions/#func-collection
http://www.w3.org/TR/xpath-functions/#func-collection
http://www.w3.org/TR/xpath-functions-30/#func-collection
http://www.w3.org/TR/xpath-functions-30/#func-collection

XSLT 2.0 and XPath 2.0 Functions

335

Table 17.24.

$comparand1 xs:string? The first string to be
compared

$comparand2 xs:string? The second string to be
compared

xs:integer?

compare($comparand1 as xs:string?, $comparand2 as xs:string?,
$collation as xs:string) # xs:integer?

Compares two strings using the specified collation

Table 17.25.

$comparand1 xs:string? The first string to be
compared

$comparand2 xs:string? The second string to be
compared

$collation xs:string The collation to be used
for the comparison

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-compare]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-compare]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

concat
Concatenates the string-values of the arguments into a single string. There must be at least two
arguments.

concat($arg1 as xs:anyAtomicType?, $arg2 as
xs:anyAtomicType?, $etc... as xs:anyAtomicType?) # xs:string

Table 17.26.

$arg1 xs:anyAtomicType? The first string

$arg2 xs:anyAtomicType? The second string

$etc... xs:anyAtomicType? The third and
subsequent strings (as
many as required)

http://www.w3.org/TR/xpath-functions/#func-compare
http://www.w3.org/TR/xpath-functions/#func-compare
http://www.w3.org/TR/xpath-functions-30/#func-compare
http://www.w3.org/TR/xpath-functions-30/#func-compare

XSLT 2.0 and XPath 2.0 Functions

336

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-concat]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-concat]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

contains
Returns true if the second string is a substring of the first

contains($arg1 as xs:string?, $arg2 as xs:string?) # xs:boolean

Table 17.27.

$arg1 xs:string? The containing string

$arg2 xs:string? The contained string

xs:boolean

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as
xs:string) # xs:boolean

Table 17.28.

$arg1 xs:string? The containing string

$arg2 xs:string? The contained string

$collation xs:string The collation to be
used for comparing the
strings

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-contains]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-contains]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

http://www.w3.org/TR/xpath-functions/#func-concat
http://www.w3.org/TR/xpath-functions/#func-concat
http://www.w3.org/TR/xpath-functions-30/#func-concat
http://www.w3.org/TR/xpath-functions-30/#func-concat
http://www.w3.org/TR/xpath-functions/#func-contains
http://www.w3.org/TR/xpath-functions/#func-contains
http://www.w3.org/TR/xpath-functions-30/#func-contains
http://www.w3.org/TR/xpath-functions-30/#func-contains

XSLT 2.0 and XPath 2.0 Functions

337

cos
Returns the cosine of the argument, expressed in radians.

cos($# as xs:double?) # xs:double?

Table 17.29.

$# xs:double? The supplied angle, in
radians

xs:double?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions/math

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-cos]

Notes on the Saxon implementation

Implemented since Saxon 9.3; available whether or not support for XPath 3.0 is enabled

count
Counts the number of items in a sequence

count($arg as item()*) # xs:integer

Table 17.30.

$arg item()* The sequence whose
items are to be counted

xs:integer

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-count]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-count]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

current
Returns the item that was the current item supplied on entry to the XPath expression

http://www.w3.org/TR/xpath-functions-30/#func-cos
http://www.w3.org/TR/xpath-functions-30/#func-cos
http://www.w3.org/TR/xpath-functions/#func-count
http://www.w3.org/TR/xpath-functions/#func-count
http://www.w3.org/TR/xpath-functions-30/#func-count
http://www.w3.org/TR/xpath-functions-30/#func-count

XSLT 2.0 and XPath 2.0 Functions

338

current() # item()

Table 17.31.

item()

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 2.0 and later versions

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-current]

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-current]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

current-date
Returns the current date

current-date() # xs:date

Table 17.32.

xs:date

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-current-date]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-current-date]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

current-dateTime
Returns the current date and time. Note that this does not change during the execution of the query
or transformation.

current-dateTime() # xs:dateTimeStamp

Table 17.33.

xs:dateTimeStamp

http://www.w3.org/TR/xslt20/#function-current
http://www.w3.org/TR/xslt20/#function-current
http://www.w3.org/TR/xslt-21/#function-current
http://www.w3.org/TR/xslt-21/#function-current
http://www.w3.org/TR/xpath-functions/#func-current-date
http://www.w3.org/TR/xpath-functions/#func-current-date
http://www.w3.org/TR/xpath-functions-30/#func-current-date
http://www.w3.org/TR/xpath-functions-30/#func-current-date

XSLT 2.0 and XPath 2.0 Functions

339

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-current-dateTime]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-current-
dateTime]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

current-group
Returns the contents of the current group selected by xsl:for-each-group

current-group() # item()

Table 17.34.

item()

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 2.0 and later versions

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-current-group]

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-current-group]

Notes on the Saxon implementation

Saxon 9.3 and earlier releases implement the XSLT 2.0 definition of this function. The additional
behaviour associated with the xsl:merge instruction is implemented in Saxon 9.4.

current-grouping-key
Returns the value that is the grouping key of the current group selected by xsl:for-each-group

current-grouping-key() # xs:anyAtomicType

Table 17.35.

xs:anyAtomicType

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 2.0 and later versions

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-current-grouping-key]

http://www.w3.org/TR/xpath-functions/#func-current-dateTime
http://www.w3.org/TR/xpath-functions/#func-current-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-current-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-current-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-current-dateTime
http://www.w3.org/TR/xslt20/#function-current-group
http://www.w3.org/TR/xslt20/#function-current-group
http://www.w3.org/TR/xslt-21/#function-current-group
http://www.w3.org/TR/xslt-21/#function-current-group
http://www.w3.org/TR/xslt20/#function-current-grouping-key
http://www.w3.org/TR/xslt20/#function-current-grouping-key

XSLT 2.0 and XPath 2.0 Functions

340

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-current-grouping-key]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

current-time
Returns the current time. Note that this does not change during the execution of the query or
transformation.

current-time() # xs:time

Table 17.36.

xs:time

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-current-time]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-current-time]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

data
Returns the result of atomizing the supplied sequence

data() # xs:anyAtomicType*

Returns the result of atomizing the context item. New in XPath 3.0

Table 17.37.

xs:anyAtomicType*

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Specification [http://www.w3.org/TR/xpath-functions-11/#func-data]

data($arg as item()*) # xs:anyAtomicType*

Table 17.38.

$arg item()* The value to be
atomized

xs:anyAtomicType*

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

http://www.w3.org/TR/xslt-21/#function-current-grouping-key
http://www.w3.org/TR/xslt-21/#function-current-grouping-key
http://www.w3.org/TR/xpath-functions/#func-current-time
http://www.w3.org/TR/xpath-functions/#func-current-time
http://www.w3.org/TR/xpath-functions-30/#func-current-time
http://www.w3.org/TR/xpath-functions-30/#func-current-time
http://www.w3.org/TR/xpath-functions-11/#func-data
http://www.w3.org/TR/xpath-functions-11/#func-data

XSLT 2.0 and XPath 2.0 Functions

341

XPath 2.0 Specification [http://www.w3.org/TR/xpath-functions/#func-data]

XPath 3.0 Specification [http://www.w3.org/TR/xpath-functions-11/#func-data]

Notes on the Saxon implementation

The zero-argument version of this function is newly implemented in Saxon 9.3, and available only if
XPath 3.0 support is enabled.

dateTime
Combines the given date and time. The result has a timezone if either of the inputs has a timezone; if
they both have a timezone, then the two timezones must be the same.

dateTime($arg1 as xs:date?, $arg2 as xs:time?) # xs:dateTime?

Table 17.39.

$arg1 xs:date? The supplied date

$arg2 xs:time? The supplied time

xs:dateTime?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-dateTime]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-dateTime]

Notes on the Saxon implementation

If support for XSD 1.1 is enabled, the result will be an instance of xs:dateTimeStamp.

day-from-date
Extracts the day component of a date value

day-from-date($arg as xs:date?) # xs:integer?

Table 17.40.

$arg xs:date? The supplied date

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-day-from-date]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-day-from-date]

http://www.w3.org/TR/xpath-functions/#func-data
http://www.w3.org/TR/xpath-functions/#func-data
http://www.w3.org/TR/xpath-functions-11/#func-data
http://www.w3.org/TR/xpath-functions-11/#func-data
http://www.w3.org/TR/xpath-functions/#func-dateTime
http://www.w3.org/TR/xpath-functions/#func-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-dateTime
http://www.w3.org/TR/xpath-functions/#func-day-from-date
http://www.w3.org/TR/xpath-functions/#func-day-from-date
http://www.w3.org/TR/xpath-functions-30/#func-day-from-date
http://www.w3.org/TR/xpath-functions-30/#func-day-from-date

XSLT 2.0 and XPath 2.0 Functions

342

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

day-from-dateTime
Extracts the day component of a dateTime value

day-from-dateTime($arg as xs:dateTime?) # xs:integer?

Table 17.41.

$arg xs:dateTime? The supplied dateTime

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-day-from-
dateTime]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-day-from-
dateTime]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

days-from-duration
Extracts the days component of a dayTimeDuration value

days-from-duration($arg as xs:duration?) # xs:integer?

Table 17.42.

$arg xs:duration? The supplied dateTime

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-days-from-
duration]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-days-from-
duration]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

http://www.w3.org/TR/xpath-functions/#func-day-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-day-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-day-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-day-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-day-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-day-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-days-from-duration
http://www.w3.org/TR/xpath-functions/#func-days-from-duration
http://www.w3.org/TR/xpath-functions/#func-days-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-days-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-days-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-days-from-duration

XSLT 2.0 and XPath 2.0 Functions

343

deep-equal
Compares two sequences for deep equality; string values are compared using the specified collation;
nodes are compared for deep equality of names and content.

deep-equal($parameter1 as item()*, $parameter2 as item()*) #
xs:boolean

Table 17.43.

$parameter1 item()* The first value to be
compared

$parameter2 item()* The second value to be
compared

xs:boolean

deep-equal($parameter1 as item()*, $parameter2 as item()*,
$collation as xs:string) # xs:boolean

Table 17.44.

$parameter1 item()* The first value to be
compared

$parameter2 item()* The second value to be
compared

$collation xs:string The collation to be used
whenever strings are
compared

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-deep-equal]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-deep-equal]

Notes on the Saxon implementation

A Saxon-specific variant of this function is available, with additional comparison options: see
saxon:deep-equal

default-collation
Returns the name of the default collation. If no collation has been set explicitly this will be the URI
of the Unicode codepoint collation.

default-collation() # xs:string

Table 17.45.

http://www.w3.org/TR/xpath-functions/#func-deep-equal
http://www.w3.org/TR/xpath-functions/#func-deep-equal
http://www.w3.org/TR/xpath-functions-30/#func-deep-equal
http://www.w3.org/TR/xpath-functions-30/#func-deep-equal

XSLT 2.0 and XPath 2.0 Functions

344

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-default-collation]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-default-
collation]

Notes on the Saxon implementation

Various Saxon APIs allow the default collation to be set for a transformation or query. It is also possible
to set this from the command line, by using of the option --defaultCollation.

distinct-values
Returns the set of distinct values present in a given sequence.

distinct-values($arg as xs:anyAtomicType*) # xs:anyAtomicType*

Table 17.46.

$arg xs:anyAtomicType* The sequence to be de-
duplicated

xs:anyAtomicType*

distinct-values($arg as xs:anyAtomicType*, $collation as
xs:string) # xs:anyAtomicType*

Table 17.47.

$arg xs:anyAtomicType* The sequence to be de-
duplicated

$collation xs:string The collation used for
comparing strings

xs:anyAtomicType*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-distinct-values]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-distinct-
values]

Notes on the Saxon implementation

The current Saxon implementation returns the values in "order of first appearance", but it cannot be
assumed that this will always remain the case.

http://www.w3.org/TR/xpath-functions/#func-default-collation
http://www.w3.org/TR/xpath-functions/#func-default-collation
http://www.w3.org/TR/xpath-functions-30/#func-default-collation
http://www.w3.org/TR/xpath-functions-30/#func-default-collation
http://www.w3.org/TR/xpath-functions-30/#func-default-collation
http://www.w3.org/TR/xpath-functions/#func-distinct-values
http://www.w3.org/TR/xpath-functions/#func-distinct-values
http://www.w3.org/TR/xpath-functions-30/#func-distinct-values
http://www.w3.org/TR/xpath-functions-30/#func-distinct-values
http://www.w3.org/TR/xpath-functions-30/#func-distinct-values

XSLT 2.0 and XPath 2.0 Functions

345

doc
Retrieves an XML document located at the specified URI, parses it, and returns its document node

doc($uri as xs:string?) # document-node()?

Table 17.48.

$uri xs:string? The URI of the required
document (relative to
the static base URI)

document-node()?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-doc]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-doc]

Notes on the Saxon implementation

By default the URI is dereferenced using the conventional URL behaviour, as implement by the Java
runtime library; this behaviour can be modified by means of a user-supplied URIResolver.

If the same URI is requested repeatedly, Saxon retains the document node in memory and returns the
same instance each time.

The way the URI is handled depends on the URIResolver in use. The standard URI resolver
has an option (set using -p on the command line, or via options on the Configuration
or TransformerFactory classes) to recognize query parameters in the URI. These are
keyword=value pairs, separated by semicolons or ampersand characters, giving options for parsing
the file located via the URI. The options that are then recognized are:

• validation=strict|lax|preserve|strip: determines how the input document will be
validated. The options "strict" and "lax" require Saxon-EE.

• strip-space=yes|no|ignorable: determines whether whitespace-only text nodes will be
stripped from the source document. (Such nodes are stripped if this is requested either using
this option, or using xsl:strip-space declarations in the stylesheet.) The value "ignorable" causes
whitespace text nodes to be stripped if they belong to an element defined in a DTD or schema as
having element-only content.

• parser=full.class.name: determines the name of the parser (XMLReader) to be used to
parse this input file. For example, parser=org.ccil.cowan.tagsoup.Parser causes
John Cowan's TagSoup parser for HTML to be used.

doc-available
Returns true if a document with the given URI can be successfully loaded, false otherwise.

doc-available($uri as xs:string?) # xs:boolean

Table 17.49.

http://www.w3.org/TR/xpath-functions/#func-doc
http://www.w3.org/TR/xpath-functions/#func-doc
http://www.w3.org/TR/xpath-functions-30/#func-doc
http://www.w3.org/TR/xpath-functions-30/#func-doc

XSLT 2.0 and XPath 2.0 Functions

346

$uri xs:string? The URI of the required
document (relative to
the static base URI)

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-doc-available]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-doc-available]

Notes on the Saxon implementation

Saxon effectively executes the doc() function and returns true if it succeeded; as a side-effect, the
document will be available in memory for use when the doc() function is subsequently called with
this URI.

A user-supplied URIResolver is invoked in the same way as for the doc() function.

document
Single argument function: Loads one or more documents identified by their URIs. URIs are handled
by the URIResolver in the same way as the doc() function.

Two argument functionLoads one or more documents identified by their URIs, using the base URI
of the node given in the second argument to resolve any relative URIs. URIs are handled by the
URIResolver in the same way as the doc() function.

document($uri as item()*) # node()*

Table 17.50.

$uri item()*

node()*

document($uri as item()*, $base as node()*) # node()*

Table 17.51.

$uri item()*

$base node()*

node()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 2.0 and later versions

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-document]

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-document]

http://www.w3.org/TR/xpath-functions/#func-doc-available
http://www.w3.org/TR/xpath-functions/#func-doc-available
http://www.w3.org/TR/xpath-functions-30/#func-doc-available
http://www.w3.org/TR/xpath-functions-30/#func-doc-available
http://www.w3.org/TR/xslt20/#function-document
http://www.w3.org/TR/xslt20/#function-document
http://www.w3.org/TR/xslt-21/#function-document
http://www.w3.org/TR/xslt-21/#function-document

XSLT 2.0 and XPath 2.0 Functions

347

Notes on the Saxon implementation

The Saxon implementation calls the same underlying code as the doc function; the differences are in
the way relative URIs are handled, and the fact that a single call can process multiple URIs.

document-uri
Returns the URI of a document

document-uri() # xs:anyURI?

Table 17.52.

xs:anyURI?

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Specification [http://www.w3.org/TR/xpath-functions-11/#func-document-uri]

document-uri($arg as node()?) # xs:anyURI?

Table 17.53.

$arg node()? The node whose
document URI is
required

xs:anyURI?

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Specification [http://www.w3.org/TR/xpath-functions/#func-document-uri]

XPath 3.0 Specification [http://www.w3.org/TR/xpath-functions-11/#func-document-uri]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

element-available
Determines whether a particular instruction (typically, an extension element) is available for use in
a stylesheet

element-available($arg as xs:string) # xs:boolean

Table 17.54.

$arg xs:string The name of the
extension element (a
lexical QName)

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 2.0 and later versions

http://www.w3.org/TR/xpath-functions-11/#func-document-uri
http://www.w3.org/TR/xpath-functions-11/#func-document-uri
http://www.w3.org/TR/xpath-functions/#func-document-uri
http://www.w3.org/TR/xpath-functions/#func-document-uri
http://www.w3.org/TR/xpath-functions-11/#func-document-uri
http://www.w3.org/TR/xpath-functions-11/#func-document-uri

XSLT 2.0 and XPath 2.0 Functions

348

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-element-available]

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-element-available]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

element-with-id
Returns the sequence of element nodes that have an ID value matching the value of one or more of
the IDREF values supplied in $arg.

element-with-id($arg as xs:string*) # element()*

Table 17.55.

$arg xs:string* The ID value being
sought, within the
document containing
the context node

element()*

element-with-id($arg as xs:string*, $node as node()) # element()*

Table 17.56.

$arg xs:string* The ID value being
sought

$node node() A node (typically the
root) of the document
being searched

element()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-element-with-
id]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

empty
Returns true if the given sequence is empty

empty($arg as item()*) # xs:boolean

Table 17.57.

http://www.w3.org/TR/xslt20/#function-element-available
http://www.w3.org/TR/xslt20/#function-element-available
http://www.w3.org/TR/xslt-21/#function-element-available
http://www.w3.org/TR/xslt-21/#function-element-available
http://www.w3.org/TR/xpath-functions-30/#func-element-with-id
http://www.w3.org/TR/xpath-functions-30/#func-element-with-id
http://www.w3.org/TR/xpath-functions-30/#func-element-with-id

XSLT 2.0 and XPath 2.0 Functions

349

$arg item()* The supplied sequence

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-empty]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-empty]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

encode-for-uri
Applies the %HH escaping convention to a URI, escaping both disallowed characters and reserved
characters such as "/" and ":"

encode-for-uri($uri-part as xs:string?) # xs:string

Table 17.58.

$uri-part xs:string? The string to be encoded
for inclusion in a URI

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-encode-for-uri]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-encode-for-uri]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

ends-with
Returns true if the first string ends with the second string

ends-with($arg1 as xs:string?, $arg2 as xs:string?) # xs:boolean

Table 17.59.

$arg1 xs:string? The containing string

$arg2 xs:string? The supposed ending of
the string

xs:boolean

http://www.w3.org/TR/xpath-functions/#func-empty
http://www.w3.org/TR/xpath-functions/#func-empty
http://www.w3.org/TR/xpath-functions-30/#func-empty
http://www.w3.org/TR/xpath-functions-30/#func-empty
http://www.w3.org/TR/xpath-functions/#func-encode-for-uri
http://www.w3.org/TR/xpath-functions/#func-encode-for-uri
http://www.w3.org/TR/xpath-functions-30/#func-encode-for-uri
http://www.w3.org/TR/xpath-functions-30/#func-encode-for-uri

XSLT 2.0 and XPath 2.0 Functions

350

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as
xs:string) # xs:boolean

Table 17.60.

$arg1 xs:string? The containing string

$arg2 xs:string? The supposed ending of
the string

$collation xs:string The collation to be
used for comparing
characters

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-ends-with]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-ends-with]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

environment-variable
Returns the value of a system environment variable, if it exists.

Implemented in Saxon using the Java method System.getenv(). The rule in the XPath
specification requiring the result to be deterministic is not enforced.

environment-variable($name as xs:string) # xs:string?

Table 17.61.

$name xs:string The name of the
required environment
variable

xs:string?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-environment-
variable]

Notes on the Saxon implementation

Implemented in Saxon 9.3 under the name get-environment-variable; name changed to
environment-variable in Saxon 9.4. Requires XPath 3.0 to be enabled.

http://www.w3.org/TR/xpath-functions/#func-ends-with
http://www.w3.org/TR/xpath-functions/#func-ends-with
http://www.w3.org/TR/xpath-functions-30/#func-ends-with
http://www.w3.org/TR/xpath-functions-30/#func-ends-with
http://www.w3.org/TR/xpath-functions-30/#func-environment-variable
http://www.w3.org/TR/xpath-functions-30/#func-environment-variable
http://www.w3.org/TR/xpath-functions-30/#func-environment-variable

XSLT 2.0 and XPath 2.0 Functions

351

error
Raises an error.

error() # none

Table 17.62.

none

error($code as xs:QName) # none

Table 17.63.

$code xs:QName The error code to be
returned

none

error($code as xs:QName?, $description as xs:string) # none

Table 17.64.

$code xs:QName? The error code to be
returned

$description xs:string An error message

none

error($code as xs:QName?, $description as xs:string, $error-
object as item()*) # none

Table 17.65.

$code xs:QName? The error code to be
returned

$description xs:string An error message

$error-object item()* An object or value
associated with the error

none

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-error]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-error]

Notes on the Saxon implementation

Saxon allows the first argument to be an empty sequence, treating this as equivalent to calling
fn:error() with no arguments. The error code (local part and namespace URI part) is recorded as part

http://www.w3.org/TR/xpath-functions/#func-error
http://www.w3.org/TR/xpath-functions/#func-error
http://www.w3.org/TR/xpath-functions-30/#func-error
http://www.w3.org/TR/xpath-functions-30/#func-error

XSLT 2.0 and XPath 2.0 Functions

352

of the exception that's supplied to a user-defined JAXP ErrorListener, or that is returned to the
calling application. The value of the $description is available by calling getMessage() on
the Exception object. The error details are also available to the catch part of a call when using
the XQuery 3.0 or XSLT 3.0 try/catch construct.

escape-html-uri
Applies the %HH escaping convention to a URI, according to the rules of the HTML specification: that
is, non-ASCII characters are escaped, but all ASCII characters, including spaces, are retained intact.

escape-html-uri($uri as xs:string?) # xs:string

Table 17.66.

$uri xs:string? The uri to be escaped

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-escape-html-uri]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-escape-html-
uri]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

exactly-one
Checks whether $arg contains exactly one item; fails if it is empty or contains multiple items.

exactly-one($arg as item()*) # item()

Table 17.67.

$arg item()* The sequence to be
tested

item()

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-exactly-one]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-exactly-one]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

http://www.w3.org/TR/xpath-functions/#func-escape-html-uri
http://www.w3.org/TR/xpath-functions/#func-escape-html-uri
http://www.w3.org/TR/xpath-functions-30/#func-escape-html-uri
http://www.w3.org/TR/xpath-functions-30/#func-escape-html-uri
http://www.w3.org/TR/xpath-functions-30/#func-escape-html-uri
http://www.w3.org/TR/xpath-functions/#func-exactly-one
http://www.w3.org/TR/xpath-functions/#func-exactly-one
http://www.w3.org/TR/xpath-functions-30/#func-exactly-one
http://www.w3.org/TR/xpath-functions-30/#func-exactly-one

XSLT 2.0 and XPath 2.0 Functions

353

exists
Returns true if the given sequence is not empty

exists($arg as item()*) # xs:boolean

Table 17.68.

$arg item()* The input sequence

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-exists]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-exists]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

exp
Returns e to the power of $arg.

exp($arg as xs:double) # xs:double

Table 17.69.

$arg xs:double The input number

xs:double

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions/math

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-exp]

Notes on the Saxon implementation

Newly implemented in Saxon 9.4; available whether or not XPath 3.0 is enabled.

exp10
Returns 10 to the power of $arg.

exp10($arg as xs:double) # xs:double

Table 17.70.

http://www.w3.org/TR/xpath-functions/#func-exists
http://www.w3.org/TR/xpath-functions/#func-exists
http://www.w3.org/TR/xpath-functions-30/#func-exists
http://www.w3.org/TR/xpath-functions-30/#func-exists
http://www.w3.org/TR/xpath-functions-30/#func-exp
http://www.w3.org/TR/xpath-functions-30/#func-exp

XSLT 2.0 and XPath 2.0 Functions

354

$arg xs:double The input number

xs:double

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions/math

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-exp10]

Notes on the Saxon implementation

Newly implemented in Saxon 9.4; available whether or not XPath 3.0 is enabled.

false
Returns the boolean value false

false() # xs:boolean

Table 17.71.

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-false]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-false]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

filter
Returns those items from the sequence $seq for which the supplied function $f returns true.

filter($f as function(item()) as xs:boolean, $seq as item()*) #
item()*

Table 17.72.

$f function(item()) as
xs:boolean

The filtering function
(used to test each item in
the sequence

$seq item()* The sequence to be
filtered

item()*

http://www.w3.org/TR/xpath-functions-30/#func-exp10
http://www.w3.org/TR/xpath-functions-30/#func-exp10
http://www.w3.org/TR/xpath-functions/#func-false
http://www.w3.org/TR/xpath-functions/#func-false
http://www.w3.org/TR/xpath-functions-30/#func-false
http://www.w3.org/TR/xpath-functions-30/#func-false

XSLT 2.0 and XPath 2.0 Functions

355

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-filter]

Notes on the Saxon implementation

Newly implemented in Saxon 9.3. Requires XPath 3.0 to be enabled.

floor
Rounds a number towards minus infinity

floor($arg as numeric?) # numeric?

Table 17.73.

$arg numeric? The input number

numeric?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-floor]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-floor]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

fold-left
Processes the supplied sequence from left to right, applying the supplied function repeatedly to each
item in turn, together with an accumulated result value.

fold-left($f as function(item()*, item()) as item()*, $zero as item()*,
$seq as item()*) # item()*

Table 17.74.

$f function(item()*,
item()) as item()*

The function to be
applied to each item in
the sequence

$zero item()* The initial value (the
value to be returned if
the sequence is empty)

$seq item()* The input sequence

http://www.w3.org/TR/xpath-functions-30/#func-filter
http://www.w3.org/TR/xpath-functions-30/#func-filter
http://www.w3.org/TR/xpath-functions/#func-floor
http://www.w3.org/TR/xpath-functions/#func-floor
http://www.w3.org/TR/xpath-functions-30/#func-floor
http://www.w3.org/TR/xpath-functions-30/#func-floor

XSLT 2.0 and XPath 2.0 Functions

356

item()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-fold-left]

Notes on the Saxon implementation

Newly implemented in Saxon 9.3. Requires XPath 3.0 to be enabled.

fold-right
Processes the supplied sequence from right to left, applying the supplied function repeatedly to each
item in turn, together with an accumulated result value.

fold-right($f as function(item(), item()*) as item()*, $zero as item()*,
$seq as item()*) # item()*

Table 17.75.

$f function(item(),
item()*) as item()*

The function to be
applied to each item in
the sequence

$zero item()* The initial value (the
value to be returned if
the sequence is empty)

$seq item()* The input sequence

item()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-fold-right]

Notes on the Saxon implementation

Newly implemented in Saxon 9.3. Requires XPath 3.0 to be enabled.

format-date

format-date($value as xs:date?, $picture as xs:string) # xs:string?

Formats a date, using a format controlled by the picture string. The result is equivalent to the 5-
argument form of the function, with the third, fourth, and fifth arguments set to an empty sequence.

Table 17.76.

http://www.w3.org/TR/xpath-functions-30/#func-fold-left
http://www.w3.org/TR/xpath-functions-30/#func-fold-left
http://www.w3.org/TR/xpath-functions-30/#func-fold-right
http://www.w3.org/TR/xpath-functions-30/#func-fold-right

XSLT 2.0 and XPath 2.0 Functions

357

$value xs:date? The date to be formatted

$picture xs:string Picture showing how
the date is to be
formatted

xs:string?

format-date($value as xs:date?, $picture as xs:string, $language
as xs:string?, $calendar as xs:string?, $place as xs:string?) #
xs:string?

Formats a date, using a format controlled by the picture string.

Table 17.77.

$value xs:date? The date to be formatted

$picture xs:string Picture showing how
the date is to be
formatted

$language xs:string? The language for the
output

$calendar xs:string? The calendar for the
output

$place xs:string? The country or Olson
timezone associated
with the event

xs:string?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-format-date]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-format-date]

Notes on the Saxon implementation

See format-dateTime

format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string) #
xs:string?

Formats a dateTime, using a format controlled by the picture string. The result is equivalent to the 5-
argument form of the function, with the third, fourth, and fifth arguments set to an empty sequence.

Table 17.78.

$value xs:dateTime? The dateTime to be
formatted

http://www.w3.org/TR/xpath-functions/#func-format-date
http://www.w3.org/TR/xpath-functions/#func-format-date
http://www.w3.org/TR/xpath-functions-30/#func-format-date
http://www.w3.org/TR/xpath-functions-30/#func-format-date

XSLT 2.0 and XPath 2.0 Functions

358

$picture xs:string Picture showing how
the dateTime is to be
formatted

xs:string?

format-dateTime($value as xs:dateTime?, $picture as xs:string,
$language as xs:string?, $calendar as xs:string?, $place as
xs:string?) # xs:string?

Formats a dateTime, using a format controlled by the picture string.

Table 17.79.

$value xs:dateTime? The dateTime to be
formatted

$picture xs:string Picture showing how
the dateTime is to be
formatted

$language xs:string? The language for the
output

$calendar xs:string? The calendar for the
output

$place xs:string? The country or Olson
timezone where the
event took place

xs:string?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-format-dateTime]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-format-
dateTime]

Notes on the Saxon implementation

Formats a date, using a format controlled by the picture string. If no language is specified, the value
is taken from the current Java locale. If the language (explicitly supplied or defaulted) is other than
"en", the system tries to locate a localization class for the language (called, for historic reasons, a ; this
class must provide methods to perform the localization.

Support for English (language="en") is built-in in all versions of the product.

In Saxon-PE and Saxon-EE, support for a variety of other European languages is also built
in: specifically da, de, fr, fr_BE, he, it, nl, nl_BE, and sv. The localization modules for
these languages have names such as net.sf.saxon.option.local.Numberer_da. These
modules are not built in with Saxon-HE, but they are available as open source code, and it
is possible to configure them by writing a subclass of LocalizerFactory [Javadoc:
net.sf.saxon.lib.LocalizerFactory] and registering it with the Configuration
[Javadoc: net.sf.saxon.Configuration].

http://www.w3.org/TR/xpath-functions/#func-format-dateTime
http://www.w3.org/TR/xpath-functions/#func-format-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-format-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-format-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-format-dateTime

XSLT 2.0 and XPath 2.0 Functions

359

Localization modules for other languages can be configured. They
are written to implement the interface Numberer [Javadoc:
net.sf.saxon.lib.Numberer], typically as subclasses of AbstractNumberer
[Javadoc: net.sf.saxon.expr.number.AbstractNumberer]. In Saxon-HE they
are configured in the same way as the system-supplied languages. In Saxon-PE and
Saxon-EE they can be registered in one of two ways: programmatically using the
call Configuration.getLocalizerFactory().setLanguageProperties("ja",
props)) where props is a Properties object in which the class property is set to the name
of the relevant Numberer class; or by setting an entry in the configuration file. For more information
on writing localization modules, see Localizing numbers and dates.

If a calendar other than AD or ISO is specified, the result is prefixed "[Calendar: AD]" and is otherwise
output as if the default calendar were used.

The country argument is currently used only when the format requests output of timezones by name
(using [ZN]): for example with language="en", country="gb" and a date that falls in British Summer
Time, +01:00 is output as "BST". This is problematic, because the information is not really available:
the data type maintains only a time zone offset, and different countries (time zones) use different names
for the same offset, at different times of year. If the value is a date or dateTime, and if the country
argument is supplied, Saxon uses the Java database of time zones and daylight savings time (summer
time) changeover dates to work out the most likely timezone applicable to the date in question.

If the timezone is formatted as [ZN,6] (specifically, with a minumum length of 6 or more) then the
Olsen timezone name is output (again, this requires the country to be supplied). The Olsen timezone
name generally takes the form Continent/City, for example "Europe/London" or "America/
Los_Angeles". If the date/time is in daylight savings time for that timezone, an asterisk is appended
to the Olsen timezone name.

When formatting times in the 12-hour clock, with language="en", the abbreviations "a.m." and "p.m."
are used. These can be shortened to "am" and "pm" by giving a maximum width of 2 ([PN,*-2]).
The US convention of denoting noon as "pm" and midnight as "am" is followed, unless the maximum
width is 8 or more ([PN,*-8]) in which case these values are represented as "noon" and "midnight"
respectively.

format-integer
Formats an integer according to a given picture string, using the conventions of a given natural
language if specified.

format-integer($value as xs:integer?, $picture as xs:string) #
xs:string

Table 17.80.

$value xs:integer? The integer to be
formatted

$picture xs:string Picture showing how
the integer is to be
formatted

xs:string

format-integer($value as xs:integer?, $picture as xs:string,
$language as xs:language) # xs:string

Table 17.81.

XSLT 2.0 and XPath 2.0 Functions

360

$value xs:integer? The integer to be
formatted

$picture xs:string Picture showing how
the integer is to be
formatted

$language xs:language Language used for the
output

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-format-integer]

Notes on the Saxon implementation

Newly implemented in Saxon 9.3. Requires XPath 3.0 to be enabled.

format-number

format-number($value as numeric?, $picture as xs:string) #
xs:string

Formats a number as specified by a picture string, using the default decimal format

Table 17.82.

$value numeric? The number to be
formatted

$picture xs:string Picture showing how
the number is to be
formatted

xs:string

format-number($value as numeric?, $picture as xs:string,
$decimal-format-name as xs:string) # xs:string

Formats a number as specified by a picture string, using the named decimal format

Table 17.83.

$value numeric? The number to be
formatted

$picture xs:string Picture showing how
the number is to be
formatted

$decimal-format-name xs:string Name of a decimal
format definition
defined in the context

xs:string

http://www.w3.org/TR/xpath-functions-30/#func-format-integer
http://www.w3.org/TR/xpath-functions-30/#func-format-integer

XSLT 2.0 and XPath 2.0 Functions

361

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-format-number]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-format-
number]

Notes on the Saxon implementation

From Saxon 9.3 this becomes available for XPath/XQuery as well as XSLT. The query prolog
declarations for defining a decimal format in XQuery become available in Saxon 9.4.

format-time
Formats a time value

format-time($value as xs:time?, $picture as xs:string) # xs:string?

Table 17.84.

$value xs:time? The xs:time value to be
formatted

$picture xs:string Picture showing how
the time should be
displayed

xs:string?

format-time($value as xs:time?, $picture as xs:string, $language
as xs:string?, $calendar as xs:string?, $place as xs:string?) #
xs:string?

Table 17.85.

$value xs:time? The xs:time value to be
formatted

$picture xs:string Picture showing how
the time should be
displayed

$language xs:string? The language for the
output

$calendar xs:string? The calendar for the
output

$place xs:string? The country or Olsen
timezone where the
event took place

xs:string?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

http://www.w3.org/TR/xpath-functions/#func-format-number
http://www.w3.org/TR/xpath-functions/#func-format-number
http://www.w3.org/TR/xpath-functions-30/#func-format-number
http://www.w3.org/TR/xpath-functions-30/#func-format-number
http://www.w3.org/TR/xpath-functions-30/#func-format-number

XSLT 2.0 and XPath 2.0 Functions

362

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-format-time]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-format-time]

Notes on the Saxon implementation

See format-dateTime

function-arity
Returns the arity of the function identified by a function item.

function-arity($func as function(*)) # xs:integer

Table 17.86.

$func function(*) The function item
whose arity is required

xs:integer

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-function-arity]

Notes on the Saxon implementation

Newly implemented in Saxon 9.3. Requires XPath 3.0 to be enabled.

function-available

function-available($function as xs:string) # xs:boolean

Determines whether a function with a given name (regardless of arity) is available in the context.

Table 17.87.

$function xs:string The name of the
requested function, as a
lexical QName

xs:boolean

function-available($function as xs:string, $arity as xs:integer) #
xs:boolean

Determines whether a function with the given name and arity is available in the context.

Table 17.88.

http://www.w3.org/TR/xpath-functions/#func-format-time
http://www.w3.org/TR/xpath-functions/#func-format-time
http://www.w3.org/TR/xpath-functions-30/#func-format-time
http://www.w3.org/TR/xpath-functions-30/#func-format-time
http://www.w3.org/TR/xpath-functions-30/#func-function-arity
http://www.w3.org/TR/xpath-functions-30/#func-function-arity

XSLT 2.0 and XPath 2.0 Functions

363

$function xs:string The name of the
requested function, as a
lexical QName

$arity xs:integer The arity of the
requested function
(number of arguments)

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 2.0 and later versions

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-function-available]

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-function-available]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

function-lookup

function-lookup($function as xs:string, $arity as xs:integer) #
xs:boolean

Determines whether a function with a given name and arity is available in the context, and if so, returns
a function item that can be used to call the function.

The function is useful to allow fallback action when a function is not available: for example, when
calling an XPath 3.0 function, the code can be conditional on whether the 3.0 function is or is not
available.

Table 17.89.

$function xs:string The name of the
requested function, as
an xs:QName value

$arity xs:integer The arity of the
requested function
(number of arguments)

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-function-
lookup]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

http://www.w3.org/TR/xslt20/#function-function-available
http://www.w3.org/TR/xslt20/#function-function-available
http://www.w3.org/TR/xslt-21/#function-function-available
http://www.w3.org/TR/xslt-21/#function-function-available
http://www.w3.org/TR/xpath-functions-30/#func-function-lookup
http://www.w3.org/TR/xpath-functions-30/#func-function-lookup
http://www.w3.org/TR/xpath-functions-30/#func-function-lookup

XSLT 2.0 and XPath 2.0 Functions

364

function-name
Returns the name of the function identified by a function item.

function-name($func as function(*)) # xs:QName?

Table 17.90.

$func function(*) The function whose
name is required

xs:QName?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-function-
name]

Notes on the Saxon implementation

Newly implemented in Saxon 9.3. Requires XPath 3.0 to be enabled.

generate-id

generate-id() # xs:string

Returns a generated unique ASCII identifier for the context node

Table 17.91.

xs:string

generate-id($arg as node()?) # xs:string

Returns a generated unique ASCII identifier for the specified node

Table 17.92.

$arg node()? The node for which a
generated identifier is
required

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-generate-id]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-generate-id]

http://www.w3.org/TR/xpath-functions-30/#func-function-name
http://www.w3.org/TR/xpath-functions-30/#func-function-name
http://www.w3.org/TR/xpath-functions-30/#func-function-name
http://www.w3.org/TR/xpath-functions/#func-generate-id
http://www.w3.org/TR/xpath-functions/#func-generate-id
http://www.w3.org/TR/xpath-functions-30/#func-generate-id
http://www.w3.org/TR/xpath-functions-30/#func-generate-id

XSLT 2.0 and XPath 2.0 Functions

365

Notes on the Saxon implementation

Iin Saxon 9.3 this becomes available for use in XPath and XQuery as well as XSLT, provided that
XPath 3.0 to be enabled.

has-children
Asks whether the supplied node has one or more children.

has-children() # xs:boolean

Table 17.93.

xs:boolean

has-children($seq as node()) # xs:boolean

Table 17.94.

$seq node() The input node

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-has-children]

Notes on the Saxon implementation

Not yet implemented in Saxon 9.4

head
Returns the first item in a sequence.

head($arg as item()*) # item()?

Table 17.95.

$arg item()* The sequence whose
first item is required

item()?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-head]

http://www.w3.org/TR/xpath-functions-30/#func-has-children
http://www.w3.org/TR/xpath-functions-30/#func-has-children
http://www.w3.org/TR/xpath-functions-30/#func-head
http://www.w3.org/TR/xpath-functions-30/#func-head

XSLT 2.0 and XPath 2.0 Functions

366

Notes on the Saxon implementation

Newly implemented in Saxon 9.3. Requires XPath 3.0 to be enabled.

hours-from-dateTime
Extracts the hour component of a dateTime value

hours-from-dateTime($arg as xs:dateTime?) # xs:integer?

Table 17.96.

$arg xs:dateTime? The dateTime value
whose hour component
is required

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-hours-from-
dateTime]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-hours-from-
dateTime]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

hours-from-duration
Extracts the hours component of a dayTimeDuration value

hours-from-duration($arg as xs:duration?) # xs:integer?

Table 17.97.

$arg xs:duration? The duration value
whose hours component
is required

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-hours-from-
duration]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-hours-from-
duration]

http://www.w3.org/TR/xpath-functions/#func-hours-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-hours-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-hours-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-hours-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-hours-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-hours-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-hours-from-duration
http://www.w3.org/TR/xpath-functions/#func-hours-from-duration
http://www.w3.org/TR/xpath-functions/#func-hours-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-hours-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-hours-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-hours-from-duration

XSLT 2.0 and XPath 2.0 Functions

367

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

hours-from-time
Extracts the hours component of a time value. Note that this is from the localized value, not the
normalized value: for example if the supplied time value is 01:23:00+05:00 then the result is 1.

hours-from-time($arg as xs:time?) # xs:integer?

Table 17.98.

$arg xs:time? The time value whose
hours component is
required

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-hours-from-time]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-hours-from-
time]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

id
Finds the elements with given ID attribute values

id($arg as xs:string*) # element()*

Table 17.99.

$arg xs:string* The ID value being
sought

element()*

id($arg as xs:string*, $node as node()) # element()*

Table 17.100.

$arg xs:string* The ID value being
sought

$node node() The document in which
the search takes place

element()*

http://www.w3.org/TR/xpath-functions/#func-hours-from-time
http://www.w3.org/TR/xpath-functions/#func-hours-from-time
http://www.w3.org/TR/xpath-functions-30/#func-hours-from-time
http://www.w3.org/TR/xpath-functions-30/#func-hours-from-time
http://www.w3.org/TR/xpath-functions-30/#func-hours-from-time

XSLT 2.0 and XPath 2.0 Functions

368

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-id]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-id]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

idref
Finds the nodes that link to the element with a given ID value. These will be element or attribute nodes
marked by virtue of schema or DTD validation as IDREF or IDREFS values.

idref($arg as xs:string*) # node()*

Table 17.101.

$arg xs:string* The ID value being
sought

node()*

idref($arg as xs:string*, $node as node()) # node()*

Table 17.102.

$arg xs:string* The ID value being
sought

$node node() The document in which
the search takes place

node()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-idref]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-idref]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

implicit-timezone
Returns the implicit timezone.

http://www.w3.org/TR/xpath-functions/#func-id
http://www.w3.org/TR/xpath-functions/#func-id
http://www.w3.org/TR/xpath-functions-30/#func-id
http://www.w3.org/TR/xpath-functions-30/#func-id
http://www.w3.org/TR/xpath-functions/#func-idref
http://www.w3.org/TR/xpath-functions/#func-idref
http://www.w3.org/TR/xpath-functions-30/#func-idref
http://www.w3.org/TR/xpath-functions-30/#func-idref

XSLT 2.0 and XPath 2.0 Functions

369

implicit-timezone() # xs:dayTimeDuration

Table 17.103.

xs:dayTimeDuration

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-implicit-timezone]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-implicit-
timezone]

Notes on the Saxon implementation

The implicit timezone in Saxon is always the same as the timezone component of the value returned
by current-dateTime().

index-of
Finds the positions of items in a sequence that match the second argument

index-of($seq as xs:anyAtomicType*, $search as
xs:anyAtomicType) # xs:integer*

Table 17.104.

$seq xs:anyAtomicType* The sequence being
searched

$search xs:anyAtomicType The value being sought

xs:integer*

index-of($seq as xs:anyAtomicType*, $search as
xs:anyAtomicType, $collation as xs:string) # xs:integer*

Table 17.105.

$seq xs:anyAtomicType* The sequence being
searched

$search xs:anyAtomicType The value being sought

$collation xs:string The collation to be used
for comparing strings

xs:integer*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

http://www.w3.org/TR/xpath-functions/#func-implicit-timezone
http://www.w3.org/TR/xpath-functions/#func-implicit-timezone
http://www.w3.org/TR/xpath-functions-30/#func-implicit-timezone
http://www.w3.org/TR/xpath-functions-30/#func-implicit-timezone
http://www.w3.org/TR/xpath-functions-30/#func-implicit-timezone

XSLT 2.0 and XPath 2.0 Functions

370

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-index-of]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-index-of]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

innermost
Given a sequence of nodes, returns those nodes in the sequence that have no descendant that is also
in the sequence.

innermost($seq as node()*) # node()*

Table 17.106.

$seq node()* The input sequence

node()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 3.0 only (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-innermost]

Notes on the Saxon implementation

Not yet implemented in Saxon 9.4

in-scope-prefixes
Returns the names of the namespaces that are in scope for an element. Except for the unnamed
namespace, which is represented by the string "", the names will be of type xs:NCName.

in-scope-prefixes($element as element()) # xs:string*

Table 17.107.

$element element() The element node
whose in-scope
namespace prefixes are
required

xs:string*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-in-scope-prefixes]

http://www.w3.org/TR/xpath-functions/#func-index-of
http://www.w3.org/TR/xpath-functions/#func-index-of
http://www.w3.org/TR/xpath-functions-30/#func-index-of
http://www.w3.org/TR/xpath-functions-30/#func-index-of
http://www.w3.org/TR/xslt-21/#function-innermost
http://www.w3.org/TR/xslt-21/#function-innermost
http://www.w3.org/TR/xpath-functions/#func-in-scope-prefixes
http://www.w3.org/TR/xpath-functions/#func-in-scope-prefixes

XSLT 2.0 and XPath 2.0 Functions

371

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-in-scope-
prefixes]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

insert-before
Insert an item into a sequence

insert-before($target as item()*, $position as xs:integer, $inserts
as item()*) # item()*

Table 17.108.

$target item()* Input sequence, into
which new values are
inserted

$position xs:integer The position of the item
before which the new
values are inserted

$inserts item()* The values to be
inserted into the
sequence

item()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-insert-before]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-insert-before]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

iri-to-uri
Applies the %HH escaping convention to a URI, escaping only disallowed characters (but not reserved
characters such as "/" and ":")

iri-to-uri($iri as xs:string?) # xs:string

Table 17.109.

$iri xs:string? The supplied IRI which
will be escaped to form
a valid URI

xs:string

http://www.w3.org/TR/xpath-functions-30/#func-in-scope-prefixes
http://www.w3.org/TR/xpath-functions-30/#func-in-scope-prefixes
http://www.w3.org/TR/xpath-functions-30/#func-in-scope-prefixes
http://www.w3.org/TR/xpath-functions/#func-insert-before
http://www.w3.org/TR/xpath-functions/#func-insert-before
http://www.w3.org/TR/xpath-functions-30/#func-insert-before
http://www.w3.org/TR/xpath-functions-30/#func-insert-before

XSLT 2.0 and XPath 2.0 Functions

372

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-iri-to-uri]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-iri-to-uri]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

lang

lang($testlang as xs:string?) # xs:boolean

Returns true if the xml:lang value for the context node matches the given language

Table 17.110.

$testlang xs:string? The language being
tested for

xs:boolean

lang($testlang as xs:string?, $node as node()) # xs:boolean

Returns true if the xml:lang value for the supplied node matches the given language

Table 17.111.

$testlang xs:string? The language being
tested for

$node node() The node being tested

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-lang]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-lang]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

last
Returns the context size (the size of the sequence of items currently being processed)

http://www.w3.org/TR/xpath-functions/#func-iri-to-uri
http://www.w3.org/TR/xpath-functions/#func-iri-to-uri
http://www.w3.org/TR/xpath-functions-30/#func-iri-to-uri
http://www.w3.org/TR/xpath-functions-30/#func-iri-to-uri
http://www.w3.org/TR/xpath-functions/#func-lang
http://www.w3.org/TR/xpath-functions/#func-lang
http://www.w3.org/TR/xpath-functions-30/#func-lang
http://www.w3.org/TR/xpath-functions-30/#func-lang

XSLT 2.0 and XPath 2.0 Functions

373

last() # xs:integer

Table 17.112.

xs:integer

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-last]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-last]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

local-name

local-name() # xs:string

Returns the local part of the name of the context node

Table 17.113.

xs:string

local-name($arg as node()?) # xs:string

Returns the local part of the name of the supplied node

Table 17.114.

$arg node()? The node whose local
name is required

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-local-name]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-local-name]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

local-name-from-QName
Extracts the local name component of a QName value, as an xs:NCName

http://www.w3.org/TR/xpath-functions/#func-last
http://www.w3.org/TR/xpath-functions/#func-last
http://www.w3.org/TR/xpath-functions-30/#func-last
http://www.w3.org/TR/xpath-functions-30/#func-last
http://www.w3.org/TR/xpath-functions/#func-local-name
http://www.w3.org/TR/xpath-functions/#func-local-name
http://www.w3.org/TR/xpath-functions-30/#func-local-name
http://www.w3.org/TR/xpath-functions-30/#func-local-name

XSLT 2.0 and XPath 2.0 Functions

374

local-name-from-QName($arg as xs:QName?) # xs:NCName?

Table 17.115.

$arg xs:QName? The QName whose
local part is required

xs:NCName?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-local-name-from-
QName]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-local-name-
from-QName]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

log
Returns the natural logarithm of $arg

log($arg as xs:double?) # xs:double?

Table 17.116.

$arg xs:double? The input number

xs:double?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-log]

Notes on the Saxon implementation

Newly implemented in Saxon 9.4. Available whether or not XPath 3.0 is enabled.

log10
Returns the base-10 logarithm of $arg

log10($arg as xs:double?) # xs:double?

Table 17.117.

http://www.w3.org/TR/xpath-functions/#func-local-name-from-QName
http://www.w3.org/TR/xpath-functions/#func-local-name-from-QName
http://www.w3.org/TR/xpath-functions/#func-local-name-from-QName
http://www.w3.org/TR/xpath-functions-30/#func-local-name-from-QName
http://www.w3.org/TR/xpath-functions-30/#func-local-name-from-QName
http://www.w3.org/TR/xpath-functions-30/#func-local-name-from-QName
http://www.w3.org/TR/xpath-functions-30/#func-log
http://www.w3.org/TR/xpath-functions-30/#func-log

XSLT 2.0 and XPath 2.0 Functions

375

$arg xs:double? The input number

xs:double?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-log10]

Notes on the Saxon implementation

Newly implemented in Saxon 9.4. Available whether or not XPath 3.0 is enabled.

lower-case
Translates characters in a string to lower case

lower-case($arg as xs:string?) # xs:string

Table 17.118.

$arg xs:string? The string to be
converted to lower-case

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-lower-case]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-lower-case]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

map
Applies the function item $f to every item from the sequence $seq in turn, returning the
concatenation of the resulting sequences in order.

map($f as function(item()) as item()*, $seq as item()*) # item()*

Table 17.119.

$f function(item()) as
item()*

The function item to
be invoked on each
member of the supplied
sequence

$seq item()* The input sequence: the
supplied function will

http://www.w3.org/TR/xpath-functions-30/#func-log10
http://www.w3.org/TR/xpath-functions-30/#func-log10
http://www.w3.org/TR/xpath-functions/#func-lower-case
http://www.w3.org/TR/xpath-functions/#func-lower-case
http://www.w3.org/TR/xpath-functions-30/#func-lower-case
http://www.w3.org/TR/xpath-functions-30/#func-lower-case

XSLT 2.0 and XPath 2.0 Functions

376

be applied to each item
in this sequence

item()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-map]

Notes on the Saxon implementation

Newly implemented in Saxon 9.3. Requires XPath 3.0 to be enabled.

map-pairs
Applies the function item $f to successive pairs of items taken one from $seq1 and one from $seq2,
returning the concatenation of the resulting sequences in order.

map-pairs($f as function(item(), item()) as item()*, $seq1 as
item()*, $seq2 as item()*) # item()*

Table 17.120.

$f function(item(), item())
as item()*

The function which will
be applied to each pair
of items from the two
sequences

$seq1 item()* The first sequence

$seq2 item()* The second sequence

item()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-map-pairs]

Notes on the Saxon implementation

Newly implemented in Saxon 9.3. Requires XPath 3.0 to be enabled.

matches
Returns true if the given string matches the given regular expression

matches($input as xs:string?, $pattern as xs:string) # xs:boolean

Table 17.121.

http://www.w3.org/TR/xpath-functions-30/#func-map
http://www.w3.org/TR/xpath-functions-30/#func-map
http://www.w3.org/TR/xpath-functions-30/#func-map-pairs
http://www.w3.org/TR/xpath-functions-30/#func-map-pairs

XSLT 2.0 and XPath 2.0 Functions

377

$input xs:string? The string to be
matched against a
regular expression

$pattern xs:string The regular expression

xs:boolean

matches($input as xs:string?, $pattern as xs:string, $flags as
xs:string) # xs:boolean

Table 17.122.

$input xs:string? The string to be
matched against a
regular expression

$pattern xs:string The regular expression

$flags xs:string Flags that control the
interpretation of the
regular expression

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-matches]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-matches]

Notes on the Saxon implementation

Saxon 9.3 introduced support for the q flag, and for XPath 3.0 regular expression enhancements,
provided XPath 3.0 is enabled.

max
Returns the highest value in a sequence of comparable items

max($arg as xs:anyAtomicType*) # xs:anyAtomicType?

Table 17.123.

$arg xs:anyAtomicType* The input sequence

xs:anyAtomicType?

max($arg as xs:anyAtomicType*, $collation as xs:string) #
xs:anyAtomicType?

Table 17.124.

http://www.w3.org/TR/xpath-functions/#func-matches
http://www.w3.org/TR/xpath-functions/#func-matches
http://www.w3.org/TR/xpath-functions-30/#func-matches
http://www.w3.org/TR/xpath-functions-30/#func-matches

XSLT 2.0 and XPath 2.0 Functions

378

$arg xs:anyAtomicType* The input sequence

$collation xs:string The collation to be used
when comparing strings

xs:anyAtomicType?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-max]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-max]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

min
Returns the lowest value in a sequence of comparable items

min($arg as xs:anyAtomicType*) # xs:anyAtomicType?

Table 17.125.

$arg xs:anyAtomicType* The input sequence

xs:anyAtomicType?

min($arg as xs:anyAtomicType*, $collation as xs:string) #
xs:anyAtomicType?

Table 17.126.

$arg xs:anyAtomicType* The input sequence

$collation xs:string The collation to be used
when comparing strings

xs:anyAtomicType?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-min]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-min]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

http://www.w3.org/TR/xpath-functions/#func-max
http://www.w3.org/TR/xpath-functions/#func-max
http://www.w3.org/TR/xpath-functions-30/#func-max
http://www.w3.org/TR/xpath-functions-30/#func-max
http://www.w3.org/TR/xpath-functions/#func-min
http://www.w3.org/TR/xpath-functions/#func-min
http://www.w3.org/TR/xpath-functions-30/#func-min
http://www.w3.org/TR/xpath-functions-30/#func-min

XSLT 2.0 and XPath 2.0 Functions

379

minutes-from-dateTime
Extracts the minutes component of a dateTime value

minutes-from-dateTime($arg as xs:dateTime?) # xs:integer?

Table 17.127.

$arg xs:dateTime? The supplied dateTime
value

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-minutes-from-
dateTime]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-minutes-from-
dateTime]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

minutes-from-duration
Extracts the minutes component of a duration value

minutes-from-duration($arg as xs:duration?) # xs:integer?

Table 17.128.

$arg xs:duration? The supplied duration
value

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-minutes-from-
duration]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-minutes-from-
duration]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

http://www.w3.org/TR/xpath-functions/#func-minutes-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-minutes-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-minutes-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-minutes-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-minutes-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-minutes-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-minutes-from-duration
http://www.w3.org/TR/xpath-functions/#func-minutes-from-duration
http://www.w3.org/TR/xpath-functions/#func-minutes-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-minutes-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-minutes-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-minutes-from-duration

XSLT 2.0 and XPath 2.0 Functions

380

minutes-from-time
Extracts the minutes component of a time value

minutes-from-time($arg as xs:time?) # xs:integer?

Table 17.129.

$arg xs:time? The supplied time value

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-minutes-from-
time]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-minutes-from-
time]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

month-from-date
Extracts the month component of a date value

month-from-date($arg as xs:date?) # xs:integer?

Table 17.130.

$arg xs:date? The supplied date value

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-month-from-date]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-month-from-
date]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

month-from-dateTime
Extracts the month component of a dateTime value

http://www.w3.org/TR/xpath-functions/#func-minutes-from-time
http://www.w3.org/TR/xpath-functions/#func-minutes-from-time
http://www.w3.org/TR/xpath-functions/#func-minutes-from-time
http://www.w3.org/TR/xpath-functions-30/#func-minutes-from-time
http://www.w3.org/TR/xpath-functions-30/#func-minutes-from-time
http://www.w3.org/TR/xpath-functions-30/#func-minutes-from-time
http://www.w3.org/TR/xpath-functions/#func-month-from-date
http://www.w3.org/TR/xpath-functions/#func-month-from-date
http://www.w3.org/TR/xpath-functions-30/#func-month-from-date
http://www.w3.org/TR/xpath-functions-30/#func-month-from-date
http://www.w3.org/TR/xpath-functions-30/#func-month-from-date

XSLT 2.0 and XPath 2.0 Functions

381

month-from-dateTime($arg as xs:dateTime?) # xs:integer?

Table 17.131.

$arg xs:dateTime? The supplied dateTime
value

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-month-from-
dateTime]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-month-from-
dateTime]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

months-from-duration
Extracts the months component of a duration value

months-from-duration($arg as xs:duration?) # xs:integer?

Table 17.132.

$arg xs:duration? The supplied duration
value

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-months-from-
duration]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-months-from-
duration]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

name

name() # xs:string

Returns the name of the context node, as a string in the lexical form of a QName

http://www.w3.org/TR/xpath-functions/#func-month-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-month-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-month-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-month-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-month-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-month-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-months-from-duration
http://www.w3.org/TR/xpath-functions/#func-months-from-duration
http://www.w3.org/TR/xpath-functions/#func-months-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-months-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-months-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-months-from-duration

XSLT 2.0 and XPath 2.0 Functions

382

Table 17.133.

xs:string

name($arg as node()?) # xs:string

Returns the name of the supplied node, as a string in the lexical form of a QName

Table 17.134.

$arg node()? The node whose name is
required

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-name]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-name]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

namespace-uri

namespace-uri() # xs:anyURI

Returns the namespace URI of the name of the context node

Table 17.135.

xs:anyURI

namespace-uri($arg as node()?) # xs:anyURI

Returns the namespace URI of the name of the supplied node

Table 17.136.

$arg node()? The node whose
namespace URI is
required

xs:anyURI

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

http://www.w3.org/TR/xpath-functions/#func-name
http://www.w3.org/TR/xpath-functions/#func-name
http://www.w3.org/TR/xpath-functions-30/#func-name
http://www.w3.org/TR/xpath-functions-30/#func-name

XSLT 2.0 and XPath 2.0 Functions

383

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-namespace-uri]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-namespace-
uri]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

namespace-uri-for-prefix
Returns the namespace URI corresponding to a given prefix, using the namespaces that are in scope
for a given element

namespace-uri-for-prefix($prefix as xs:string?, $element as
element()) # xs:anyURI?

Table 17.137.

$prefix xs:string? The supplied prefix

$element element() The element node
whose in-scope
namespaces are to be
examined

xs:anyURI?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-namespace-uri-
for-prefix]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-namespace-
uri-for-prefix]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

namespace-uri-from-QName
Extracts the namespace URI component of a QName value

namespace-uri-from-QName($arg as xs:QName?) # xs:anyURI?

Table 17.138.

$arg xs:QName? The QName value
whose URI component
is required

xs:anyURI?

http://www.w3.org/TR/xpath-functions/#func-namespace-uri
http://www.w3.org/TR/xpath-functions/#func-namespace-uri
http://www.w3.org/TR/xpath-functions-30/#func-namespace-uri
http://www.w3.org/TR/xpath-functions-30/#func-namespace-uri
http://www.w3.org/TR/xpath-functions-30/#func-namespace-uri
http://www.w3.org/TR/xpath-functions/#func-namespace-uri-for-prefix
http://www.w3.org/TR/xpath-functions/#func-namespace-uri-for-prefix
http://www.w3.org/TR/xpath-functions/#func-namespace-uri-for-prefix
http://www.w3.org/TR/xpath-functions-30/#func-namespace-uri-for-prefix
http://www.w3.org/TR/xpath-functions-30/#func-namespace-uri-for-prefix
http://www.w3.org/TR/xpath-functions-30/#func-namespace-uri-for-prefix

XSLT 2.0 and XPath 2.0 Functions

384

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-namespace-uri-
from-QName]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-namespace-
uri-from-QName]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

nilled
Returns true if the argument is an element that has the "nilled" property.

nilled($arg as node()?) # xs:boolean?

Table 17.139.

$arg node()? The node (typically an
element) to be examined
to see if it is nilled

xs:boolean?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-nilled]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-nilled]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

node-name

node-name() # xs:QName?

Returns the name of the context node, as a QName value (that is, a namespace URI plus local name)

Table 17.140.

xs:QName?

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Specification [http://www.w3.org/TR/xpath-functions-11/#func-node-name]

http://www.w3.org/TR/xpath-functions/#func-namespace-uri-from-QName
http://www.w3.org/TR/xpath-functions/#func-namespace-uri-from-QName
http://www.w3.org/TR/xpath-functions/#func-namespace-uri-from-QName
http://www.w3.org/TR/xpath-functions-30/#func-namespace-uri-from-QName
http://www.w3.org/TR/xpath-functions-30/#func-namespace-uri-from-QName
http://www.w3.org/TR/xpath-functions-30/#func-namespace-uri-from-QName
http://www.w3.org/TR/xpath-functions/#func-nilled
http://www.w3.org/TR/xpath-functions/#func-nilled
http://www.w3.org/TR/xpath-functions-30/#func-nilled
http://www.w3.org/TR/xpath-functions-30/#func-nilled
http://www.w3.org/TR/xpath-functions-11/#func-node-name
http://www.w3.org/TR/xpath-functions-11/#func-node-name

XSLT 2.0 and XPath 2.0 Functions

385

node-name($arg as node()?) # xs:QName?

Returns the name of the given node, as a QName value (that is, a namespace URI plus local name)

Table 17.141.

$arg node()? The node whose name is
required

xs:QName?

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Specification [http://www.w3.org/TR/xpath-functions/#func-node-name]

XPath 3.0 Specification [http://www.w3.org/TR/xpath-functions-11/#func-node-name]

Notes on the Saxon implementation

The single-argument version of this function is new in XPath 3.0, and is first implemented in Saxon
9.3, provided that support for XPath 3.0 is enabled.

normalize-space

normalize-space() # xs:string

Eliminates redundant spaces from the string value of the context item

Table 17.142.

xs:string

normalize-space($arg as xs:string?) # xs:string

Eliminates redundant spaces from the supplied string

Table 17.143.

$arg xs:string? The string to be
normalized

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-normalize-space]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-normalize-
space]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

http://www.w3.org/TR/xpath-functions/#func-node-name
http://www.w3.org/TR/xpath-functions/#func-node-name
http://www.w3.org/TR/xpath-functions-11/#func-node-name
http://www.w3.org/TR/xpath-functions-11/#func-node-name
http://www.w3.org/TR/xpath-functions/#func-normalize-space
http://www.w3.org/TR/xpath-functions/#func-normalize-space
http://www.w3.org/TR/xpath-functions-30/#func-normalize-space
http://www.w3.org/TR/xpath-functions-30/#func-normalize-space
http://www.w3.org/TR/xpath-functions-30/#func-normalize-space

XSLT 2.0 and XPath 2.0 Functions

386

normalize-unicode

normalize-unicode($arg as xs:string?) # xs:string

Converts a string to Unicode normalized form NFC by modifying the way in which combining
characters are represented

Table 17.144.

$arg xs:string? The string to be
normalized

xs:string

normalize-unicode($arg as xs:string?, $normalizationForm as
xs:string) # xs:string

Converts a string to the specified Unicode normalization form by modifying the way in which
combining characters are represented

Table 17.145.

$arg xs:string? The string to be
normalized

$normalizationForm xs:string The Unicode
normalization form to
apply

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-normalize-
unicode]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-normalize-
unicode]

Notes on the Saxon implementation

Saxon supports normalization forms NFC, NFD, NFKC, and NFKD.

not
Returns true if the effective boolean value of the argument is false, and vice versa

not($arg as item()*) # xs:boolean

Table 17.146.

$arg item()*

xs:boolean

http://www.w3.org/TR/xpath-functions/#func-normalize-unicode
http://www.w3.org/TR/xpath-functions/#func-normalize-unicode
http://www.w3.org/TR/xpath-functions/#func-normalize-unicode
http://www.w3.org/TR/xpath-functions-30/#func-normalize-unicode
http://www.w3.org/TR/xpath-functions-30/#func-normalize-unicode
http://www.w3.org/TR/xpath-functions-30/#func-normalize-unicode

XSLT 2.0 and XPath 2.0 Functions

387

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-not]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-not]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

number

number() # xs:double

Equivalent to number(.); converts the value of the context item to a double

Table 17.147.

xs:double

number($arg as xs:anyAtomicType?) # xs:double

Converts the supplied value to a double, or returns NaN if conversion is not possible

Table 17.148.

$arg xs:anyAtomicType?

xs:double

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-number]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-number]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

one-or-more
Tests whether $srcval contains one or more items; fails if it is an empty sequence.

one-or-more($arg as item()*) # item()+

Table 17.149.

http://www.w3.org/TR/xpath-functions/#func-not
http://www.w3.org/TR/xpath-functions/#func-not
http://www.w3.org/TR/xpath-functions-30/#func-not
http://www.w3.org/TR/xpath-functions-30/#func-not
http://www.w3.org/TR/xpath-functions/#func-number
http://www.w3.org/TR/xpath-functions/#func-number
http://www.w3.org/TR/xpath-functions-30/#func-number
http://www.w3.org/TR/xpath-functions-30/#func-number

XSLT 2.0 and XPath 2.0 Functions

388

$arg item()* The sequence to be
tested

item()+

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-one-or-more]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-one-or-more]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

outermost
Given a sequence of nodes, returns those nodes in the sequence that have no ancestor that is also in
the sequence.

outermost($seq as node()*) # node()*

Table 17.150.

$seq node()* The input sequence

node()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-outermost]

Notes on the Saxon implementation

Not yet implemented in Saxon 9.4

parse-json
This function takes as input a string in JSON format and parses it typically returning a map.

parse-json($arg as xs:string) # xs:string

Table 17.151.

$arg xs:string The JSON input to be
parsed

xs:string

http://www.w3.org/TR/xpath-functions/#func-one-or-more
http://www.w3.org/TR/xpath-functions/#func-one-or-more
http://www.w3.org/TR/xpath-functions-30/#func-one-or-more
http://www.w3.org/TR/xpath-functions-30/#func-one-or-more
http://www.w3.org/TR/xpath-functions-30/#func-outermost
http://www.w3.org/TR/xpath-functions-30/#func-outermost

XSLT 2.0 and XPath 2.0 Functions

389

parse-json($arg as xs:string, $options as map(*)) # document-
node(element(*, xs:untyped))

Table 17.152.

$arg xs:string The JSON input to be
parsed

$options map(*) Parsing options

document-
node(element(*,
xs:untyped))

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 3.0 only (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-parse-json]

Notes on the Saxon implementation

Newly implemented in Saxon 9.4, provided XPath 3.0 is enabled. The parsing options provided are
those listed in the XSLT 3.0 specifications.

parse-xml
This function takes as input an XML document represented as a string, and returns the document node
at the root of an XDM tree representing the parsed document.

parse-xml($arg as xs:string) # document-node(element(*,
xs:untyped))

Table 17.153.

$arg xs:string The lexical XML string
to be parsed as a
document

document-
node(element(*,
xs:untyped))

parse-xml($arg as xs:string, $baseURI as xs:string) # document-
node(element(*, xs:untyped))

Table 17.154.

$arg xs:string The lexical XML string
to be parsed as a
document

$baseURI xs:string The base URI property
of the constructed
document

http://www.w3.org/TR/xslt-21/#function-parse-json
http://www.w3.org/TR/xslt-21/#function-parse-json

XSLT 2.0 and XPath 2.0 Functions

390

document-
node(element(*,
xs:untyped))

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-parse-xml]

Notes on the Saxon implementation

Newly implemented in Saxon 9.3, provided XPath 3.0 is enabled; replaces the extension function
saxon:parse which is retained for the time being.

The second argument has been dropped from the latest draft of the XPath 3.0 specification, but remains
available in the Saxon implementation for the time being.

path
This function takes as input a node (defaulting to the context node), and returns an XPath expression
defining a path to that node from the root of its containing tree (which must be a document node). The
path will use expanded QNames so that it is not sensitive to the namespace context.

path() # xs:string

Table 17.155.

xs:string

path($arg as node()?) # xs:string?

Table 17.156.

$arg node()? The node whose path is
to be determined

xs:string?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-path]

Notes on the Saxon implementation

Newly implemented in Saxon 9.4, provided XPath 3.0 is enabled; replaces the extension function
saxon:path which is retained for the time being.

pi
Returns an approximation to the mathematical constant #.

http://www.w3.org/TR/xpath-functions-30/#func-parse-xml
http://www.w3.org/TR/xpath-functions-30/#func-parse-xml
http://www.w3.org/TR/xpath-functions-30/#func-path
http://www.w3.org/TR/xpath-functions-30/#func-path

XSLT 2.0 and XPath 2.0 Functions

391

pi() # xs:double

Table 17.157.

xs:double

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions/math

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-pi]

Notes on the Saxon implementation

Implemented in Saxon 9.3; available whether or not support for XPath 3.0 is enabled

position
Returns the context position (that is, the position of the context item in the sequence currenly being
processed)

position() # xs:integer

Table 17.158.

xs:integer

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-position]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-position]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

pow
Returns $arg1 raised to the power of $arg2.

exp($arg1 as xs:double?, $arg2 as numeric) # xs:double

Table 17.159.

$arg1 xs:double? The input number

$arg2 numeric The power to which the
number is to be raised

xs:double

http://www.w3.org/TR/xpath-functions-30/#func-pi
http://www.w3.org/TR/xpath-functions-30/#func-pi
http://www.w3.org/TR/xpath-functions/#func-position
http://www.w3.org/TR/xpath-functions/#func-position
http://www.w3.org/TR/xpath-functions-30/#func-position
http://www.w3.org/TR/xpath-functions-30/#func-position

XSLT 2.0 and XPath 2.0 Functions

392

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions/math

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-pow]

Notes on the Saxon implementation

Newly implemented in Saxon 9.4; available whether or not XPath 3.0 is enabled.

prefix-from-QName
Extracts the prefix component of a QName value. Returns an empty sequence if the QName has no
prefix.

prefix-from-QName($arg as xs:QName?) # xs:NCName?

Table 17.160.

$arg xs:QName? The QName whose
prefix component is
required

xs:NCName?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-prefix-from-
QName]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-prefix-from-
QName]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

put
Writes an updated document to disk.

put($doc as node(), $uri as xs:string) # xs:NCName?

Table 17.161.

$doc node() The document to be
written to disk

$uri xs:string The location where the
document is to be
written, as a file:/// URI

xs:NCName?

http://www.w3.org/TR/xpath-functions-30/#func-pow
http://www.w3.org/TR/xpath-functions-30/#func-pow
http://www.w3.org/TR/xpath-functions/#func-prefix-from-QName
http://www.w3.org/TR/xpath-functions/#func-prefix-from-QName
http://www.w3.org/TR/xpath-functions/#func-prefix-from-QName
http://www.w3.org/TR/xpath-functions-30/#func-prefix-from-QName
http://www.w3.org/TR/xpath-functions-30/#func-prefix-from-QName
http://www.w3.org/TR/xpath-functions-30/#func-prefix-from-QName

XSLT 2.0 and XPath 2.0 Functions

393

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to:

Notes on the Saxon implementation

Implemented in Saxon; available only when XQuery Updates is enabled.

QName
Constructs a QName value from a URI and local name. The second argument may be a lexical QName,
and the prefix of the lexical QName is returned in the constructed value, for use if it is converted back
to a string.

QName($paramURI as xs:string?, $paramQName as xs:string) #
xs:QName

Table 17.162.

$paramURI xs:string? The namespace URI
component of the
constructed QName

$paramQName xs:string A lexical QName
that supplies the local
name component of
the constructed QName,
and optionally the prefix

xs:QName

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-QName]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-QName]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

regex-group
Returns the contents of the substring that matched the n'th subexpression in a regular expression
processed using xsl:analyze-string

regex-group() # xs:string

Table 17.163.

xs:string

http://www.w3.org/TR/xpath-functions/#func-QName
http://www.w3.org/TR/xpath-functions/#func-QName
http://www.w3.org/TR/xpath-functions-30/#func-QName
http://www.w3.org/TR/xpath-functions-30/#func-QName

XSLT 2.0 and XPath 2.0 Functions

394

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 2.0 and later versions

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-regex-group]

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-regex-group]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

remove
Removes the item at a given position in a sequence

remove($target as item()*, $position as xs:integer) # item()*

Table 17.164.

$target item()* The input sequence,
from which an item is to
be removed

$position xs:integer The position of the item
to be removed

item()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-remove]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-remove]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

replace
Replaces sequences of characters within a string that match a given regular expression

replace($input as xs:string?, $pattern as xs:string, $replacement
as xs:string) # xs:string

Table 17.165.

$input xs:string? The input string, parts of
which are to be replaced

http://www.w3.org/TR/xslt20/#function-regex-group
http://www.w3.org/TR/xslt20/#function-regex-group
http://www.w3.org/TR/xslt-21/#function-regex-group
http://www.w3.org/TR/xslt-21/#function-regex-group
http://www.w3.org/TR/xpath-functions/#func-remove
http://www.w3.org/TR/xpath-functions/#func-remove
http://www.w3.org/TR/xpath-functions-30/#func-remove
http://www.w3.org/TR/xpath-functions-30/#func-remove

XSLT 2.0 and XPath 2.0 Functions

395

$pattern xs:string The regular expression
matching parts of the
string that are to be
replaced

$replacement xs:string The replacement string

xs:string

replace($input as xs:string?, $pattern as xs:string, $replacement
as xs:string, $flags as xs:string) # xs:string

Table 17.166.

$input xs:string? The input string, parts of
which are to be replaced

$pattern xs:string The regular expression
matching parts of the
string that are to be
replaced

$replacement xs:string The replacement string

$flags xs:string Flags controlling how
the regular expression is
interpreted

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-replace]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-replace]

Notes on the Saxon implementation

Saxon 9.3 introduces support for the q flag, and for XPath 3.0 regular expression enhancements,
provided XPath 3.0 is enabled.

resolve-QName
Expands a lexical QName using the in-scope namespaces from the given element

resolve-QName($qname as xs:string?, $element as element()) #
xs:QName?

Table 17.167.

$qname xs:string? The lexical QName to
be expanded

$element element() The element whose
in-scope namespaces

http://www.w3.org/TR/xpath-functions/#func-replace
http://www.w3.org/TR/xpath-functions/#func-replace
http://www.w3.org/TR/xpath-functions-30/#func-replace
http://www.w3.org/TR/xpath-functions-30/#func-replace

XSLT 2.0 and XPath 2.0 Functions

396

determine how the
QName is expanded

xs:QName?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-resolve-QName]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-resolve-
QName]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

resolve-uri

resolve-uri($relative as xs:string?) # xs:anyURI?

Resolves a relative URI against the base URI from the static context

Table 17.168.

$relative xs:string? A relative URI
reference to be resolved
against the static base
URI from the context

xs:anyURI?

resolve-uri($relative as xs:string?, $base as xs:string) #
xs:anyURI?

Resolves a relative URI against a specified base URI

Table 17.169.

$relative xs:string? A relative URI
reference to be resolved
against the specified
base URI

$base xs:string The base URI used for
resolving the relative
reference

xs:anyURI?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

http://www.w3.org/TR/xpath-functions/#func-resolve-QName
http://www.w3.org/TR/xpath-functions/#func-resolve-QName
http://www.w3.org/TR/xpath-functions-30/#func-resolve-QName
http://www.w3.org/TR/xpath-functions-30/#func-resolve-QName
http://www.w3.org/TR/xpath-functions-30/#func-resolve-QName

XSLT 2.0 and XPath 2.0 Functions

397

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-resolve-uri]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-resolve-uri]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

reverse
Reverses the order of the items in the input sequence.

reverse($arg as item()*) # item()*

Table 17.170.

$arg item()* The sequences whose
items are to be reversed
in order

item()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-reverse]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-reverse]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

root

root() # node()

Returns the root node (typically but not necessarily a document node) of the tree containing the context
node

Table 17.171.

node()

root($arg as node()?) # node()?

Returns the root node (typically but not necessarily a document node) of the tree containing the
supplied node

Table 17.172.

$arg node()? A node in the tree whose
root is required

http://www.w3.org/TR/xpath-functions/#func-resolve-uri
http://www.w3.org/TR/xpath-functions/#func-resolve-uri
http://www.w3.org/TR/xpath-functions-30/#func-resolve-uri
http://www.w3.org/TR/xpath-functions-30/#func-resolve-uri
http://www.w3.org/TR/xpath-functions/#func-reverse
http://www.w3.org/TR/xpath-functions/#func-reverse
http://www.w3.org/TR/xpath-functions-30/#func-reverse
http://www.w3.org/TR/xpath-functions-30/#func-reverse

XSLT 2.0 and XPath 2.0 Functions

398

node()?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-root]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-root]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

round

round($arg as numeric?) # numeric?

Rounds a numeric value to the nearest whole number, rounding x.5 towards positive infinity.

Table 17.173.

$arg numeric? The value to be rounded
to the nearest whole
number

numeric?

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Specification [http://www.w3.org/TR/xpath-functions/#func-round]

XPath 3.0 Specification [http://www.w3.org/TR/xpath-functions-11/#func-round]

round($arg as numeric?, $precision as xs:integer) # numeric?

Rounds a numeric value to the nearest multiple of ten to the power of minus $precision, rounding
x.5 towards positive infinity.

Table 17.174.

$arg numeric? The value to be rounded
to a given number of
decimal places

$precision xs:integer The number of decimal
places required

numeric?

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Specification [http://www.w3.org/TR/xpath-functions-11/#func-round]

Notes on the Saxon implementation

The two-argument form of this function is specified in XPath 3.0, and is newly supported in Saxon
9.3, provided XPath 3.0 is enabled.

http://www.w3.org/TR/xpath-functions/#func-root
http://www.w3.org/TR/xpath-functions/#func-root
http://www.w3.org/TR/xpath-functions-30/#func-root
http://www.w3.org/TR/xpath-functions-30/#func-root
http://www.w3.org/TR/xpath-functions/#func-round
http://www.w3.org/TR/xpath-functions/#func-round
http://www.w3.org/TR/xpath-functions-11/#func-round
http://www.w3.org/TR/xpath-functions-11/#func-round
http://www.w3.org/TR/xpath-functions-11/#func-round
http://www.w3.org/TR/xpath-functions-11/#func-round

XSLT 2.0 and XPath 2.0 Functions

399

round-half-to-even

round-half-to-even($arg as numeric?) # numeric?

Rounds a numeric value to the nearest whole number, rounding x.5 towards the nearest even number.

Table 17.175.

$arg numeric? The value to be rounded
to the nearest whole
number

numeric?

round-half-to-even($arg as numeric?, $precision as xs:integer) #
numeric?

Rounds a numeric value to the nearest multiple of ten to the power of minus $precision, rounding
x.5 towards positive infinity.

Table 17.176.

$arg numeric? The value to be rounded
to a given number of
decimal places

$precision xs:integer The number of decimal
places required

numeric?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-round-half-to-
even]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-round-half-to-
even]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

seconds-from-dateTime
Extracts the seconds component of a dateTime value

seconds-from-dateTime($arg as xs:dateTime?) # xs:decimal?

Table 17.177.

$arg xs:dateTime? The input dateTime
value

http://www.w3.org/TR/xpath-functions/#func-round-half-to-even
http://www.w3.org/TR/xpath-functions/#func-round-half-to-even
http://www.w3.org/TR/xpath-functions/#func-round-half-to-even
http://www.w3.org/TR/xpath-functions-30/#func-round-half-to-even
http://www.w3.org/TR/xpath-functions-30/#func-round-half-to-even
http://www.w3.org/TR/xpath-functions-30/#func-round-half-to-even

XSLT 2.0 and XPath 2.0 Functions

400

xs:decimal?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-seconds-from-
dateTime]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-seconds-from-
dateTime]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

seconds-from-duration
Extracts the seconds component of a dayTimeDuration value

seconds-from-duration($arg as xs:duration?) # xs:decimal?

Table 17.178.

$arg xs:duration? The input duration value

xs:decimal?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-seconds-from-
duration]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-seconds-from-
duration]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

seconds-from-time
Extracts the seconds component of a time value

seconds-from-time($arg as xs:time?) # xs:decimal?

Table 17.179.

$arg xs:time? The input time value

http://www.w3.org/TR/xpath-functions/#func-seconds-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-seconds-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-seconds-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-seconds-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-seconds-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-seconds-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-seconds-from-duration
http://www.w3.org/TR/xpath-functions/#func-seconds-from-duration
http://www.w3.org/TR/xpath-functions/#func-seconds-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-seconds-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-seconds-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-seconds-from-duration

XSLT 2.0 and XPath 2.0 Functions

401

xs:decimal?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-seconds-from-
time]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-seconds-from-
time]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

serialize
This function serializes the supplied node $arg, returning the serialized node as a string.

serialize($arg as node()) # xs:string

Table 17.180.

$arg node() The node (typically a
document or element
node) to be serialized

xs:string

serialize($arg as node(), $params as node()*) # xs:string

Table 17.181.

$arg node() The node (typically a
document or element
node) to be serialized

$params node()* Serialization parameters

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-serialize]

Notes on the Saxon implementation

This function is specified in XPath 3.0, and is newly supported in Saxon 9.3, provided XPath 3.0 is
enabled. It replaces the Saxon extension function saxon:serialize

Serialization parameters are supplied by a sequence of nodes, in which the node name acts as the name
of the serialization parameter, and its string value as the value of the parameter. This mechanism is

http://www.w3.org/TR/xpath-functions/#func-seconds-from-time
http://www.w3.org/TR/xpath-functions/#func-seconds-from-time
http://www.w3.org/TR/xpath-functions/#func-seconds-from-time
http://www.w3.org/TR/xpath-functions-30/#func-seconds-from-time
http://www.w3.org/TR/xpath-functions-30/#func-seconds-from-time
http://www.w3.org/TR/xpath-functions-30/#func-seconds-from-time
http://www.w3.org/TR/xpath-functions-30/#func-serialize
http://www.w3.org/TR/xpath-functions-30/#func-serialize

XSLT 2.0 and XPath 2.0 Functions

402

based on that in an earlier draft of the XPath 3.0 specification: see here [http://www.w3.org/TR/2009/
WD-xpath-functions-11-20091215/#func-serialize]

serialize-json
This function serializes the supplied value in JSON format.

serialize($arg as item()*) # xs:string

Table 17.182.

$arg item()* The value to be
serialized as a JSON
string

xs:string

serialize($arg as item()*, $options as map(*)) # xs:string

Table 17.183.

$arg item()* The value to be
serialized as a JSON
string

$options map(*) JSON serialization
optionss

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 3.0 only (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-serialize-json]

Notes on the Saxon implementation

This function is specified in XSLT 3.0, and is newly supported in Saxon 9.4, provided XSLT 3.0 is
enabled.

The options recognized are escape=true|false, indent=true|false, spec=RFC4234|
ECMA-262, fallback=(function).

sin
Returns the sine of the argument, expressed in radians.

sin($# as xs:double?) # xs:double?

Table 17.184.

$# xs:double?

xs:double?

http://www.w3.org/TR/2009/WD-xpath-functions-11-20091215/#func-serialize
http://www.w3.org/TR/2009/WD-xpath-functions-11-20091215/#func-serialize
http://www.w3.org/TR/2009/WD-xpath-functions-11-20091215/#func-serialize
http://www.w3.org/TR/xslt-21/#function-serialize-json
http://www.w3.org/TR/xslt-21/#function-serialize-json

XSLT 2.0 and XPath 2.0 Functions

403

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions/math

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-sin]

Notes on the Saxon implementation

Implemented in Saxon 9.3; available whether or not support for XPath 3.0 is enabled

sqrt
Returns the non-negative square root of the argument.

sqrt($arg as xs:double?) # xs:double?

Table 17.185.

$arg xs:double?

xs:double?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions/math

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-sqrt]

Notes on the Saxon implementation

Implemented in Saxon 9.3; available whether or not support for XPath 3.0 is enabled

starts-with
Tests whether one string starts with another string

starts-with($arg1 as xs:string?, $arg2 as xs:string?) # xs:boolean

Table 17.186.

$arg1 xs:string? The containing string

$arg2 xs:string? The supposed initial
part of the string

xs:boolean

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as
xs:string) # xs:boolean

Table 17.187.

http://www.w3.org/TR/xpath-functions-30/#func-sin
http://www.w3.org/TR/xpath-functions-30/#func-sin
http://www.w3.org/TR/xpath-functions-30/#func-sqrt
http://www.w3.org/TR/xpath-functions-30/#func-sqrt

XSLT 2.0 and XPath 2.0 Functions

404

$arg1 xs:string? The containing string

$arg2 xs:string? The supposed initial
part of the string

$collation xs:string The collation to be
used for comparing
characters

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-starts-with]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-starts-with]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

static-base-uri
Returns the base URI of the static context

static-base-uri() # xs:anyURI?

Table 17.188.

xs:anyURI?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-static-base-uri]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-static-base-uri]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

string

string() # xs:string

Returns the string value of the context node

Table 17.189.

xs:string

http://www.w3.org/TR/xpath-functions/#func-starts-with
http://www.w3.org/TR/xpath-functions/#func-starts-with
http://www.w3.org/TR/xpath-functions-30/#func-starts-with
http://www.w3.org/TR/xpath-functions-30/#func-starts-with
http://www.w3.org/TR/xpath-functions/#func-static-base-uri
http://www.w3.org/TR/xpath-functions/#func-static-base-uri
http://www.w3.org/TR/xpath-functions-30/#func-static-base-uri
http://www.w3.org/TR/xpath-functions-30/#func-static-base-uri

XSLT 2.0 and XPath 2.0 Functions

405

string($arg as item()?) # xs:string

Returns the string value of the supplied node, or converts the supplied atomic value to a string.

Table 17.190.

$arg item()? A node whose string
value is required, or
an atomic value to be
converted to a string

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-string]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-string]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

string-join

string-join($arg1 as xs:string*) # xs:string

Concatenates all the strings in the given sequence, with no separator

Table 17.191.

$arg1 xs:string* A sequence of strings to
be joined into one

xs:string

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Specification [http://www.w3.org/TR/xpath-functions-11/#func-string-join]

string-join($arg1 as xs:string*, $arg2 as xs:string) # xs:string

Concatenates all the strings in the given sequence, separated by the given separator

Table 17.192.

$arg1 xs:string* A sequence of strings to
be joined into one

$arg2 xs:string The separator to be
used between adjacent
strings

xs:string

http://www.w3.org/TR/xpath-functions/#func-string
http://www.w3.org/TR/xpath-functions/#func-string
http://www.w3.org/TR/xpath-functions-30/#func-string
http://www.w3.org/TR/xpath-functions-30/#func-string
http://www.w3.org/TR/xpath-functions-11/#func-string-join
http://www.w3.org/TR/xpath-functions-11/#func-string-join

XSLT 2.0 and XPath 2.0 Functions

406

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Specification [http://www.w3.org/TR/xpath-functions/#func-string-join]

XPath 3.0 Specification [http://www.w3.org/TR/xpath-functions-11/#func-string-join]

Notes on the Saxon implementation

The single-argument form of this function is specified in XPath 3.0, and is newly supported in Saxon
9.3, provided XPath 3.0 is enabled. Note that the default separator is a zero-length string, not a single
space.

string-length

string-length() # xs:integer

Returns the number of characters in the string value of the context item

Table 17.193.

xs:integer

string-length($arg as xs:string?) # xs:integer

Returns the number of characters in the specified string

Table 17.194.

$arg xs:string? The input string

xs:integer

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-string-length]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-string-length]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

string-to-codepoints
Returns a sequence of integers representing the Unicode codepoints of the characters in the supplied
string

string-to-codepoints($arg as xs:string?) # xs:integer*

Table 17.195.

$arg xs:string? The input string

http://www.w3.org/TR/xpath-functions/#func-string-join
http://www.w3.org/TR/xpath-functions/#func-string-join
http://www.w3.org/TR/xpath-functions-11/#func-string-join
http://www.w3.org/TR/xpath-functions-11/#func-string-join
http://www.w3.org/TR/xpath-functions/#func-string-length
http://www.w3.org/TR/xpath-functions/#func-string-length
http://www.w3.org/TR/xpath-functions-30/#func-string-length
http://www.w3.org/TR/xpath-functions-30/#func-string-length

XSLT 2.0 and XPath 2.0 Functions

407

xs:integer*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-string-to-
codepoints]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-string-to-
codepoints]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

subsequence

subsequence($sourceSeq as item()*, $startingLoc as xs:double) #
item()*

Returns those items in the given sequence from the given starting position to the end of the sequence

Table 17.196.

$sourceSeq item()* The input sequence

$startingLoc xs:double The position of the first
item from the input
sequence to be included
in the result

item()*

subsequence($sourceSeq as item()*, $startingLoc as xs:double,
$length as xs:double) # item()*

Returns those items in the given sequence from the given starting position to the end of the sequence,
or $length items if fewer.

Table 17.197.

$sourceSeq item()* The input sequence

$startingLoc xs:double The position of the first
item from the input
sequence to be included
in the result

$length xs:double The number of items to
be included in the result

item()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

http://www.w3.org/TR/xpath-functions/#func-string-to-codepoints
http://www.w3.org/TR/xpath-functions/#func-string-to-codepoints
http://www.w3.org/TR/xpath-functions/#func-string-to-codepoints
http://www.w3.org/TR/xpath-functions-30/#func-string-to-codepoints
http://www.w3.org/TR/xpath-functions-30/#func-string-to-codepoints
http://www.w3.org/TR/xpath-functions-30/#func-string-to-codepoints

XSLT 2.0 and XPath 2.0 Functions

408

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-subsequence]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-subsequence]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

substring

substring($sourceString as xs:string?, $start as xs:double) #
xs:string

Returns a substring of a given string starting at the given starting position and continuing to the end
of the string

Table 17.198.

$sourceString xs:string? The input string

$start xs:double The position of the first
character of the input
string to be included in
the result

xs:string

substring($sourceString as xs:string?, $start as xs:double,
$length as xs:double) # xs:string

Returns a substring of a given string starting at the given starting position and continuing to the end
of the string, or $length characters if shorter.

Table 17.199.

$sourceString xs:string? The input string

$start xs:double The position of the first
character of the input
string to be included in
the result

$length xs:double The number of
characters to be
included in the result

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-substring]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-substring]

http://www.w3.org/TR/xpath-functions/#func-subsequence
http://www.w3.org/TR/xpath-functions/#func-subsequence
http://www.w3.org/TR/xpath-functions-30/#func-subsequence
http://www.w3.org/TR/xpath-functions-30/#func-subsequence
http://www.w3.org/TR/xpath-functions/#func-substring
http://www.w3.org/TR/xpath-functions/#func-substring
http://www.w3.org/TR/xpath-functions-30/#func-substring
http://www.w3.org/TR/xpath-functions-30/#func-substring

XSLT 2.0 and XPath 2.0 Functions

409

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

substring-after
Returns that part of the given input string that occurs after the first occurrence of the string given in
$operand2

substring-after($arg1 as xs:string?, $arg2 as xs:string?) #
xs:string

Table 17.200.

$arg1 xs:string? The input string

$arg2 xs:string? A substring of the input
string; the function
returns the rest of the
input string after this
substring

xs:string

substring-after($arg1 as xs:string?, $arg2 as xs:string?,
$collation as xs:string) # xs:string

Table 17.201.

$arg1 xs:string? The input string

$arg2 xs:string? A substring of the input
string; the function
returns the rest of the
input string after this
substring

$collation xs:string The collation to be
used for comparing
characters

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-substring-after]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-substring-
after]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

http://www.w3.org/TR/xpath-functions/#func-substring-after
http://www.w3.org/TR/xpath-functions/#func-substring-after
http://www.w3.org/TR/xpath-functions-30/#func-substring-after
http://www.w3.org/TR/xpath-functions-30/#func-substring-after
http://www.w3.org/TR/xpath-functions-30/#func-substring-after

XSLT 2.0 and XPath 2.0 Functions

410

substring-before
Returns that part of the given input string that occurs before the first occurrence of the string given
in $operand2

substring-before($arg1 as xs:string?, $arg2 as xs:string?) #
xs:string

Table 17.202.

$arg1 xs:string? The input string

$arg2 xs:string? A substring of the input
string; the function
returns the part of the
input string before this
substring

xs:string

substring-before($arg1 as xs:string?, $arg2 as xs:string?,
$collation as xs:string) # xs:string

Table 17.203.

$arg1 xs:string? The input string

$arg2 xs:string? A substring of the input
string; the function
returns the part of the
input string before this
substring

$collation xs:string The collation to be
used for comparing
characters

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-substring-before]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-substring-
before]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

sum
Returns the total of a sequence of numbers or durations

http://www.w3.org/TR/xpath-functions/#func-substring-before
http://www.w3.org/TR/xpath-functions/#func-substring-before
http://www.w3.org/TR/xpath-functions-30/#func-substring-before
http://www.w3.org/TR/xpath-functions-30/#func-substring-before
http://www.w3.org/TR/xpath-functions-30/#func-substring-before

XSLT 2.0 and XPath 2.0 Functions

411

sum($arg as xs:anyAtomicType*) # xs:anyAtomicType

Table 17.204.

$arg xs:anyAtomicType* The sequence of values
to be totalled

xs:anyAtomicType

sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) #
xs:anyAtomicType?

Table 17.205.

$arg xs:anyAtomicType* The sequence of values
to be totalled

$zero xs:anyAtomicType? The value to return if the
input sequence is empty
(default integer zero)

xs:anyAtomicType?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-sum]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-sum]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

system-property
Returns the value of a system property

system-property($arg as xs:string) # xs:string

Table 17.206.

$arg xs:string The name of the system
property required

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 2.0 and later versions

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-system-property]

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-system-property]

http://www.w3.org/TR/xpath-functions/#func-sum
http://www.w3.org/TR/xpath-functions/#func-sum
http://www.w3.org/TR/xpath-functions-30/#func-sum
http://www.w3.org/TR/xpath-functions-30/#func-sum
http://www.w3.org/TR/xslt20/#function-system-property
http://www.w3.org/TR/xslt20/#function-system-property
http://www.w3.org/TR/xslt-21/#function-system-property
http://www.w3.org/TR/xslt-21/#function-system-property

XSLT 2.0 and XPath 2.0 Functions

412

Notes on the Saxon implementation

As well as the standard system properties defined in the XSLT namespace, the Saxon implementation
will return the value of a Java system property (e.g. as set using -X on the Java VM invocation) if the
name is unprefixed. It does NOT return the values of operating system environment variables.

More specifically, if the argument is a name in no namespace, that is, if the name is unprefixed, then
the name is taken to refer to a Java system property, and the value of that property is returned if it exists.
For example, on a Windows platform, system-property('file.separator') returns "\".
This can be used to obtain information from the environment, and is especially useful in conjunction
with use-when conditional compilation.

tail
Returns all but the first item in a sequence.

tail($arg as item()*) # item()*

Table 17.207.

$arg item()* The sequence whose tail
is required

item()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-tail]

Notes on the Saxon implementation

Newly implemented in Saxon 9.3. Requires XPath 3.0 to be enabled.

tan
Returns the tangent of the argument, expressed in radians.

tan($# as xs:double?) # xs:double?

Table 17.208.

$# xs:double? The input angle in
radians

xs:double?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions/math

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-tan]

http://www.w3.org/TR/xpath-functions-30/#func-tail
http://www.w3.org/TR/xpath-functions-30/#func-tail
http://www.w3.org/TR/xpath-functions-30/#func-tan
http://www.w3.org/TR/xpath-functions-30/#func-tan

XSLT 2.0 and XPath 2.0 Functions

413

Notes on the Saxon implementation

Implemented in Saxon 9.3; available whether or not support for XPath 3.0 is enabled

timezone-from-date
Extracts the timezone component of a date value

timezone-from-date($arg as xs:date?) # xs:dayTimeDuration?

Table 17.209.

$arg xs:date? The supplied xs:date
value

xs:dayTimeDuration?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-timezone-from-
date]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-timezone-
from-date]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

timezone-from-dateTime
Extracts the timezone component of a dateTime value

timezone-from-dateTime($arg as xs:dateTime?) #
xs:dayTimeDuration?

Table 17.210.

$arg xs:dateTime? The supplied
xs:dateTime value

xs:dayTimeDuration?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-timezone-from-
dateTime]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-timezone-
from-dateTime]

http://www.w3.org/TR/xpath-functions/#func-timezone-from-date
http://www.w3.org/TR/xpath-functions/#func-timezone-from-date
http://www.w3.org/TR/xpath-functions/#func-timezone-from-date
http://www.w3.org/TR/xpath-functions-30/#func-timezone-from-date
http://www.w3.org/TR/xpath-functions-30/#func-timezone-from-date
http://www.w3.org/TR/xpath-functions-30/#func-timezone-from-date
http://www.w3.org/TR/xpath-functions/#func-timezone-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-timezone-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-timezone-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-timezone-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-timezone-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-timezone-from-dateTime

XSLT 2.0 and XPath 2.0 Functions

414

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

timezone-from-time
Extracts the timezone component of a time value

timezone-from-time($arg as xs:time?) # xs:dayTimeDuration?

Table 17.211.

$arg xs:time? The supplied xs:time
value

xs:dayTimeDuration?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-timezone-from-
time]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-timezone-
from-time]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

tokenize
Returns a sequence of strings formed by breaking the input string at any substring that matches the
given regular expression

tokenize($input as xs:string?, $pattern as xs:string) # xs:string*

Table 17.212.

$input xs:string? The input string to be
tokenized

$pattern xs:string Regular expression
matching the separators
between tokens

xs:string*

tokenize($input as xs:string?, $pattern as xs:string, $flags as
xs:string) # xs:string*

Table 17.213.

$input xs:string? The input string to be
tokenized

http://www.w3.org/TR/xpath-functions/#func-timezone-from-time
http://www.w3.org/TR/xpath-functions/#func-timezone-from-time
http://www.w3.org/TR/xpath-functions/#func-timezone-from-time
http://www.w3.org/TR/xpath-functions-30/#func-timezone-from-time
http://www.w3.org/TR/xpath-functions-30/#func-timezone-from-time
http://www.w3.org/TR/xpath-functions-30/#func-timezone-from-time

XSLT 2.0 and XPath 2.0 Functions

415

$pattern xs:string Regular expression
matching the separators
between tokens

$flags xs:string Flags controlling how
the regular expression is
interpreted

xs:string*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-tokenize]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-tokenize]

Notes on the Saxon implementation

Saxon 9.3 introduces support for the q flag, and for XPath 3.0 regular expression enhancements,
provided XPath 3.0 is enabled.

trace
Returns the value of the first argument after outputting a diagnostic message

trace($value as item()*, $label as xs:string) # item()*

Table 17.214.

$value item()* The value to be traced,
and to be returned as the
function result

$label xs:string Label to be included in
the trace output

item()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-trace]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-trace]

Notes on the Saxon implementation

Saxon by default outputs trace messages to System.err. However, the output may be redirected to
a TraceListener or to an alternative output destination.

The Saxon implementation outputs the value of each item in a sequence as it is evaluated (except when
the sequence is empty, in which case it outputs "empty sequence" at the start). Atomic values are output
by converting them to a string, nodes by calling getPath() to generate a path expression to the node.
With complex expressions the order of evaluation may be rather different from the expected order.

http://www.w3.org/TR/xpath-functions/#func-tokenize
http://www.w3.org/TR/xpath-functions/#func-tokenize
http://www.w3.org/TR/xpath-functions-30/#func-tokenize
http://www.w3.org/TR/xpath-functions-30/#func-tokenize
http://www.w3.org/TR/xpath-functions/#func-trace
http://www.w3.org/TR/xpath-functions/#func-trace
http://www.w3.org/TR/xpath-functions-30/#func-trace
http://www.w3.org/TR/xpath-functions-30/#func-trace

XSLT 2.0 and XPath 2.0 Functions

416

The trace output is directed to System.err, this may be redirected by using "2>log.txt" on
the command line. If a TraceListener has been nominated, then instead of writing the output to
System.err, the information instead results in events being notified to the TraceListener.

translate
Returns a string formed by replacing individual characters that appear in the second argument with
the characters that appear at the corresponding position in the third argument

translate($arg as xs:string?, $mapString as xs:string,
$transString as xs:string) # xs:string

Table 17.215.

$arg xs:string? The string to be
translated

$mapString xs:string Characters to be
replaced if they appear
in the input string

$transString xs:string Characters to be used
as the replacement
for corresponding
characters in the second
argument

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-translate]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-translate]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

true
Return the boolean value true

true() # xs:boolean

Table 17.216.

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

http://www.w3.org/TR/xpath-functions/#func-translate
http://www.w3.org/TR/xpath-functions/#func-translate
http://www.w3.org/TR/xpath-functions-30/#func-translate
http://www.w3.org/TR/xpath-functions-30/#func-translate

XSLT 2.0 and XPath 2.0 Functions

417

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-true]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-true]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

type-available
Returns true if a type with the given name is available, false otherwise

type-available($type as xs:string) # xs:boolean

Table 17.217.

$type xs:string The name of the
required type, as a
lexical QName

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 2.0 and later versions

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-type-available]

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-type-available]

Notes on the Saxon implementation

The Saxon implementation has a minor restriction: if the argument is known only at run-time, then the
function tests whether the type exists in the run-time configuration, which does not necessarily prove
that it was present in the static context.

In Saxon the type-available() function can be used to check for the availability of Java classes.
For example type-available('jt:java.util.HashMap') returns true, where the prefix
jt is bound to the URI http://saxon.sf.net/java-type.

unordered
Returns a random permutation of its argument

unordered($sourceSeq as item()*) # item()*

Table 17.218.

$sourceSeq item()* The input sequence

item()*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

http://www.w3.org/TR/xpath-functions/#func-true
http://www.w3.org/TR/xpath-functions/#func-true
http://www.w3.org/TR/xpath-functions-30/#func-true
http://www.w3.org/TR/xpath-functions-30/#func-true
http://www.w3.org/TR/xslt20/#function-type-available
http://www.w3.org/TR/xslt20/#function-type-available
http://www.w3.org/TR/xslt-21/#function-type-available
http://www.w3.org/TR/xslt-21/#function-type-available

XSLT 2.0 and XPath 2.0 Functions

418

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-unordered]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-unordered]

Notes on the Saxon implementation

The Saxon implementation currently returns the input sequence unchanged, except where the
expression used as the argument navigates a reverse axis (for example the ancestor or preceding-
sibling axis), in which case the presence of the function causes the nodes to be returned in document
order rather than reverse document order.

unparsed-entity-public-id
Return the public ID of an unparsed entity, given its name

unparsed-entity-public-id() # xs:string

Table 17.219.

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 2.0 and later versions

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-unparsed-entity-public-id]

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-unparsed-entity-public-id]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

unparsed-entity-uri
Return the system ID of an unparsed entity, given its name

unparsed-entity-uri() # xs:string

Table 17.220.

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XSLT 2.0 and later versions

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-unparsed-entity-uri]

XSLT 2.1 Specification [http://www.w3.org/TR/xslt-21/#function-unparsed-entity-uri]

http://www.w3.org/TR/xpath-functions/#func-unordered
http://www.w3.org/TR/xpath-functions/#func-unordered
http://www.w3.org/TR/xpath-functions-30/#func-unordered
http://www.w3.org/TR/xpath-functions-30/#func-unordered
http://www.w3.org/TR/xslt20/#function-unparsed-entity-public-id
http://www.w3.org/TR/xslt20/#function-unparsed-entity-public-id
http://www.w3.org/TR/xslt-21/#function-unparsed-entity-public-id
http://www.w3.org/TR/xslt-21/#function-unparsed-entity-public-id
http://www.w3.org/TR/xslt20/#function-unparsed-entity-uri
http://www.w3.org/TR/xslt20/#function-unparsed-entity-uri
http://www.w3.org/TR/xslt-21/#function-unparsed-entity-uri
http://www.w3.org/TR/xslt-21/#function-unparsed-entity-uri

XSLT 2.0 and XPath 2.0 Functions

419

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

unparsed-text
Returns the contents of an external text file, given its URI. The function attempts to infer the encoding.
First it looks in the HTTP headers if available. Then it examines the start of the file looking first
for a byte-order-mark, and failing that for an XML declaration. If none of this works, it assumes the
encoding is UTF-8.

unparsed-text($href as xs:string?) # xs:string?

Table 17.221.

$href xs:string?

xs:string?

unparsed-text($href as xs:string?, $encoding as xs:string) #
xs:string?

Table 17.222.

$href xs:string?

$encoding xs:string

xs:string?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-unparsed-text]

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-unparsed-text]

Notes on the Saxon implementation

The current Saxon implementation is not deterministic: if the function is called twice with the same
argument, it will read the external file twice, and may return different results if it has changed.

unparsed-text-available
Determines whether the corresponding call on unparsed-text() with the same arguments would
succeed.

unparsed-text-available($href as xs:string?) # xs:boolean

Table 17.223.

$href xs:string? The uri of the text file to
be read

xs:boolean

http://www.w3.org/TR/xpath-functions-30/#func-unparsed-text
http://www.w3.org/TR/xpath-functions-30/#func-unparsed-text
http://www.w3.org/TR/xslt20/#function-unparsed-text
http://www.w3.org/TR/xslt20/#function-unparsed-text

XSLT 2.0 and XPath 2.0 Functions

420

unparsed-text-available($href as xs:string?, $encoding as
xs:string) # xs:boolean

Table 17.224.

$href xs:string? The uri of the text file to
be read

$encoding xs:string The encoding to be
assumed for the text file

xs:boolean

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-unparsed-text-
available]

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-unparsed-text-available]

Notes on the Saxon implementation

The current Saxon implementation is not deterministic: if the function is called twice with the same
argument, it will read the external file twice, and may return different results if it has changed; the
fact that a file is available or unavailable does not guarantee that its status will remain unchanged for
the rest of the query or transformation.

>The current implementation is inefficient: if a call on unparsed-text-available() is
followed by a call on unparsed-text() to read the same file, the file will be read twice.

unparsed-text-lines
Equivalent to calling unparsed-text() and splitting the result at newline boundaries.

unparsed-text-lines($href as xs:string?) # xs:boolean

Table 17.225.

$href xs:string? The uri of the text file to
be read

xs:boolean

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Specification [http://www.w3.org/TR/xpath-functions-11/#func-unparsed-text-lines]

XSLT 2.0 Specification [http://www.w3.org/TR/xslt20/#function-unparsed-text-lines]

unparsed-text-lines($href as xs:string?, $encoding as xs:string) #
xs:string*

Table 17.226.

http://www.w3.org/TR/xpath-functions-30/#func-unparsed-text-available
http://www.w3.org/TR/xpath-functions-30/#func-unparsed-text-available
http://www.w3.org/TR/xpath-functions-30/#func-unparsed-text-available
http://www.w3.org/TR/xslt20/#function-unparsed-text-available
http://www.w3.org/TR/xslt20/#function-unparsed-text-available
http://www.w3.org/TR/xpath-functions-11/#func-unparsed-text-lines
http://www.w3.org/TR/xpath-functions-11/#func-unparsed-text-lines
http://www.w3.org/TR/xslt20/#function-unparsed-text-lines
http://www.w3.org/TR/xslt20/#function-unparsed-text-lines

XSLT 2.0 and XPath 2.0 Functions

421

$href xs:string? The uri of the text file to
be read

$encoding xs:string The encoding to be
assumed for the text file

xs:string*

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Specification [http://www.w3.org/TR/xpath-functions-11/#func-unparsed-text-lines]

Notes on the Saxon implementation

Newly implemented in Saxon 9.4; requires XPath 3.0 to be enabled.

upper-case
Converts a string to upper case

upper-case($arg as xs:string?) # xs:string

Table 17.227.

$arg xs:string? The string to be
converted to upper-case

xs:string

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-upper-case]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-upper-case]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

uri-collection
Returns a sequence of xs:anyURI values representing the document URIs of the documents in a
collection (either the default collection or a named collection).

uri-collection() # xs:anyURI*

Table 17.228.

xs:anyURI*

uri-collection($arg as xs:string?) # xs:anyURI*

Table 17.229.

http://www.w3.org/TR/xpath-functions-11/#func-unparsed-text-lines
http://www.w3.org/TR/xpath-functions-11/#func-unparsed-text-lines
http://www.w3.org/TR/xpath-functions/#func-upper-case
http://www.w3.org/TR/xpath-functions/#func-upper-case
http://www.w3.org/TR/xpath-functions-30/#func-upper-case
http://www.w3.org/TR/xpath-functions-30/#func-upper-case

XSLT 2.0 and XPath 2.0 Functions

422

$arg xs:string? The collection URI

xs:anyURI*

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 3.0, XSLT 3.0, XQuery 3.0 (if enabled in Saxon: requires Saxon-PE or Saxon-EE)

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-uri-collection]

Notes on the Saxon implementation

Newly implemented in Saxon 9.3. Requires XPath 3.0 to be enabled.

The mechanisms for interpreting collection URIs are essentially the same as for the collection
function, except that the collection URI resolver (if used) must return URIs rather than returning parsed
document nodes directly.

year-from-date
Extracts the year component of a date value

year-from-date($arg as xs:date?) # xs:integer?

Table 17.230.

$arg xs:date? The input date value

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-year-from-date]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-year-from-
date]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

year-from-dateTime
Extracts the year component of a dateTime value

year-from-dateTime($arg as xs:dateTime?) # xs:integer?

Table 17.231.

$arg xs:dateTime? The input dateTime
value

http://www.w3.org/TR/xpath-functions-30/#func-uri-collection
http://www.w3.org/TR/xpath-functions-30/#func-uri-collection
http://www.w3.org/TR/xpath-functions/#func-year-from-date
http://www.w3.org/TR/xpath-functions/#func-year-from-date
http://www.w3.org/TR/xpath-functions-30/#func-year-from-date
http://www.w3.org/TR/xpath-functions-30/#func-year-from-date
http://www.w3.org/TR/xpath-functions-30/#func-year-from-date

XSLT 2.0 and XPath 2.0 Functions

423

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-year-from-
dateTime]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-year-from-
dateTime]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

years-from-duration
Extracts the years component of a duration value

years-from-duration($arg as xs:duration?) # xs:integer?

Table 17.232.

$arg xs:duration? The input duration value

xs:integer?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-years-from-
duration]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-years-from-
duration]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

zero-or-one
Tests whether $srcval contains zero or one items; fails if it contains multiple items.

zero-or-one($arg as item()*) # item()?

Table 17.233.

$arg item()* The input sequence to
be tested

http://www.w3.org/TR/xpath-functions/#func-year-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-year-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-year-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-year-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-year-from-dateTime
http://www.w3.org/TR/xpath-functions-30/#func-year-from-dateTime
http://www.w3.org/TR/xpath-functions/#func-years-from-duration
http://www.w3.org/TR/xpath-functions/#func-years-from-duration
http://www.w3.org/TR/xpath-functions/#func-years-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-years-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-years-from-duration
http://www.w3.org/TR/xpath-functions-30/#func-years-from-duration

XSLT 2.0 and XPath 2.0 Functions

424

item()?

Links to W3C specifications

Namespace: http://www.w3.org/2005/xpath-functions

Applies to: XPath 2.0, XSLT 2.0, XQuery 1.0 and later versions

XPath 2.0 Functions and Operators [http://www.w3.org/TR/xpath-functions/#func-zero-or-one]

XPath 3.0 Functions and Operators [http://www.w3.org/TR/xpath-functions-30/#func-zero-or-one]

Notes on the Saxon implementation

The function is fully implemented according to the W3C specifications.

http://www.w3.org/TR/xpath-functions/#func-zero-or-one
http://www.w3.org/TR/xpath-functions/#func-zero-or-one
http://www.w3.org/TR/xpath-functions-30/#func-zero-or-one
http://www.w3.org/TR/xpath-functions-30/#func-zero-or-one

425

Chapter 18. Standards Conformance
Introduction

This section of the documentation describes the extent to which Saxon conforms to external
specifications, notably W3C language specifications and Java API specifications.

Statements of conformance are made here in good faith, and are based on the results of running W3C
test suites. To the extent that these test suites are incomplete, however, there may be edge case non-
conformances that are not captured here. Any information about discrepancies or non-conformances
not noted here will be welcomed, and the differences will either be corrected in the product, or
documented in a future revision of this section.

XSLT 2.0 conformance
This release of Saxon is a complete implementation of the XSLT 2.0 Recommendation [http://
www.w3.org/TR/xslt20/] of 23 January 2007, together with all errata published up to 10 April 2009,
which are consolidated in the Proposed Edited Recommendation [http://www.w3.org/TR/2009/PER-
xslt20-20090421/] of 21 April 2009.

Saxon-HE 9.x and Saxon-PE 9.x act as a , while Saxon-EE 9.x acts as a . The distinction is that a Basic
XSLT Processor does not allow schemas to be imported and does not support validation of source or
result documents or reference to user-defined types. These correspond to the two conformance levels
defined in the XSLT 2.0 specification.

The XSLT 2.0 specification defines two optional conformance features, the serialization feature and
the backwards compatibility feature. These optional features are implemented all three Saxon editions.

The following non-conformances apply only on the .NET platform, and only when using the Microsoft
System.Xml parser:

• Under .NET, when the System.Xml parser is used, attributes declared in the DTD as being of
type ID are not accessible using the id() function. This is because the System.Xml parser
(XMLValidatingReader) does not make the DTD-defined attribute type available to the
application.

• Similarly, when the System.Xml parser is used, unparsed entities are not reported to Saxon by
the .NET parser, so the calls unparsed-entity-uri() and unparsed-entity-public-
id() will always return a zero-length string.

These restrictions do not apply when a JAXP parser is used in place of
the Microsoft parser. Since 9.3, the JAXP parser has therefore been the default.
Setting the option processor.SetProperty("http://saxon.sf.net/feature/
preferJaxpParser", "true") causes Saxon to use the Apache Xerces parser in preference
to the (Microsoft) System.Xml parser. Xerces is bundled in the Saxon DLL; this parser is used in
preference to the JAXP parser included in the OpenJDK library because it is more reliable and because
it has no unnecessary references to other libraries.

Test results
Saxonica has submitted test results for the W3C XSLT Test Suite. At present this test suite, and the
submitted results, are available to W3C members only. Saxon's submitted results in the suite (for Saxon
8.8, which was the first version to claim conformance), are available here [http://www.saxonica.com/
conformance/xslts1.0.4/published-results8.8.html].

A number of bugs have been raised against the XSLT 2.0 specification which are not yet the subject of
published errata. The most significant is Bug 5857 [http://www.w3.org/Bugs/Public/show_bug.cgi?

http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/2009/PER-xslt20-20090421/
http://www.w3.org/TR/2009/PER-xslt20-20090421/
http://www.w3.org/TR/2009/PER-xslt20-20090421/
http://www.saxonica.com/conformance/xslts1.0.4/published-results8.8.html
http://www.saxonica.com/conformance/xslts1.0.4/published-results8.8.html
http://www.saxonica.com/conformance/xslts1.0.4/published-results8.8.html
http://www.w3.org/Bugs/Public/show_bug.cgi?id=5857
http://www.w3.org/Bugs/Public/show_bug.cgi?id=5857

Standards Conformance

426

id=5857], which affects whether or not xmlns="" namespace undeclarations should appear in the
result of copy operations. Saxon 9.4 partially implements the proposed fix to this bug.

Checklist of Implementation-Defined Items
The following list describes the way in which Saxon implements the features that the specification
leaves implementation-defined. The numbering of items in the list corresponds to the numbering in
the checklist provided as Appendix F of the XSLT 2.0 specification [http://www.w3.org/TR/xslt20/
#implementation-defined-features].

1.
Saxon offers a command line interface, and a Java API. The Java API conforms to the JAXP 1.3
Transformation interface defined in the JDK specifications, extended as necessary to support XSLT
2.0 facilities.

2.
The mechanisms offered by Saxon are described in Extension instructions extension functions
respectively.

3.
In most cases Saxon allows the user to make this choice, using the options -w0, -w1, and -w2 on
the command line (meaning respectively: ignore the error silently, continue after a warning, treat
the error as fatal). Equivalent options are also available in the Java API.

There are some cases where this does not apply:

• XTRE1160 (unrecognized media type): this error is not detected, Saxon always takes the
recovery action.

• XTRE1630 (disable-output-escaping when the result is not serialized): this error is not detected,
Saxon always takes the recovery action.

4.
Saxon does extensive type checking at compile time, though it does not follow the precise inference
rules as defined in the W3C . Errors are signaled statically only where a construct cannot possibly
succeed (that is, where it will always fail with a type error at run time if evaluated). Warnings are
signaled (a) where a path expression will always return an empty sequence (for example, @x/@y),
and (b) in the case of a construct that can only succeed if the supplied value is an empty sequence,
for example when comparing values whose statically-inferred types are integer? and string?
respectively.

5.
Saxon reports all serialization errors defined in the serialization specification, and treats them as
fatal unless the serialization specification itself defines them as recoverable, in which case they are
handled as warnings.

6.
The only namespace that is specially recognized is http://saxon.sf.net/.

7.
The user-defined data elements recognized by Saxon (for example, saxon:collation,
saxon:import-query, and saxon:script) are described in extension instructions. Any
other element in the Saxon namespace is signaled as an error.

8.
Saxon supports backwards-compatible behavior.

9.
Saxon allows a user-specified URIResolver to handle these URIs, in which case the forms of
URI that are accepted depend on this URIResolver. By default, Saxon on the Java platform
uses the mechanisms in the java.net.URI class of the underlying Java VM, while on the .NET
platform the capabilities of the System.Uri class are used. The capabilities of these underlying

http://www.w3.org/Bugs/Public/show_bug.cgi?id=5857
http://www.w3.org/TR/xslt20/#implementation-defined-features
http://www.w3.org/TR/xslt20/#implementation-defined-features
http://www.w3.org/TR/xslt20/#implementation-defined-features

Standards Conformance

427

classes depend on the version and variant of the platform in use, and may also be customized by
users.

Saxon places no restriction on the media type of a stylesheet module. Regardless of the media
type, it accepts a "bare name" fragment identifier as a reference to an element within the retrieved
document, identified by an attribute of type ID.

10.
In addition to importing types using xsl:import-schema, Saxon implicitly imports a type
corresponding to each class that is present in the Java classpath. These types have names in the
namespace http://saxon.sf.net/java-type; the local name of the type is the same as
the full name of the Java class (for example, java.net.URI, with any "$" signs replaced by
hyphens. These types are intended for use with extension functions written in Java.

11.
Saxon gives the user the choice. See Saxon and XML 1.1.

12.
Saxon uses the timezone obtained from the system clock, unless the user specifies a different
timezone as a run-time option.

13.
Saxon allows localized numbering sequences to be defined by user-written plug-in code: see
implementing localized numbers. In the absence of such a plug-in, the sequences that are supported
are those defined in the specification, plus Greek upper-case (x0391), Greek lower-case (x03b1),
Cyrillic upper case (x0410), Cyrillic lower-case (x0430), Hebrew (x05d0), Hiragana A (x3042),
Katakana A (x30a2), Hiragana I (x3044), Katakana I (x30a4), and Kanji digits (x4e00). If an
unrecognized letter is used as a formatting token, Saxon constructs a sequence starting with that
letter and making use of the contiguous Unicode code-points starting with that letter that are
classified as letters or digits. For example, the format token "x" produces the sequence x, y, z, xx,
xy, xz, ...

14.
Saxon imposes no limits on numbering sequences using letters or digits (other than those imposed
by resource limitations). Roman numerals are handled in the range 1 to 9999, though values above
4000 are best avoided because there are no recognized conventions.

15.
The default language is English. Localizations for number and date formatting are available for
Belgian French, Danish, Dutch, English, French, Flemish, German, Italian, and Swedish. Other
languages are supported only if user-written (or third-party) localization plug-ins are provided.

16.
Any value other than "text" or "number" is treated as an error.

17.
Saxon allows a user-written CollationURIResolver to interpret the collation URI, in which
case there are no restrictions on the URI that is used. If the standard CollationURIResolver
is used, two forms of URI are recognized: a URI declared using the saxon:collation
element in the stylesheet, and a URI of the form http://saxon.sf.net/collation?
keyword=value;keyword=value;... as described in Collations. It is also possible to
register collations (with user-defined names) via the Java API.

18.
Given the lang attribute, Saxon on the Java platform uses the Java Locale mechanisms to find
a locale for that language, and hence a collation. On the .NET platform, Saxon similarly finds
a collation appropriate to the .NET culture for that language. Given the case-order attribute,
Saxon takes the collation that would be used in the absence of this attribute, changes its strength to
secondary (making it case-blind), and then re-evaluates the result of any comparison performed
by the base collator so that if the base collator decides two strings are equal, they are examined
again to establish the effect of any case differences.

Standards Conformance

428

19.
Saxon ignores the media type entirely. Fragment identifiers are interpreted as bare names (matching
ID attribute values) regardless of the media type.

20.
Saxon allows the localizations for particular languages to be defined as user-written plug-ins. The
localizations supported for date/time formatting are the same languages that are supported for
numbering (see above). The country argument is ignored except when determining a timezone
name: in this case Saxon outputs a time zone name if the timezone is used in the specified country;
if the timezone is attached to a date or dateTime then it also takes account of whether that date is
known to be in daylight savings time (summer time) in the country in question.

21.
For English, the days of the week are Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday. If abbreviations are requested the values used are Mon, Tues, Weds, Thurs, Fri, Sat, Sun,
right-truncated if necessary to the requested maximum length. If the minimum length is 1 and the
maximum is 2, then the values used are M Tu We Th F Sa Su.

For English, the names of the months are January, February, March, April, May, June, July, August,
September, October, November, and December. If abbreviation is requested, the leading part of the
name to the required length is used (always returning at least three characters).

22.
The following table shows the values returned for system-defined properties, for both Saxon-B and
Saxon-EE: here "9.4.0.1" is replaced by the current version number. The suffix "J" indicates the
Java platform; this is replaced by "N" on the .NET platform.

Table 18.1.

Name Saxon-HE Saxon-PE Saxon-EE Notes

xsl:version 2.0 2.0 2.0

xsl:vendor Saxonica Saxonica Saxonica Changed in Saxon
9.4

xsl:vendor-url http://
www.saxonica.com/

http://
www.saxonica.com/

http://
www.saxonica.com/

xsl:product-name SAXON SAXON SAXON

xsl:product-
version

HE 9.4.0.1J PE 9.4.0.1J EE 9.4.0.1J For PE, and EE,
if no license
file is available
then the string
"(unlicensed)" is
added after the
edition code.

xsl:is-schema-
aware

no no yes or no depends on
whether the
particular
transformation is
schema-aware

xsl:supports-
serialization

yes yes yes

xsl:supports-
backwards-
compatibility

yes yes yes

xsl:supports-
namespace-axis

yes yes yes See Erratum
E14 to the
specification

Standards Conformance

429

If the name of the system property is in the null namespace, Saxon returns the value of the Java
system property whose name matches the local name.

23.
By default, messages are formatted as XML and written to the standard error output. Both the
formatting and the destination can be customized through the Java API.

24.
Saxon does not validate the values that are returned. Invalid values may cause an error during
subsequent processing, or may be written to the final output destination, resulting in ill-formed
XML.

25.
Saxon represents external objects as a subtype of xdt:anyAtomicType. A QName is allocated
to such types based on the Java class name of the external object, within the namespace "http://
saxon.sf.net/java-type". The local name is the same as the expanded Java class name, with "$"
replaced by "-".

26.
In the case of the principal result tree, the destination is specified using the JAXP API (as the second
argument of the transform() method). If secondary result trees are not to be serialized to filestore,
a user-written OutputURIResolver must be nominated. Saxon will pass all generated result
trees to this class, which can then do what it likes with them.

27.
See previous item.

28.
The href attribute of xsl:result-document is interpreted as a relative URI, relative to the
URI that defines the destination to which the principal result tree is serialized. This is defined by
the -o option on the command line, or by the SystemID of the Result object supplied using the
JAXP API.

29.
The default encoding is UTF-8.

30.
For HTML and XHTML, Saxon treats the version attribute as documentary only. For XML,
versions 1.0 and 1.1 are recognized.

31.
A byte order mark is written only if explicitly requested (that is, the default is "no").

32.
Disable-output-escaping is supported provided that the final result tree is being written to a
StreamResult. It can also be notified to a SAXResult, as described in the JAXP documentation.
Disable-output-escaping is not supported when writing to a temporary tree.

XSLT 3.0 conformance
The XSLT 3.0 specification is far from complete, so at the time of writing it is not meaningful to
discuss conformance in fine detail.

Broadly speaking:

• Saxon-HE does not implement any XSLT 3.0 features

• Saxon-PE implements a selection of XSLT 3.0 (and XPath 3.0) features, with the exception of
schema-awareness and streaming

Standards Conformance

430

• Saxon-EE implements additional features relating to streaming (processing of a source document
without constructing a tree in memory.

For information on streaming, see Streaming of large source documents.

At the time of writing, the latest published working draft is XSLT 2.1 [http://www.w3.org/TR/xslt-21/]
published on 11 May 2010. Since then the WG has produced many internal drafts, and some of the
new features appear in Saxon 9.4 ahead of publication by W3C. The WG has announced that XSLT
2.1 will be renumbered XSLT 3.0, and Saxon uses the new numbering.

XSLT 3.0 features are not available unless explicitly requested. The request can be by setting
-xsltversion:3.0 on the command line, by calling setXsltLanguageVersion()
on the XsltCompiler [Javadoc: net.sf.saxon.s9api.XsltCompiler] object,
or by use of the configuration setting FeatureKeys.XSLT_VERSION [Javadoc:
net.sf.saxon.lib.FeatureKeys]. Setting version="3.0" on the xsl:stylesheet
element is recommended, but is not sufficient on its own.

XSLT 3.0 features implemented in Saxon 9.4 include the following:

• The xsl:iterate instruction

• The xsl:mode declaration

• The xsl:merge instruction

• The unparsed-text-lines() function

• The copy-of and snapshot() functions

• The xsl:try instruction

• The xsl:evaluate instruction

• The syntax of patterns has been generalized; though not all the new XSLT 3.0 features are
implemented.

• The select attribute of the xsl:copy instruction

Maps, as defined in the draft XSLT 3.0 specification, are implemented as an extension to XPath 3.0.
For details see Maps in XPath 3.0.

XPath 2.0 conformance
This release of Saxon implements the full XPath 2.0 language as defined in the Second Edition
Recommendation [http://www.w3.org/TR/xpath20/] of 14 December 2010.

There is a minor non-conformance in XPath 2.0 regular expression support, caused by bugs or
restrictions in the underlying platform:

• When the "i" flag is used in conjunction with back-references, Saxon relies on the semantics of
the underlying regular expression engine for case-independent matching. On most platforms the
behaviour is not identical to the rules defined in XPath, though typically this only affects corner
cases.

All the functions defined in the Functions and Operators [http://www.w3.org/TR/xpath-functions]
specification are implemented. Information about the way they are implemented is provided in
functions reference.

There is a non-conformance in the implementation of the collection() function: with the default
collection URI resolver, the results are not guaranteed to be stable. That is, when the same collection

http://www.w3.org/TR/xslt-21/
http://www.w3.org/TR/xslt-21/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath-functions
http://www.w3.org/TR/xpath-functions

Standards Conformance

431

URI is used more than once, both the contents of the collection and the contents of the documents
within the collection may be different on each occasion. It is possible to achieve stable results with
a user-written collection URI resolver.

Implementation-defined aspects of Functions and
Operators

The Functions and Operators specification includes a number of implementation-defined behaviors.
This section describes how these are implemented in Saxon.

1.
By default trace output is sent to the standard error output. It can be redirected in various ways:
by redirecting System.err, by supplying a user-written MessageEmitter, or by changing the output
destination of the standard MessageEmitter to a defined output stream or writer.

2.
Saxon supports unlimited-precision integer arithmetic, so this provision does not apply.

3.
Saxon supports unlimited-precision decimal arithmetic. For addition, subtraction, and
multiplication, no rounding or truncation occurs; the full precision of the result is maintained. For
division, the number of digits in the result is: the number of digits in the numerator, the number of
digits in the divisor, or 18, whichever is greatest. Rounding of values in the range .0 to .5 inclusive
is towards zero, otherwise away from zero.

4.
For the Unicode character categories used in regular expressions, Saxon (since release 9.4) uses the
tables from Unicode 6.0.0. For Unicode blocks in regular expressions, Saxon uses the definitions
in Unicode 6.0.0, but also supports block names (such as "Greek") from earlier Unicode versions
where the blocks have since been renamed.

Some functions such as the implementations of upper-case() and lower-case() are
delegated to the Java VM, and the result therefore depends on the Unicode version supported by
the Java VM. In JDK 5.0 this is Unicode version 4.0.

Other functions such as normalize-unicode() are implemented natively within Saxon. The
character tables used for this are derived from the Unicode 4.0 database.

5.
Saxon currently supports normalization forms NFC, NFD, NFKC, and NFKD.

6.
Saxon supports this capability for a collation implemented using a Java RuleBasedCollator.
Any Java Comparator can be used to implement a collation, but the substring matching functions
will fail (error FOCH0004) if the Comparator is not a RuleBasedCollator.

Saxon also supports this capability on the .NET platform. However, the results delivered by
the collation support on the .NET platform do not appear to be 100% aligned with the XPath
specification.

7.
Saxon allows the year to be any 32-bit signed integer. The interpretation of negative years depends
on whether the system is configured to use XSD 1.0 or XSD 1.1 semantics (in XSD 1.1, year zero
exists, in XSD 1.0 it does not). Seconds are supported to a fractional precision of six digits (that
is, microsecond precision).

8.
Saxon allows the URI dereferencing to be performed using a user-supplied URIResolver, as
defined in the JAXP specification, or using an XmlResolver on the .NET platform. Saxon
also provides various options to control whitespace stripping, validation using a DTD or schema,

Standards Conformance

432

handling of errors, and support for XML 1.1. If appropriate configuration options are set, then query
parameters are recognized in the URI to control some of these decisions.

XPath 3.0 Conformance
Saxon 9.4 implements nearly all the new features of the XPath 3.0 specification. At the time of writing
the Working Groups are preparing a new Working Draft which is intended to have "Last Call" status;
it is this working draft that has been used as the basis for this release.

New features that are fully implemented include the following:

• String contatenation operator ||

• Simple mapping operator !

• Casting is allowed from a string to a union or list type

• Union types, provided they meet certain rules, can be used as a SequenceType

• Dynamic function call (Functions are first class values (items) in the data model)

• Function literals, for example substring#2

• Inline functions, for example function($i) {$i*$i}

• Partial application of functions, for example concat('$', ?)

• Let expressions (let $v := expr return f($v))

• EQNames ('uri':local) wherever QNames are allowed

Maps are implemented in XPath 3.0 as described in the XSLT 3.0 specification. This is true whether
or not the XPath processor is being invoked in an XSLT context. For details see Maps in XPath 3.0.

For details of the function library supported, see XSLT 2.0 and XPath 2.0 Functions.

XQuery 1.0 Conformance
This release of Saxon implements the full XQuery 1.0 language as defined in the Second Edition
Recommendation [http://www.w3.org/TR/xquery/] of 14 December 2010. The restrictions noted with
respect to XPath 2.0 apply equally to Saxon's support for XQuery 1.0.

XQuery conformance levels are described in Section 5 of the XQuery specification [http://
www.w3.org/TR/xquery/#id-xquery-conformance].

Saxon-HE and Saxon-PE provide plus the following :

• Full Axis Feature

• Module Feature

• Serialization Feature

Saxon-EE provides plus the following :

• Schema Import Feature

• Schema Validation Feature

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/#id-xquery-conformance
http://www.w3.org/TR/xquery/#id-xquery-conformance
http://www.w3.org/TR/xquery/#id-xquery-conformance

Standards Conformance

433

• Full Axis Feature

• Module Feature

• Serialization Feature

Neither Saxon product supports the Static Typing Feature, and there are no plans to do so.

There are some known non-conformances if the product is used in particular ways:

• In pull mode (-pull on the command line) there is a restriction that namespace undeclaration is not
supported; this means that the query prolog option "copy-namespaces no-inherit" has no effect.

• Under .NET, if the System.Xml parser is selected, attributes declared in the DTD as being of type
ID are not accessible using the id() function. This is because the System.Xml parser does not
make the DTD-defined attribute type available to the application.

Conformance Tests
Saxonica has submitted results for the published W3C XQuery Test suite [http://www.w3.org/
XML/Query/test-suite/]. W3C has published have generated both summary [http://www.w3.org/
XML/Query/test-suite/XQTSReportSimple.html] and detail [http://www.w3.org/XML/Query/test-
suite/XQTSReport.html] reports from the results; at the time of submission Saxon-EE was the only
product to achieve a 100% pass rate.

The test driver used to measure these results is included in the Saxon distribution as part of the saxon-
resources-9.n download.

Checklist of Implementation-Defined Items
Appendix D of the XQuery specification lists a number of features whose behavior is implementation-
defined. For Saxon, the behavior is as follows:

1.
For details of Saxon Unicode support, see XSLT 2.0 Conformance

2.
Collation URIs of the form http://saxon.sf.net/collation? are always available:
these map to the collations offered by the locales available within the Java VM in use. Additional
collation URIs may be implemented by users and registered with the Saxon configuration via the
Java API.

3.
The implicit timezone is normally taken from the system clock. This may, however, be overridden
via the Java API.

4.
Warnings are raised for a variety of conditions. Compile time warnings include:

• Use of a path expression that can never select anything (for example @a/@b)

• Use of an expression that can only succeed if one or more operands are empty sequences

• Use of a string literal in a PITest that is not a valid NCName

Warnings may also be raised at run-time, for example if the collection() function fails to load
a document and recovery has been requested.

Compile-time warnings are sent to the JAXP ErrorListener registered with the
Configuration; the default ErrorListener displays them as messages on System.err.

http://www.w3.org/XML/Query/test-suite/
http://www.w3.org/XML/Query/test-suite/
http://www.w3.org/XML/Query/test-suite/
http://www.w3.org/XML/Query/test-suite/XQTSReportSimple.html
http://www.w3.org/XML/Query/test-suite/XQTSReportSimple.html
http://www.w3.org/XML/Query/test-suite/XQTSReportSimple.html
http://www.w3.org/XML/Query/test-suite/XQTSReport.html
http://www.w3.org/XML/Query/test-suite/XQTSReport.html
http://www.w3.org/XML/Query/test-suite/XQTSReport.html

Standards Conformance

434

Run-time warnings are sent to the JAXP ErrorListener registered with the Controller;
the default is the same.

5.
Compile-time errors are sent to the JAXP ErrorListener registered with the
Configuration; the default ErrorListener displays them as messages on System.err.
Run-time errors are sent to the JAXP ErrorListener registered with the Controller; the
default is the same. When queries are invoked from a Java application, any error will also be notified
by throwing an exception.

6.
Saxon gives the user the choice: see Saxon and XML 1.1. Note that since Saxon allows the user to
select which XML parser to use on a per-document basis, achievement of consistency across "all
aspects of the implementation" is in part a user responsibility. Saxon will not reject any attempt to
use an XML 1.1 parser in a 1.0 configuration, or vice versa.

Since Saxon 9.4, all operations in Saxon itself (as distinct from the underlying parser) that depend
on the rules for XML Names use the rules that are defined in XML 1.0 fifth edition and in XML
1.1, rather than the rules defined in earlier XML 1.0 editions.

7.
The following table shows the components of the static context. For each component, the second
column shows whether the component is overwritten or augmented by Saxon itself. The third
columns shows whether it may be overwritten or augmented by an application, through facilities
in the Java API.

Table 18.2.

Component Overritten or augmented by
Saxon?

Can be set from Java API?

XPath 1.0 Compatibility Mode no no

Statically known namespaces no yes

Default element/type
namespace

no yes

Default function namespace no no

In-scope schema types yes: types corresponding to
Java classes for use in extension
functions

no

In-scope element declarations no no

In-scope attribute declarations no no

In-scope variables no no

Context item static type no no

Function signatures yes: any Java method on the
classpath can be referenced

yes: there is a plug-in
mechanism

Statically known collations yes: collations of the form
http://saxon.sf.net/collation?

yes

Default collation no yes

Construction mode no no

Ordering mode no no

Default order for empty
sequences

no no

Boundary-space policy no no

Copy-namespaces mode no no

Standards Conformance

435

Base URI yes: inferred from the location
of the query

yes

Statically known documents no no

Statically known collections no no

Statically known default
collection type

no no

For the dynamic context, the corresponding settings are:

Table 18.3.

Context item no yes

Context position no no

Context size no no

Variable values no only for declared external
variables

Function implementations no yes (extension functions)

Current dateTime yes (from system clock) yes

Implicit timezone yes (from system clock) yes

Available documents yes (all documents reachable
using Java URL connections)

yes (URIResolver)

Available collections no yes (CollectionResolver/
catalog)

Default collection no yes (CollectionResolver/
catalog)

8.
The Full-Axis features is supported.

9.
Empty least

10.
Saxon-EE recognizes one pragma: saxon:validate-type. For details, see XQuery
extensions.

11.
See XQuery Extensibility.

12.
Java methods can be called as Extension Functions

13.
The location hint is interpreted as a relative URI, relative to the base URI of the referencing
module. It is then dereferenced using the Java URL mechanisms, unless the user has nominated a
ModuleURIResolver, in which case the interpretation is under user control.

14.
Not applicable.

15.
Serialization may be invoked from the command line or from the Java or .NET API. Serialization
parameters may be supplied on the command line, from the Java or .NET API, or through option
declarations in the query prolog.

16.

Standards Conformance

436

As specified in Appendix C.3 of the XQuery specification.

XQuery 3.0 Conformance
Saxon 9.4 implements nearly all the new features of the XQuery 3.0 specification. At the time of
writing the Working Groups are preparing a new Working Draft which is intended to have "Last Call"
status; it is this working draft that has been used as the basis for this release.

See also XPath 3.0 Conformance; all the new features implemented for XPath 3.0 are also available
in XQuery 3.0.

Other new features that are fully implemented include the following:

• Group by clause in FLWOR expressions

• Tumbling window and sliding window in FLWOR expressions

• Count clause in FLWOR expressions

• Outer joins, represented by the syntax allowing empty in a FLWOR expression

• Try/Catch expressions

• Private functions and variables

• Switch expressions

• Computed namespace constructors

• Output declarations to control serialization

• Decimal format declarations to control use of the format-number function.

• Validation against a named type

• Default values for external variables

Maps are implemented in XPath 3.0 as described in the XSLT 3.0 specification. This is true whether
or not the XPath processor is being invoked in an XSLT context.

The main omissions are: function annotations other than private and public; annotations on inline
functions; annotation assertions; some options for casting to union types (casting from string to a union
type is fully supported).

In the try/catch clause, the error variables (such as err:code are not available).

For details of the function library supported, see XSLT 2.0 and XPath 2.0 Functions.

XML Schema 1.0 Conformance
Saxon Enterprise Edition (Saxon-EE) includes a complete implementation of XML Schema 1.0.

Test results have been submitted against the W3C XML Schema Test Suite. All deviations from the
expected test results have been accounted for, and are believed to represent areas where the tests are
either incorrect, or where implementations can legitimately differ.

Known limitations include the following:

Standards Conformance

437

• Saxon imposes limits on the values of minOccurs and maxOccurs appearing on any particle
other than an element particle in a content model. These limits are designed to prevent out-
of-memory errors. By default, the upper limit for minOccurs is 100 and the upper limit for
maxOccurs (other than "unbounded") is 250. If these limits are exceeded, a warning is output, and
the values specified are replaced with the highest allowed value (which is "unbounded" in the case
of maxOccurs). The limits are configurable using the method setOccurrenceLimits() in
the class EnterpriseConfiguration. If they are set too high, however, out-of-memory or
stack overflow errors will occur either during schema compilation or during instance validation.
Since Saxon 9.1, these limits no longer apply to the common case of element particles, which are
now handled using counters.

• Saxon implements schema processing only to the extent required for XPath, XSLT, and XQuery
processing and for assessment of document validity. This means that PSVI properties beyond those
required for the XPath data model are not provided. It also means that validation errors are fatal,
they do not result in a PSVI that indicates the validation outcome for individual nodes.

• Saxon uses the rules in XSD 1.1 rather than those in XSD 1.0 to evaluate type subsumption. The
Saxon algorithm (an implementation of the algorithm published by Henry Thompson and Richard
Tobin of the University of Edinburgh) is more accurate than the one in the XSD 1.0 specification
in deciding whether one complex type subsumes another. It therefore permits some complex type
restrictions that the cruder XSD 1.0 algorithm disallows.

• Saxon also uses the Thomson and Tobin algorithm to evaluate the Unique Particle Attribution
constraint. The effect of this is that no UPA violation is reported when a complex type contains
two distinct element particles that are references to the same element declaration, since the element
declaration can be identified unambiguously.

• Saxon does not allow a user-defined type to be derived directly from xs:anySimpleType. It
seems that the XSD 1.0 specification does not disallow this, though the effect of doing it is very
unclear, and it has been banned in XSD 1.1.

XML Schema 1.1 Conformance
Saxon includes a complete implementation of the proposed specification of XSD 1.1. At the time of
release of Saxon 9.4, the specification is very close to becoming a Recommendation, and there is a
test suite that is believed to cover all new features of the specification. Saxon achieves 100% pass rate
againts these tests. Saxonica has worked closely with other implementors of XSD 1.1 to ensure that
implementations are fully interoperable. There is still, however, a possibility that the treatment of some
edge cases in the specification will change, or that new tests will be added which Saxon does not pass.

XSD 1.1 features are available only if explicitly requested by using the -xsdversion:1.1 option on the
command line, or equivalent options in the API.

The rules for valid type derivation follow the XML Schema 1.1 specification, regardless of this option
setting. This is because the rules in the 1.0 specification do not meet the stated intent, namely that
type derivation is valid in all cases where the restricted type allows a subset of the instances permitted
by the base type.

An outline of the changes between XSD 1.0 and XSD 1.1 can be found in Appendix G of the
specification [http://www.w3.org/TR/xmlschema11-1/#changes].

Implementation-defined features
Appendix E1 of XSD 1.1 (Part 1) provides a checklist of implementation-defined and implementation-
dependent features. The following list describes how these are implemented in Saxon.

•
The definition of whitespace is the same in all XML editions. The definition of the syntax of names
is the same in XML 1.1 and in XML 1.0 fifth edition, and Saxon uses this definition

http://www.w3.org/TR/xmlschema11-1/#changes
http://www.w3.org/TR/xmlschema11-1/#changes
http://www.w3.org/TR/xmlschema11-1/#changes

Standards Conformance

438

•
Saxon-EE can read XML schema documents.

•
Saxon-EE is able to read XML schema documents from the Web.

•
Saxon-EE allows validation to be invoked from the command line, via a Java or .NET API, or from
XSLT and XQuery. The documentation fors interfaces provides the required information.

•
Saxon provides only that part of the PSVI used by the XQuery and XSLT specifications. This
amounts to adding a type annotation to each element and attribute node where the outcome of
validation is 'valid', and providing error messages where it is not.

•
See previous answer.

•
Saxon allocates unique names to anonymous type definitions.

•
Saxon generally assembles schema components from XML schema documents as described in the
XSD specification. However, it has built-in knowledge of the schema for the XML namespace, and
these components can be included in a schema simply by importing the relevant namespace. It also
has built-in knowledge of the schema components defined in the FN namespace, used in the result
document of the analyze-string function in XPath 3.0

•
The information is not directly available.

•
See the checklist that follows.

•
Saxon-EE attempts to detect all violations of Derivation Valid by examination of the schema in
isolation; if it is not able to determine at this stage that the derivation is valid, the schema is
considered to be in error.

•
Saxon uses optimistic static type checking; it reports a static error in the XPath expression if its type
analysis concludes that the type of a supplied value and the type required by the context in which
it is used are disjoint, so that execution can never succeed.

•
In considering whether two type tables are equivalent, Saxon tests the equivalence of XPath
expressions by comparing their normalized expression trees. Inessential factors such as whitespace
and parentheses are therefore ignored, and in some cases different expressions are recognized as
equivalent, for example (a=b) is equivalent to (b=a). In general the two expressions must have
the same static context, but differences in the static context that do not affect the outcome of
evaluating the expressions may be discounted.

•
Saxon ignores the content of annotations entirely, other than ensuring that they are namespace-well-
formed.

A similar checklist appears in appendix H.1 of XSD 1.1 Part 2. The corresponding answers for Saxon-
EE are given below.

•
See above. The definitions are taken from XML 1.0 Fifth Edition and XML 1.1, which are identical.

•

Standards Conformance

439

For integers, decimals, and strings, the only limits imposed by Saxon are those inherent in the
underlying Java types BigInteger, BigDecimal, and String.

For calendar data types, the year must be in the range of a signed 32-bit integer.

For durations, the number of months must fit in a signed 32-bit integer; the integer number of
seconds must fit in a signed 64-bit integer, and the precision is to microseconds.

•
Saxon does not support any additional primitive datatypes.

•
Saxon supports an additional facet, saxon:preprocess. This is a pre-lexical facet that invokes
user-written Java code to modify a value before validation and before serialization. For example,
this can be used to allow xs:decimal values to be written using comma as a decimal point. For
details see The saxon:preprocess facet.

Serialization
The Serialization [] specification does not define its own conformance rules, saying instead that these
are up to the host language to define.

Saxon implements all the mandatory provisions of the serialization specification.

The known non-conformances are:

• The serialization specification states that characters that can be natively encoded in the chosen
encoding must be natively encoded and must not be represented using character or entity
references. Saxon behaves this way by default, but provides an extension, saxon:character-
representation, which changes the behavior. Such extensions have recently been declared
non-conformant, but this one is retained in Saxon for backwards compatibility reasons.

The following page defines how Saxon interprets those aspects of the serialization specification that
are implementation-defined.

Implementation-defined aspects of Serialization
This section defines how Saxon interprets those aspects of the serialization specification that are
implementation-defined. The list follows the numbering of Appendix D [http://www.w3.org/TR/xslt-
xquery-serialization/#implementation-defined-features] of the Serialization specification.

1.
Sequence normalization takes place for all output methods, including user-defined output methods.

2.
In such cases the local name of the method must be the name of a Java class that
implements one of the interfaces org.xml.sax.ContentHandler, net.sf.saxon.event.Emitter, or
net.sf.saxon.event.Receiver. The class is loaded from the classpath and then takes responsibility
for producing the serialized output (if any). The actual namespace URI is ignored.

3.
Any value other than those listed is an error.

4.
Saxon allows the serialized output to be written to a Java Writer, which is a character stream. In
this case no encoding takes place.

5.
Saxon defines a factory class that enables Java applications to insert user-defined classes into the
serialization pipeline. This mechanism could be used to override the standard CDATA processing.

http://www.w3.org/TR/xslt-xquery-serialization/#implementation-defined-features
http://www.w3.org/TR/xslt-xquery-serialization/#implementation-defined-features
http://www.w3.org/TR/xslt-xquery-serialization/#implementation-defined-features

Standards Conformance

440

XQuery Update 1.0
Saxon 9.4 implements XQuery Update Facility 1.0, which finally reached Recommendation status on
17 March 2011. All features, including optional features, are implemented.

Update is currently supported only on documents built using the linked tree model.

There are several limitations worth noting:

• The specification requires that updates should be atomic: that is, if any failure occurs, the original
document is restored to its original state. Saxon meets this requirement unless revalidation is
requested. If failures occur during the revalidation phase, these cannot currently be rolled back. Of
course, this only affects the in-memory copy of the document; the application should be organized
so that in this situation it is possible to revert to the copy on disk.

• The specification requires that node identity should be preserved across updates. The extent to which
this requirement is met by Saxon is debatable. Saxon allows several Java objects to represent the
same node. With the linked tree this applies in particular to attribute nodes: two requests to get all
the attributes of a node will return different Java objects, though comparisons using equals() or
isSameNodeInfo() will reveal that they refer to the same nodes. After an update, it is in general
not safe to continue using existing NodeInfo objects, and the effect of doing so is undefined. This
means that it is impossible to determine in any reliable way whether the old nodes have the same
identity as the new nodes. In practice, with the linked tree implementation, it is safe to continue
using variables that refer to element nodes (where there is always one Java object per node), but it
is not safe in the case of attribute nodes.

• The put() function is implemented using the same run-time support code as xsl:result-
document, and it currently imposes similar restrictions: for example, it must not be called from
within a variable initialization or function body, and it must to write to a URI that has been read
during the execution of the query; also, two calls on put() must not write to the same URI.
However, it does use the XQuery semantics for resolving the relative URI.

• The specification change introduced by bug 9432 [http://www.w3.org/Bugs/Public/show_bug.cgi?
id=9432], which is included in the final Recommendation, has not been implemented in Saxon
9.4. The effect of this is that an updated document may sometimes be missing the namespace
undeclaration xmlns="" where the specification requires it.

Conformance with other specifications
Saxon is dependent on the user-selected XML parser to ensure conformance with the XML 1.0 or 1.1
Recommendation and the XML Namespaces Recommendation. The syntax for names appearing in
XPath expressions follows the XML 1.0 or 1.1 rules depending on Saxon configuration settings.

Saxon implements the <?xml-stylesheet?> processing instruction as described in the W3C
Recommendation . The pseudo-attribute must be a URI identifying an XML document containing a
stylesheet, or a URI with a fragment identifier identifying an embedded stylesheet. The fragment must
be the value of an ID attribute declared as such in the DTD.

Saxon's two native tree models, the standard tree and the tiny tree, both support the xml:id
Recommendation. An attribute named xml:id is recognized by the id() function, provided that its
value after space-trimming is a valid NCName. Saxon's schema processor imposes the constraint that
an xml:id attribute, if allowed at all, must be declared as being of type xs:ID.

Saxon on the Java platform works with any SAX2-conformant XML parser that is configured to
enable namespace processing. There is one limitation: on the startElement() call from the XMLReader
to the ContentHandler, the QName (that is, the third argument) must be present. According to the
SAX2 specification, namespace-aware parsers are not obliged to supply this argument. However, all
commonly-used parsers appear to do so.

http://www.w3.org/Bugs/Public/show_bug.cgi?id=9432
http://www.w3.org/Bugs/Public/show_bug.cgi?id=9432
http://www.w3.org/Bugs/Public/show_bug.cgi?id=9432

Standards Conformance

441

Saxon on the Java platform should work with any DOM-conformant XML parser, however, Saxon's
DOM interface is tested only with Crimson and Xerces, and DOM implementations are known to vary
widely. Saxon has been used successfully with the Oracle DOM implementation, though this is not
included in the standard test suite and problems have occasionally been reported with this combination.

When a XOM tree is supplied as the transformation input, Saxon does not combine adjacent text nodes
into a single node. Adjacent text nodes can occur as the result of user modifications to the tree, or as
a result of the presence of CDATA sections or entity references, depending on the options in force
when the tree was constructed.

Character Encodings Supported
The encodings supported on input depend entirely on your choice of XML parser.

On output, any encoding supported by the Java VM or the .NET platform (as appropriate) may be used.

A list of the character encodings supported by the Java VM can be obtained by using the command
java net.sf.saxon.charcode.CharacterSetFactory, with no parameters.

JAXP Conformance
Saxon on the Java platform implements the JAXP 1.3 API. This is available as a standard part of JDK
1.5 (also known as J2SE SDK 5.0), and is available as an optional package for use with JDK 1.4.

Saxon implements the interfaces in the javax.xml.transform package in full, including support
for SAX, DOM, and Stream input, and SAX, DOM, and Stream output.

Saxon implements the XPath API (the interfaces in the javax.xml.xpath package) in full. Note
however that the XPathException exception used throughout Saxon is unrelated to the class of
the same name defined in the XPath API. The Saxon XPath API works with five object models: DOM,
JDOM, XOM, DOM4J, and the native Saxon object model. The URIs used to identify these object
models are:

• http://java.sun.com/jaxp/xpath/dom

• http://jdom.org/jaxp/xpath/jdom

• http://www.xom.nu/jaxp/xpath/xom

• http://www.dom4j.org/jaxp/xpath/dom4j

• http://saxon.sf.net/jaxp/xpath/om

The JAXP 1.3 XPath API is designed primarily for use with XPath 1.0. Saxon implements it with
XPath 2.0. This means that decisions were necessary on how to handle the richer set of return types
available with 2.0. If the return type requested is String, Number, or Boolean, then Saxon converts
the result to one of these types as if by using the XPath functions string(), number(), or
boolean(). Items after the first in the atomized sequence are discarded. If the return type requested
is NODE, Saxon returns the first item in the result sequence if it is a node, and reports an error if it is an
atomic value. If the result sequence is empty, it returns null. If the return type requested is NODELIST,
Saxon returns a Java List containing all the items in the sequence, whether they are nodes or not.
Nodes are returned using the native node object in the input data model, atomic values are returned
using the most appropriate Java class. Note that in the case of numeric results, it is not always easy
to predict whether the result will be a Long, a Double, or a BigDecimal, and it is advisable to cast the
data to one of the numeric types within the XPath expression to make the result predictable.

Saxon-EE also implements the JAXP 1.3 Validation API. This allows a schema to be parsed and
validated, and provides two mechanisms for validating a document against a schema: the Validator
and the ValidatorHandler.

Standards Conformance

442

There are some minor non-conformances in the Saxon implementation of this interface:

• The interface specification restricts the types of Source and Result object that can be supplied
to a Validator. Saxon does not enforce these restrictions, it allows any kind of Source and
Result that a Transformer would accept.

• Saxon's implementation of ValidatorHandler performs more buffering of events than is
permitted by the specification.

• The method isSpecified(int) in the TypeInfoProvider always returns true.

In addition, Saxon implements part of the javax.xml.parsers API. Saxon no longer provides its
own SAX parser, however it does provide a DocumentBuilder. The DOM interfaces are limited
by the capabilities of the Saxon DOM, specifically the fact that it is read-only. Nevertheless, the
DocumentBuilder may be used to construct a Saxon tree, or to obtain an empty Document node which
can be supplied in a DOMResult to hold the result of a transformation.

XQJ Conformance
Saxon implements XQJ, the XQuery API for Java defined in JSR 225 [http://www.jcp.org/en/jsr/
detail?id=225]. The current version that is implemented is the Final Release dated March 2009, which
was publicly announced on 24 June 2009.

The compliance definition for XQJ (section 3 of the specification) requires a statement of how all
aspects of the specification that are implementation-defined have been implemented. The following
table provides this statement for the Saxon implementation.

Table 18.4.

The class name of the XQDataSource
implementation

net.sf.saxon.xqj.SaxonXQDataSource

All properties defined on the XQDataSource
implementation

The following properties are defined:
allowExternalFunctions, dtdValidation,
expandAttributeDefaults, expandXInclude,
retainLineNumbers, schemaValidationMode,
stripWhitespace, useXsiSchemaLocation,
xmlVersion, xsdVersion.

The syntax and semantics for commands,
assuming executing commands through
XQExpression is supported.

No commands are supported (only XQuery
expressions).

Is cancelling of query execution supported? No, Query execution cannot be cancelled.

The default and supported values for each
parameter described in XQuery Serialization

Although this is implementation-defined,
the test suite makes some assumptions
and these have been followed. The
defaults are: byte-order-mark="no" cdata-section-
elements="" doctype-public=null doctype-
system=null encoding="utf-8" indent="yes"
media-type="application/xml" method="xml"
normalization-form="none" omit-xml-
declaration="yes" standalone="omit" undeclare-
prefixes="no" use-character-maps=""
version="1.0"

Additional StAX or SAX event types being
reported, beside the event types documented in
[the] specification

None.

http://www.jcp.org/en/jsr/detail?id=225
http://www.jcp.org/en/jsr/detail?id=225
http://www.jcp.org/en/jsr/detail?id=225

Standards Conformance

443

Support for XDM instances and types based on
user-defined schema types

When used with Saxon-EE, user-defined schema
types are supported, to the extent that the XQJ
interface allows them to be used.

The semantics with respect to node identity,
document order, and full node context, when a
node is bound to an external variable.

When a node is bound to an XQItem and hence
to a variable in a query, node identity, document
order, and "context" (relationships to other nodes)
are maintained.

Is login timeout supported? No. (There is no concept of login.)

Are transactions supported? No. Saxon only supports read-only query via the
XQJ interface.

Behaviour of the getNodeUri() method,
defined on XQItemAccessor, for other than
document nodes.

The method is defined on any node, and returns
the URI of the external entity in which the
containing element originally appeared, if known,
or the empty URI otherwise.

Behaviour of the getTypeName() method,
defined on XQItemType, for anonymous types.

Anonymous types have a system-generated name.

Behaviour of the getSchemaURI() method,
defined on XQItemType

The system identifier (document URI) of the
original schema document is reported if the
information is available.

Behaviour of the
createItemFromDocument() methods,
defined on XQDataFactory, if the specified
value is not a well-formed XML document.

An exception is thrown.

Behaviour of the bindDocument methods,
defined on XQDynamicContext, if the
specified value is not a well-formed XML
document.

An exception is thrown.

The error codes, reported through
XQQueryException, in addition to the
standard error codes listed in [XQuery] and its
associated specifications.

None. The Saxon implementation does not
currently use the class XQQueryException.

Section 19 of the XQJ specification ("Interoperability") suggests that an XQJ specification
should accept items and built-in types that were created using a different vendor's XQJ
implementation. In general, Saxon will only handle the Saxon implementation of XQJ
interfaces. At any rate, it has not been validated with third-party implementations.

444

Chapter 19. Alphabetical Index
Introduction

Click on the initial letter of the term you are looking for:

- | . | 1 | 2 | 3 | 9 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Θ

-

-
Converting Method Arguments - General Rules

.

.NET
.NET

.NET extension functions

Calling .NET Constructors

Calling .NET Instance-Level Methods

Calling Static Methods in a .NET Class

Configuration using the .NET API

Converting Arguments to .NET Extension Functions

Converting the Result of a .NET Extension Function

Converting Wrapped .NET Objects

Example applications for .NET

Getting started with Saxon on the .NET platform

Installation: .NET platform

Installation on .NET

Prerequisites: .NET platform

Saxon API for .NET

Saxon on .NET in Version 9.2 (2009-08-05)

Saxon on .NET in Version 9.1 (2008-07-02)

Saxon on .NET in Redistributed Components

Saxon on .NET

Saxon on .NET changes

Alphabetical Index

445

The .NET API

The Saxon.Api interface (.NET)

Tips for Dynamic Loading in .NET"

Writing reflexive extension functions for .NET

XML Parsing in .NET

1

1.0
XML Schema 1.0 in XML Schema

XML Schema 1.0 in Version 9.1 (2008-07-02)

XML Schema 1.0 changes

XML Schema 1.0 Conformance

XPath 2.0 and XQuery 1.0 changes

XQuery 1.0 in Version 9.2 (2009-08-05)

XQuery 1.0 in Version 9.1 (2008-07-02)

XQuery 1.0 Conformance

XQuery Update 1.0

1.1
Miscellaneous XSD 1.1 Features

Saxon and XML 1.1

Saxon extensions to XML Schema 1.1

XML Schema 1.1 in XML Schema

XML Schema 1.1 in Version 9.1 (2008-07-02)

XML Schema 1.1 in XML Schema Processing

XML Schema 1.1 changes

XML Schema 1.1 Conformance

XQuery 1.1

2

2.0
Examples of XSLT 2.0 Patterns

Using XSLT 2.0

Alphabetical Index

446

Using XSLT 2.0 Stylesheets

XPath 2.0 and XQuery 1.0 changes

XPath 2.0 conformance

XPath 2.0 Expression Syntax

XSLT 2.0

XSLT 2.0 and XPath 2.0 Functions

XSLT 2.0 and XPath 2.0 Functions

XSLT 2.0 conformance

XSLT 2.0 implementation

2007-11-03
Version 9.0 (2007-11-03)

2008-07-02
Version 9.1 (2008-07-02)

2009-08-05
Version 9.2 (2009-08-05)

2010-10-30
Version 9.3 (2010-10-30)

2011-12-09
Version 9.4 (2011-12-09)

3

3.0
Maps in XPath 3.0

New features in XPath 3.0

Patterns in XSLT 3.0

XPath 3.0 changes in Version 9.4 (2011-12-09)

XPath 3.0 changes in Version 9.3 (2010-10-30)

XPath 3.0 Conformance

XQuery 3.0 and XQuery Update changes

XQuery 3.0 changes

Alphabetical Index

447

XQuery 3.0 Conformance

XSLT 3.0 changes

XSLT 3.0 conformance

XSLT 3.0 Features

XSLT 3.0 Support

9

9.0
Version 9.0 (2007-11-03)

9.1
Version 9.1 (2008-07-02)

9.2
Version 9.2 (2009-08-05)

9.3
Version 9.3 (2010-10-30)

9.4
Version 9.4 (2011-12-09)

A

A2
A2 Base64 Encoder/Decoder

A3
A3 Generic Sorter

A4
A4 Unicode Normalization

A5
A5 XPath Parser

A6
A6 Regex Translator

Alphabetical Index

448

ABS
abs

abs($arg as numeric?) → numeric?

ACCESS
Access to attributes and ancestors

Running the example using Microsoft Access

ACOS
acos

acos()

acos($arg as xs:double?) → xs:double?

ADDING
Adding a value to the map

ADDITION
Addition and subtraction

ADDITIONAL
Additional Saxon methods

Additional serialization parameters

ADJUST-DATETIME-TO-TIMEZONE
adjust-dateTime-to-timezone

adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as xs:dayTimeDuration?) →
xs:dateTime

adjust-dateTime-to-timezone($arg as xs:dateTime?) → xs:dateTime

ADJUST-DATE-TO-TIMEZONE
adjust-date-to-timezone

adjust-date-to-timezone($arg as xs:date?, $timezone as xs:dayTimeDuration?) → xs:date?

adjust-date-to-timezone($arg as xs:date?) → xs:date?

ADJUST-TIME-TO-TIMEZONE
adjust-time-to-timezone

adjust-time-to-timezone($arg as xs:time?, $timezone as xs:dayTimeDuration?) → xs:time?

Alphabetical Index

449

adjust-time-to-timezone($arg as xs:time?) → xs:time?

ADJUST-TO-CIVIL-TIME
saxon:adjust-to-civil-time()

ALGORITHMS
Published Algorithms and Specifications

ALL
All Model Groups

ALLOW-CYCLES
declare option saxon:allow-cycles

ALPHANUMERIC
alphanumeric collation

AMONG
Choosing among overloaded methods

AN
Building a Source Document from an application

Invoking XSLT from an application

ANALYSIS
Performance Analysis

ANALYZE-STRING
analyze-string

analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result)

analyze-string($input as xs:string?, $pattern as xs:string) → element(fn:analyze-string-result)

fn:analyze-string()

saxon:analyze-string()

xsl:analyze-string

ANALYZE-STRING-RESULT
analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result)

Alphabetical Index

450

analyze-string($input as xs:string?, $pattern as xs:string) → element(fn:analyze-string-result)

ANCESTORS
Access to attributes and ancestors

ANT
Ant in Obtaining a license key

Ant in Using XSLT 2.0 Stylesheets

Configuration when running Ant

Running Saxon from Ant

Running Saxon XSLT Transformations from Ant

Running validation from Ant

ANYATOMICTYPE
avg($arg as xs:anyAtomicType*) → xs:anyAtomicType? in avg

avg($arg as xs:anyAtomicType*) → xs:anyAtomicType? in avg

concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?) →
xs:string in concat

concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?) →
xs:string in concat

concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?) →
xs:string in concat

current-grouping-key() → xs:anyAtomicType

data() → xs:anyAtomicType*

data($arg as item()*) → xs:anyAtomicType*

distinct-values($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType* in
distinct-values

distinct-values($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType* in
distinct-values

distinct-values($arg as xs:anyAtomicType*) → xs:anyAtomicType* in distinct-values

distinct-values($arg as xs:anyAtomicType*) → xs:anyAtomicType* in distinct-values

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer* in index-of

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer* in index-of

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType) → xs:integer* in index-of

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType) → xs:integer* in index-of

Alphabetical Index

451

max($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in max

max($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in max

max($arg as xs:anyAtomicType*) → xs:anyAtomicType? in max

max($arg as xs:anyAtomicType*) → xs:anyAtomicType? in max

min($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in min

min($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in min

min($arg as xs:anyAtomicType*) → xs:anyAtomicType? in min

min($arg as xs:anyAtomicType*) → xs:anyAtomicType? in min

number($arg as xs:anyAtomicType?) → xs:double

sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) → xs:anyAtomicType? in sum

sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) → xs:anyAtomicType? in sum

sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) → xs:anyAtomicType? in sum

sum($arg as xs:anyAtomicType*) → xs:anyAtomicType in sum

sum($arg as xs:anyAtomicType*) → xs:anyAtomicType in sum

ANYURI
base-uri() → xs:anyURI?

base-uri($arg as node()?) → xs:anyURI?

document-uri() → xs:anyURI?

document-uri($arg as node()?) → xs:anyURI?

namespace-uri() → xs:anyURI

namespace-uri($arg as node()?) → xs:anyURI

namespace-uri-for-prefix($prefix as xs:string?, $element as element()) → xs:anyURI?

namespace-uri-from-QName($arg as xs:QName?) → xs:anyURI?

resolve-uri($relative as xs:string?, $base as xs:string) → xs:anyURI?

resolve-uri($relative as xs:string?) → xs:anyURI?

static-base-uri() → xs:anyURI?

uri-collection() → xs:anyURI*

uri-collection($arg as xs:string?) → xs:anyURI*

API
Changes to the s9api API

Changes to the Schema Component Model API

Alphabetical Index

452

Configuration using the .NET API

Invoking XQuery using the XQJ API

Java API

New Java API

Saxon API for .NET

The .NET API

The JAXP XPath API

The XQJ API

XPath API for Java

XQJ (XQuery API for Java)

APIS
Changes to existing APIs

Internal APIs

APPLICATION
Building a Source Document from an application

Changes to application programming interfaces

Invoking XSLT from an application

Running Queries from a Java Application

Shakespeare XPath Sample Application

APPLICATIONS
Example applications for .NET

Sample applications

Sample Saxon Applications

APPLY-IMPORTS
xsl:apply-imports

APPLY-TEMPLATES
xsl:apply-templates

ARG
abs($arg as numeric?) → numeric?

acos($arg as xs:double?) → xs:double?

Alphabetical Index

453

adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as xs:dayTimeDuration?) →
xs:dateTime

adjust-dateTime-to-timezone($arg as xs:dateTime?) → xs:dateTime

adjust-date-to-timezone($arg as xs:date?, $timezone as xs:dayTimeDuration?) → xs:date?

adjust-date-to-timezone($arg as xs:date?) → xs:date?

adjust-time-to-timezone($arg as xs:time?, $timezone as xs:dayTimeDuration?) → xs:time?

adjust-time-to-timezone($arg as xs:time?) → xs:time?

asin($arg as xs:double?) → xs:double?

atan($arg as xs:double?) → xs:double?

avg($arg as xs:anyAtomicType*) → xs:anyAtomicType?

base-uri($arg as node()?) → xs:anyURI?

boolean($arg as item()*) → xs:boolean

ceiling($arg as numeric?) → numeric?

codepoints-to-string($arg as xs:integer*) → xs:string

collection($arg as xs:string?) → node()*

count($arg as item()*) → xs:integer

data($arg as item()*) → xs:anyAtomicType*

day-from-date($arg as xs:date?) → xs:integer?

day-from-dateTime($arg as xs:dateTime?) → xs:integer?

days-from-duration($arg as xs:duration?) → xs:integer?

distinct-values($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType*

distinct-values($arg as xs:anyAtomicType*) → xs:anyAtomicType*

document-uri($arg as node()?) → xs:anyURI?

element-available($arg as xs:string) → xs:boolean

element-with-id($arg as xs:string*, $node as node()) → element()*

element-with-id($arg as xs:string*) → element()*

empty($arg as item()*) → xs:boolean

exactly-one($arg as item()*) → item()

exists($arg as item()*) → xs:boolean

exp($arg as xs:double) → xs:double

exp10($arg as xs:double) → xs:double

floor($arg as numeric?) → numeric?

generate-id($arg as node()?) → xs:string

Alphabetical Index

454

head($arg as item()*) → item()?

hours-from-dateTime($arg as xs:dateTime?) → xs:integer?

hours-from-duration($arg as xs:duration?) → xs:integer?

hours-from-time($arg as xs:time?) → xs:integer?

id($arg as xs:string*, $node as node()) → element()*

id($arg as xs:string*) → element()*

idref($arg as xs:string*, $node as node()) → node()*

idref($arg as xs:string*) → node()*

local-name($arg as node()?) → xs:string

local-name-from-QName($arg as xs:QName?) → xs:NCName?

log($arg as xs:double?) → xs:double?

log10($arg as xs:double?) → xs:double?

lower-case($arg as xs:string?) → xs:string

max($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType?

max($arg as xs:anyAtomicType*) → xs:anyAtomicType?

min($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType?

min($arg as xs:anyAtomicType*) → xs:anyAtomicType?

minutes-from-dateTime($arg as xs:dateTime?) → xs:integer?

minutes-from-duration($arg as xs:duration?) → xs:integer?

minutes-from-time($arg as xs:time?) → xs:integer?

month-from-date($arg as xs:date?) → xs:integer?

month-from-dateTime($arg as xs:dateTime?) → xs:integer?

months-from-duration($arg as xs:duration?) → xs:integer?

name($arg as node()?) → xs:string

namespace-uri($arg as node()?) → xs:anyURI

namespace-uri-from-QName($arg as xs:QName?) → xs:anyURI?

nilled($arg as node()?) → xs:boolean?

node-name($arg as node()?) → xs:QName?

normalize-space($arg as xs:string?) → xs:string

normalize-unicode($arg as xs:string?, $normalizationForm as xs:string) → xs:string

normalize-unicode($arg as xs:string?) → xs:string

not($arg as item()*) → xs:boolean

Alphabetical Index

455

number($arg as xs:anyAtomicType?) → xs:double

one-or-more($arg as item()*) → item()+

parse-json($arg as xs:string, $options as map(*)) → document-node(element(*, xs:untyped))

parse-json($arg as xs:string) → xs:string

parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped))

parse-xml($arg as xs:string) → document-node(element(*, xs:untyped))

path($arg as node()?) → xs:string?

prefix-from-QName($arg as xs:QName?) → xs:NCName?

reverse($arg as item()*) → item()*

root($arg as node()?) → node()?

round($arg as numeric?, $precision as xs:integer) → numeric?

round($arg as numeric?) → numeric?

round-half-to-even($arg as numeric?, $precision as xs:integer) → numeric?

round-half-to-even($arg as numeric?) → numeric?

seconds-from-dateTime($arg as xs:dateTime?) → xs:decimal?

seconds-from-duration($arg as xs:duration?) → xs:decimal?

seconds-from-time($arg as xs:time?) → xs:decimal?

serialize($arg as item()*, $options as map(*)) → xs:string

serialize($arg as item()*) → xs:string

serialize($arg as node(), $params as node()*) → xs:string

serialize($arg as node()) → xs:string

sqrt($arg as xs:double?) → xs:double?

string($arg as item()?) → xs:string

string-length($arg as xs:string?) → xs:integer

string-to-codepoints($arg as xs:string?) → xs:integer*

sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) → xs:anyAtomicType?

sum($arg as xs:anyAtomicType*) → xs:anyAtomicType

system-property($arg as xs:string) → xs:string

tail($arg as item()*) → item()*

timezone-from-date($arg as xs:date?) → xs:dayTimeDuration?

timezone-from-dateTime($arg as xs:dateTime?) → xs:dayTimeDuration?

timezone-from-time($arg as xs:time?) → xs:dayTimeDuration?

Alphabetical Index

456

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string

upper-case($arg as xs:string?) → xs:string

uri-collection($arg as xs:string?) → xs:anyURI*

year-from-date($arg as xs:date?) → xs:integer?

year-from-dateTime($arg as xs:dateTime?) → xs:integer?

years-from-duration($arg as xs:duration?) → xs:integer?

zero-or-one($arg as item()*) → item()?

ARG1
concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?)

→ xs:string

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

contains($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean

dateTime($arg1 as xs:date?, $arg2 as xs:time?) → xs:dateTime?

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

ends-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean

exp($arg1 as xs:double?, $arg2 as numeric) → xs:double

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

starts-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean

string-join($arg1 as xs:string*, $arg2 as xs:string) → xs:string

string-join($arg1 as xs:string*) → xs:string

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string

substring-after($arg1 as xs:string?, $arg2 as xs:string?) → xs:string

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string

substring-before($arg1 as xs:string?, $arg2 as xs:string?) → xs:string

ARG2
concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?)

→ xs:string

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

contains($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean

dateTime($arg1 as xs:date?, $arg2 as xs:time?) → xs:dateTime?

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

ends-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean

exp($arg1 as xs:double?, $arg2 as numeric) → xs:double

Alphabetical Index

457

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

starts-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean

string-join($arg1 as xs:string*, $arg2 as xs:string) → xs:string

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string

substring-after($arg1 as xs:string?, $arg2 as xs:string?) → xs:string

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string

substring-before($arg1 as xs:string?, $arg2 as xs:string?) → xs:string

ARGUMENTS
Converting Arguments to .NET Extension Functions

Converting Arguments to Java Extension Functions

Converting Method Arguments - General Rules

ARITHMETIC
Arithmetic expressions

ARITY
function-available($function as xs:string, $arity as xs:integer) → xs:boolean

function-lookup($function as xs:string, $arity as xs:integer) → xs:boolean

AS
abs($arg as numeric?) → numeric?

acos($arg as xs:double?) → xs:double?

adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as xs:dayTimeDuration?) →
xs:dateTime in adjust-dateTime-to-timezone

adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as xs:dayTimeDuration?) →
xs:dateTime in adjust-dateTime-to-timezone

adjust-dateTime-to-timezone($arg as xs:dateTime?) → xs:dateTime

adjust-date-to-timezone($arg as xs:date?, $timezone as xs:dayTimeDuration?) → xs:date? in adjust-
date-to-timezone

adjust-date-to-timezone($arg as xs:date?, $timezone as xs:dayTimeDuration?) → xs:date? in adjust-
date-to-timezone

adjust-date-to-timezone($arg as xs:date?) → xs:date?

adjust-time-to-timezone($arg as xs:time?, $timezone as xs:dayTimeDuration?) → xs:time? in adjust-
time-to-timezone

adjust-time-to-timezone($arg as xs:time?, $timezone as xs:dayTimeDuration?) → xs:time? in adjust-
time-to-timezone

adjust-time-to-timezone($arg as xs:time?) → xs:time?

Alphabetical Index

458

analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result) in analyze-string

analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result) in analyze-string

analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result) in analyze-string

analyze-string($input as xs:string?, $pattern as xs:string) → element(fn:analyze-string-result) in
analyze-string

analyze-string($input as xs:string?, $pattern as xs:string) → element(fn:analyze-string-result) in
analyze-string

asin($arg as xs:double?) → xs:double?

atan($arg as xs:double?) → xs:double?

avg($arg as xs:anyAtomicType*) → xs:anyAtomicType?

base-uri($arg as node()?) → xs:anyURI?

boolean($arg as item()*) → xs:boolean

Cast as, Treat as in XPath 2.0 Expression Syntax

Cast as, Treat as in XPath 2.0 Expression Syntax

ceiling($arg as numeric?) → numeric?

codepoint-equal($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:boolean? in codepoint-
equal

codepoint-equal($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:boolean? in codepoint-
equal

codepoints-to-string($arg as xs:integer*) → xs:string

collection($arg as xs:string?) → node()*

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?
in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?
in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?
in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:integer? in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:integer? in compare

concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?) →
xs:string in concat

concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?) →
xs:string in concat

concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?) →
xs:string in concat

Alphabetical Index

459

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in contains

cos($# as xs:double?) → xs:double?

count($arg as item()*) → xs:integer

data($arg as item()*) → xs:anyAtomicType*

dateTime($arg1 as xs:date?, $arg2 as xs:time?) → xs:dateTime? in dateTime

dateTime($arg1 as xs:date?, $arg2 as xs:time?) → xs:dateTime? in dateTime

day-from-date($arg as xs:date?) → xs:integer?

day-from-dateTime($arg as xs:dateTime?) → xs:integer?

days-from-duration($arg as xs:duration?) → xs:integer?

deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean in
deep-equal

deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean in
deep-equal

deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean in
deep-equal

deep-equal($parameter1 as item()*, $parameter2 as item()*) → xs:boolean in deep-equal

deep-equal($parameter1 as item()*, $parameter2 as item()*) → xs:boolean in deep-equal

distinct-values($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType* in
distinct-values

distinct-values($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType* in
distinct-values

distinct-values($arg as xs:anyAtomicType*) → xs:anyAtomicType*

doc($uri as xs:string?) → document-node()?

doc-available($uri as xs:string?) → xs:boolean

document($uri as item()*, $base as node()*) → node()* in document

document($uri as item()*, $base as node()*) → node()* in document

document($uri as item()*) → node()*

document-uri($arg as node()?) → xs:anyURI?

element-available($arg as xs:string) → xs:boolean

element-with-id($arg as xs:string*, $node as node()) → element()* in element-with-id

element-with-id($arg as xs:string*, $node as node()) → element()* in element-with-id

Alphabetical Index

460

element-with-id($arg as xs:string*) → element()*

empty($arg as item()*) → xs:boolean

encode-for-uri($uri-part as xs:string?) → xs:string

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in ends-with

environment-variable($name as xs:string) → xs:string?

error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none in error

error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none in error

error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none in error

error($code as xs:QName?, $description as xs:string) → none in error

error($code as xs:QName?, $description as xs:string) → none in error

error($code as xs:QName) → none

escape-html-uri($uri as xs:string?) → xs:string

exactly-one($arg as item()*) → item()

exists($arg as item()*) → xs:boolean

exp($arg1 as xs:double?, $arg2 as numeric) → xs:double in pow

exp($arg1 as xs:double?, $arg2 as numeric) → xs:double in pow

exp($arg as xs:double) → xs:double

exp10($arg as xs:double) → xs:double

filter($f as function(item()) as xs:boolean, $seq as item()*) → item()* in filter

filter($f as function(item()) as xs:boolean, $seq as item()*) → item()* in filter

filter($f as function(item()) as xs:boolean, $seq as item()*) → item()* in filter

floor($arg as numeric?) → numeric?

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-left

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-left

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-left

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-left

Alphabetical Index

461

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-right

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-right

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-right

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-right

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string) → xs:string? in format-date

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string) → xs:string? in format-dateTime

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string in
format-integer

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string in
format-integer

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string in
format-integer

format-integer($value as xs:integer?, $picture as xs:string) → xs:string in format-integer

format-integer($value as xs:integer?, $picture as xs:string) → xs:string in format-integer

Alphabetical Index

462

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string in format-number

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string in format-number

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string in format-number

format-number($value as numeric?, $picture as xs:string) → xs:string in format-number

format-number($value as numeric?, $picture as xs:string) → xs:string in format-number

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string) → xs:string? in format-time

function-arity($func as function(*)) → xs:integer

function-available($function as xs:string, $arity as xs:integer) → xs:boolean in function-available

function-available($function as xs:string, $arity as xs:integer) → xs:boolean in function-available

function-available($function as xs:string) → xs:boolean

function-lookup($function as xs:string, $arity as xs:integer) → xs:boolean in function-lookup

function-lookup($function as xs:string, $arity as xs:integer) → xs:boolean in function-lookup

function-name($func as function(*)) → xs:QName?

generate-id($arg as node()?) → xs:string

has-children($seq as node()) → xs:boolean

head($arg as item()*) → item()?

hours-from-dateTime($arg as xs:dateTime?) → xs:integer?

hours-from-duration($arg as xs:duration?) → xs:integer?

hours-from-time($arg as xs:time?) → xs:integer?

id($arg as xs:string*, $node as node()) → element()* in id

id($arg as xs:string*, $node as node()) → element()* in id

id($arg as xs:string*) → element()*

Alphabetical Index

463

idref($arg as xs:string*, $node as node()) → node()* in idref

idref($arg as xs:string*, $node as node()) → node()* in idref

idref($arg as xs:string*) → node()*

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer* in index-of

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer* in index-of

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer* in index-of

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType) → xs:integer* in index-of

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType) → xs:integer* in index-of

innermost($seq as node()*) → node()*

in-scope-prefixes($element as element()) → xs:string*

insert-before($target as item()*, $position as xs:integer, $inserts as item()*) → item()* in insert-before

insert-before($target as item()*, $position as xs:integer, $inserts as item()*) → item()* in insert-before

insert-before($target as item()*, $position as xs:integer, $inserts as item()*) → item()* in insert-before

Instance of and Castable as

iri-to-uri($iri as xs:string?) → xs:string

lang($testlang as xs:string?, $node as node()) → xs:boolean in lang

lang($testlang as xs:string?, $node as node()) → xs:boolean in lang

lang($testlang as xs:string?) → xs:boolean

local-name($arg as node()?) → xs:string

local-name-from-QName($arg as xs:QName?) → xs:NCName?

log($arg as xs:double?) → xs:double?

log10($arg as xs:double?) → xs:double?

lower-case($arg as xs:string?) → xs:string

map($f as function(item()) as item()*, $seq as item()*) → item()* in map

map($f as function(item()) as item()*, $seq as item()*) → item()* in map

map($f as function(item()) as item()*, $seq as item()*) → item()* in map

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()* in
map-pairs

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()* in
map-pairs

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()* in
map-pairs

Alphabetical Index

464

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()* in
map-pairs

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string) → xs:boolean in matches

max($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in max

max($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in max

max($arg as xs:anyAtomicType*) → xs:anyAtomicType?

min($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in min

min($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in min

min($arg as xs:anyAtomicType*) → xs:anyAtomicType?

minutes-from-dateTime($arg as xs:dateTime?) → xs:integer?

minutes-from-duration($arg as xs:duration?) → xs:integer?

minutes-from-time($arg as xs:time?) → xs:integer?

month-from-date($arg as xs:date?) → xs:integer?

month-from-dateTime($arg as xs:dateTime?) → xs:integer?

months-from-duration($arg as xs:duration?) → xs:integer?

name($arg as node()?) → xs:string

namespace-uri($arg as node()?) → xs:anyURI

namespace-uri-for-prefix($prefix as xs:string?, $element as element()) → xs:anyURI? in namespace-
uri-for-prefix

namespace-uri-for-prefix($prefix as xs:string?, $element as element()) → xs:anyURI? in namespace-
uri-for-prefix

namespace-uri-from-QName($arg as xs:QName?) → xs:anyURI?

nilled($arg as node()?) → xs:boolean?

node-name($arg as node()?) → xs:QName?

normalize-space($arg as xs:string?) → xs:string

normalize-unicode($arg as xs:string?, $normalizationForm as xs:string) → xs:string in normalize-
unicode

normalize-unicode($arg as xs:string?, $normalizationForm as xs:string) → xs:string in normalize-
unicode

normalize-unicode($arg as xs:string?) → xs:string

not($arg as item()*) → xs:boolean

Alphabetical Index

465

number($arg as xs:anyAtomicType?) → xs:double

one-or-more($arg as item()*) → item()+

outermost($seq as node()*) → node()*

parse-json($arg as xs:string, $options as map(*)) → document-node(element(*, xs:untyped)) in parse-
json

parse-json($arg as xs:string, $options as map(*)) → document-node(element(*, xs:untyped)) in parse-
json

parse-json($arg as xs:string) → xs:string

parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped)) in
parse-xml

parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped)) in
parse-xml

parse-xml($arg as xs:string) → document-node(element(*, xs:untyped))

path($arg as node()?) → xs:string?

prefix-from-QName($arg as xs:QName?) → xs:NCName?

put($doc as node(), $uri as xs:string) → xs:NCName? in put

put($doc as node(), $uri as xs:string) → xs:NCName? in put

QName($paramURI as xs:string?, $paramQName as xs:string) → xs:QName in QName

QName($paramURI as xs:string?, $paramQName as xs:string) → xs:QName in QName

remove($target as item()*, $position as xs:integer) → item()* in remove

remove($target as item()*, $position as xs:integer) → item()* in remove

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string in replace

resolve-QName($qname as xs:string?, $element as element()) → xs:QName? in resolve-QName

resolve-QName($qname as xs:string?, $element as element()) → xs:QName? in resolve-QName

resolve-uri($relative as xs:string?, $base as xs:string) → xs:anyURI? in resolve-uri

resolve-uri($relative as xs:string?, $base as xs:string) → xs:anyURI? in resolve-uri

Alphabetical Index

466

resolve-uri($relative as xs:string?) → xs:anyURI?

reverse($arg as item()*) → item()*

root($arg as node()?) → node()?

round($arg as numeric?, $precision as xs:integer) → numeric? in round

round($arg as numeric?, $precision as xs:integer) → numeric? in round

round($arg as numeric?) → numeric?

round-half-to-even($arg as numeric?, $precision as xs:integer) → numeric? in round-half-to-even

round-half-to-even($arg as numeric?, $precision as xs:integer) → numeric? in round-half-to-even

round-half-to-even($arg as numeric?) → numeric?

seconds-from-dateTime($arg as xs:dateTime?) → xs:decimal?

seconds-from-duration($arg as xs:duration?) → xs:decimal?

seconds-from-time($arg as xs:time?) → xs:decimal?

serialize($arg as item()*, $options as map(*)) → xs:string in serialize-json

serialize($arg as item()*, $options as map(*)) → xs:string in serialize-json

serialize($arg as item()*) → xs:string

serialize($arg as node(), $params as node()*) → xs:string in serialize

serialize($arg as node(), $params as node()*) → xs:string in serialize

serialize($arg as node()) → xs:string

sin($# as xs:double?) → xs:double?

sqrt($arg as xs:double?) → xs:double?

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in starts-with

string($arg as item()?) → xs:string

string-join($arg1 as xs:string*, $arg2 as xs:string) → xs:string in string-join

string-join($arg1 as xs:string*, $arg2 as xs:string) → xs:string in string-join

string-join($arg1 as xs:string*) → xs:string

string-length($arg as xs:string?) → xs:integer

string-to-codepoints($arg as xs:string?) → xs:integer*

subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()* in
subsequence

Alphabetical Index

467

subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()* in
subsequence

subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()* in
subsequence

subsequence($sourceSeq as item()*, $startingLoc as xs:double) → item()* in subsequence

subsequence($sourceSeq as item()*, $startingLoc as xs:double) → item()* in subsequence

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string in
substring

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string in
substring

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string in
substring

substring($sourceString as xs:string?, $start as xs:double) → xs:string in substring

substring($sourceString as xs:string?, $start as xs:double) → xs:string in substring

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-after

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-before

sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) → xs:anyAtomicType? in sum

sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) → xs:anyAtomicType? in sum

sum($arg as xs:anyAtomicType*) → xs:anyAtomicType

system-property($arg as xs:string) → xs:string

tail($arg as item()*) → item()*

tan($# as xs:double?) → xs:double?

timezone-from-date($arg as xs:date?) → xs:dayTimeDuration?

Alphabetical Index

468

timezone-from-dateTime($arg as xs:dateTime?) → xs:dayTimeDuration?

timezone-from-time($arg as xs:time?) → xs:dayTimeDuration?

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string) → xs:string* in tokenize

trace($value as item()*, $label as xs:string) → item()* in trace

trace($value as item()*, $label as xs:string) → item()* in trace

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string in translate

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string in translate

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string in translate

type-available($type as xs:string) → xs:boolean

unordered($sourceSeq as item()*) → item()*

unparsed-text($href as xs:string?, $encoding as xs:string) → xs:string? in unparsed-text

unparsed-text($href as xs:string?, $encoding as xs:string) → xs:string? in unparsed-text

unparsed-text($href as xs:string?) → xs:string?

unparsed-text-available($href as xs:string?, $encoding as xs:string) → xs:boolean in unparsed-text-
available

unparsed-text-available($href as xs:string?, $encoding as xs:string) → xs:boolean in unparsed-text-
available

unparsed-text-available($href as xs:string?) → xs:boolean

unparsed-text-lines($href as xs:string?, $encoding as xs:string) → xs:string* in unparsed-text-lines

unparsed-text-lines($href as xs:string?, $encoding as xs:string) → xs:string* in unparsed-text-lines

unparsed-text-lines($href as xs:string?) → xs:boolean

upper-case($arg as xs:string?) → xs:string

uri-collection($arg as xs:string?) → xs:anyURI*

year-from-date($arg as xs:date?) → xs:integer?

year-from-dateTime($arg as xs:dateTime?) → xs:integer?

years-from-duration($arg as xs:duration?) → xs:integer?

zero-or-one($arg as item()*) → item()?

ASIN
asin

Alphabetical Index

469

asin()

asin($arg as xs:double?) → xs:double?

ASPECTS
Implementation-defined aspects of Functions and Operators

Implementation-defined aspects of Serialization

ASSEMBLY
assembly

Global Assembly Cache

ASSERTIONS
Assertions on Complex Types

Assertions on Simple Types

Messages associated with assertions and other facets

ASSIGN
saxon:assign

ASSIGNABLE
saxon:assignable

ASSIGNMENT
Conditional Type Assignment

ASSOCIATED
Messages associated with assertions and other facets

ATAN
atan

atan()

atan($arg as xs:double?) → xs:double?

ATOMIC
Converting Atomic Values

Converting Atomic Values and Sequences

ATTRIBUTE
Expansion of attribute and element defaults

Alphabetical Index

470

The method attribute

The saxon:character-representation attribute

The saxon:double-space attribute

The saxon:indent-spaces attribute

The saxon:line-length attribute

The saxon:next-in-chain attribute

The saxon:recognize-binary attribute

The saxon:require-well-formed attribute

The saxon:supply-source-locator attribute

The saxon:suppress-indentation attribute

xsl:attribute

ATTRIBUTES
Access to attributes and ancestors

Extension attributes (XSLT only)

User-defined serialization attributes

ATTRIBUTE-SET
xsl:attribute-set

AVAILABLE-ENVIRONMENT-VARIABLES
available-environment-variables

available-environment-variables() → xs:string*

AVG
avg

avg($arg as xs:anyAtomicType*) → xs:anyAtomicType?

AXIS
Axis steps

B

BASE
document($uri as item()*, $base as node()*) → node()*

resolve-uri($relative as xs:string?, $base as xs:string) → xs:anyURI?

Alphabetical Index

471

BASE64
A2 Base64 Encoder/Decoder

BASE64BINARY
The saxon:base64Binary serialization method

BASE64BINARY-TO-OCTETS
saxon:base64Binary-to-octets()

BASE64BINARY-TO-STRING
saxon:base64Binary-to-string()

BASEURI
parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped))

BASE-URI
base-uri

base-uri() → xs:anyURI?

base-uri($arg as node()?) → xs:anyURI?

BELGIUM
Flemish (Belgium)

French (Belgium)

BIBLE
The Bible

BINARY
binary output files in The saxon:base64Binary serialization method

binary output files in The saxon:hexBinary serialization method

BINDING
binding

BOOK
The Book List Stylesheet

BOOLEAN
boolean

Alphabetical Index

472

boolean($arg as item()*) → xs:boolean in boolean

boolean($arg as item()*) → xs:boolean in boolean

Boolean expressions: AND and OR

codepoint-equal($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:boolean?

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

contains($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean

deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean

deep-equal($parameter1 as item()*, $parameter2 as item()*) → xs:boolean

doc-available($uri as xs:string?) → xs:boolean

element-available($arg as xs:string) → xs:boolean

empty($arg as item()*) → xs:boolean

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

ends-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean

exists($arg as item()*) → xs:boolean

false() → xs:boolean

filter($f as function(item()) as xs:boolean, $seq as item()*) → item()*

function-available($function as xs:string, $arity as xs:integer) → xs:boolean

function-available($function as xs:string) → xs:boolean

function-lookup($function as xs:string, $arity as xs:integer) → xs:boolean

has-children() → xs:boolean

has-children($seq as node()) → xs:boolean

lang($testlang as xs:string?, $node as node()) → xs:boolean

lang($testlang as xs:string?) → xs:boolean

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean

matches($input as xs:string?, $pattern as xs:string) → xs:boolean

nilled($arg as node()?) → xs:boolean?

not($arg as item()*) → xs:boolean

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

starts-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean

true() → xs:boolean

type-available($type as xs:string) → xs:boolean

unparsed-text-available($href as xs:string?, $encoding as xs:string) → xs:boolean

Alphabetical Index

473

unparsed-text-available($href as xs:string?) → xs:boolean

unparsed-text-lines($href as xs:string?) → xs:boolean

BREAK
saxon:break

xsl:break

BUGS
bugs

Bugs and patches

BUILDING
Building a Source Document from an application

BURST-MODE
Burst-mode streaming

How burst-mode streaming works

BY
order by

Processing the nodes returned by saxon:stream()

BYTE
DEBUG_BYTE_CODE

DISPLAY_BYTE_CODE

GENERATE_BYTE_CODE

BYTECODE
Bytecode generation

C

CACHE
Global Assembly Cache

CALENDAR
format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

Alphabetical Index

474

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string?

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

CALL
saxon:call()

CALLING
Calling .NET Constructors

Calling .NET Instance-Level Methods

Calling Java Constructors

Calling Java Instance-Level Methods

Calling JAXP XPath extension functions

Calling Static Methods in a .NET Class

Calling Static Methods in a Java Class

Calling XQuery Functions from Java

Identifying and Calling Specific Methods

CALLS
Function Calls

CALL-TEMPLATE
saxon:call-template

xsl:call-template

CAMELCASE
camelCase

CASE
lower case

upper case

CASES
Use Cases

CAST
Cast as, Treat as

Alphabetical Index

475

CASTABLE
Instance of and Castable as

CATALOG
Using catalog files

CATALOGS
Using XML Catalogs

CATCH
saxon:catch

CEILING
ceiling

ceiling($arg as numeric?) → numeric?

CHANGES
Changes in this Release

Changes to application programming interfaces

Changes to existing APIs

Changes to Functions and Operators

Changes to Saxon extensions and extensibility mechanisms

Changes to system programming interfaces

Changes to the s9api API

Changes to the Schema Component Model API

Changes to XSD support

Command line and configuration changes

Command line changes in XSLT

Command line changes in XQuery 1.0

Command line changes in Version 9.0 (2007-11-03)

Expression tree changes

Extensibility changes

Internal changes

Licensing changes

NamePool changes

Alphabetical Index

476

Saxon on .NET changes

Schema-related changes

XML Schema 1.0 changes

XML Schema 1.1 changes

XPath 2.0 and XQuery 1.0 changes

XPath 3.0 changes in Version 9.4 (2011-12-09)

XPath 3.0 changes in Version 9.3 (2010-10-30)

XPath changes

XQJ changes

XQuery 3.0 and XQuery Update changes

XQuery 3.0 changes

XSLT 3.0 changes

XSLT changes in Version 9.4 (2011-12-09)

XSLT changes in Version 9.0 (2007-11-03)

CHARACTER
Character Encodings Supported

CHARACTER-MAP
xsl:character-map

CHARACTER-REPRESENTATION
The saxon:character-representation attribute

CHARACTERS
composed characters

CHECKLIST
Checklist of Implementation-Defined Items in XSLT 2.0 conformance

Checklist of Implementation-Defined Items in XQuery 1.0 Conformance

CHOOSE
xsl:choose

CIVIL
civil timezone

Alphabetical Index

477

CLASS
Calling Static Methods in a .NET Class

Calling Static Methods in a Java Class

Identifying the Java Class

CLASSPATH
classpath

CLOSE
sql:close

CODE
DEBUG_BYTE_CODE

DISPLAY_BYTE_CODE

error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none

error($code as xs:QName?, $description as xs:string) → none

error($code as xs:QName) → none

GENERATE_BYTE_CODE

CODEPOINT
Unicode Codepoint Collation

CODEPOINT-EQUAL
codepoint-equal

codepoint-equal($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:boolean?

CODEPOINTS-TO-STRING
codepoints-to-string

codepoints-to-string($arg as xs:integer*) → xs:string

COLLATING
Implementing a collating sequence

COLLATION
alphanumeric collation

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

Alphabetical Index

478

deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean

distinct-values($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType*

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer*

max($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType?

min($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType?

saxon:collation

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string

Unicode Codepoint Collation

COLLATIONS
The <collations> element

COLLECTION
collection

collection() → node()*

collection($arg as xs:string?) → node()*

COLLECTIONS
Collections

Registered Collections

COLUMN
sql:insert and sql:column

sql:update and sql:column

COLUMN-NUMBER
saxon:column-number(node)

COMMAND
Command line

Command line and configuration changes

Command line changes in XSLT

Alphabetical Index

479

Command line changes in XQuery 1.0

Command line changes in Version 9.0 (2007-11-03)

Configuration from the command line

Running Validation from the Command Line

Running XQuery from the Command Line

Running XSLT from the Command Line

Schema-Aware XQuery from the Command Line

Schema-Aware XSLT from the Command Line

Source Documents on the Command Line

COMMENT
xsl:comment

COMMERCIAL
Commercial Editors and Debuggers

COMPARAND1
codepoint-equal($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:boolean?

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?

compare($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:integer?

COMPARAND2
codepoint-equal($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:boolean?

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?

compare($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:integer?

COMPARE
compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?

compare($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:integer?

COMPARISONS
Comparisons

COMPILATION
Separate compilation of library modules

Alphabetical Index

480

COMPILE-QUERY
saxon:compile-query()

COMPILE-STYLESHEET
saxon:compile-stylesheet()

COMPILING
Compiling a Stylesheet

Compiling Queries

COMPLEX
Assertions on Complex Types

COMPONENT
Changes to the Schema Component Model API

Importing and Exporting Schema Component Models

Serializing a Schema Component Model

COMPONENTS
components

Redistributed Components

Third Party Source Components

COMPOSED
composed characters

CONCAT
concat

concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?)

→ xs:string

CONDITIONAL
Conditional Expressions

Conditional instructions

Conditional Type Assignment

CONFIGURATION
Command line and configuration changes

Alphabetical Index

481

Configuration Features

Configuration from the command line

Configuration interfaces

Configuration using s9api

Configuration using the .NET API

Configuration using XQJ

Configuration when running Ant

Saxon Configuration

The Saxon configuration file

CONFORMANCE
Conformance Tests

Conformance with other specifications

JAXP Conformance

Standards Conformance

XML Schema 1.0 Conformance

XML Schema 1.1 Conformance

XPath 2.0 conformance

XPath 3.0 Conformance

XQJ Conformance

XQuery 1.0 Conformance

XQuery 3.0 Conformance

XSLT 2.0 conformance

XSLT 3.0 conformance

CONNECT
sql:connect

CONSTANTS
Constants

CONSTRAINTS
Saxon extensions to XSD uniqueness and referential constraints

CONSTRUCTOR
Identifying the Java constructor, method, or field

Alphabetical Index

482

CONSTRUCTORS
Calling .NET Constructors

Calling Java Constructors

CONTAINS
contains

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

contains($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean

CONTENT
Open Content

CONTENTHANDLER
ContentHandler in The method attribute

ContentHandler in The saxon:supply-source-locator attribute

CONTEXT
Setting the context item

CONTINUE
saxon:continue

CONTRIBUTORS
Contributors

CONTROLLING
Controlling Parsing of Source Documents

Controlling Validation from Java

CONVERTING
Converting Arguments to .NET Extension Functions

Converting Arguments to Java Extension Functions

Converting Atomic Values

Converting Atomic Values and Sequences

Converting Method Arguments - General Rules

Converting Nodes

Converting Nodes and Sequences of Nodes

Alphabetical Index

483

Converting the Result of a .NET Extension Function

Converting the Result of a Java Extension Function

Converting Wrapped .NET Objects

Converting Wrapped Java Objects

COPY
xsl:copy

COPYING
Example: selective copying

COPY-OF
xsl:copy-of

XSLT example using xsl:copy-of

COPYRIGHT
copyright

COS
cos

cos()

cos($# as xs:double?) → xs:double?

COUNT
count

count($arg as item()*) → xs:integer

CPUS
multi-core CPUs

CREATING
Creating a new map

CURRENT
current

current() → item()

CURRENT-DATE
current-date

Alphabetical Index

484

current-date() → xs:date

CURRENT-DATETIME
current-dateTime

current-dateTime() → xs:dateTimeStamp

CURRENT-GROUP
current-group

current-group() → item()

CURRENT-GROUPING-KEY
current-grouping-key

current-grouping-key() → xs:anyAtomicType

CURRENT-MODE-NAME
saxon:current-mode-name()

CURRENT-TIME
current-time

current-time() → xs:time

CUSTOMIZING
Customizing Serialization

D

DANISH
Danish

DATA
data

data()

data() → xs:anyAtomicType*

data($arg as item()*) → xs:anyAtomicType*

DATE
adjust-date-to-timezone($arg as xs:date?, $timezone as xs:dayTimeDuration?) → xs:date? in adjust-
date-to-timezone

Alphabetical Index

485

adjust-date-to-timezone($arg as xs:date?, $timezone as xs:dayTimeDuration?) → xs:date? in adjust-
date-to-timezone

adjust-date-to-timezone($arg as xs:date?) → xs:date? in adjust-date-to-timezone

adjust-date-to-timezone($arg as xs:date?) → xs:date? in adjust-date-to-timezone

current-date() → xs:date

dateTime($arg1 as xs:date?, $arg2 as xs:time?) → xs:dateTime?

day-from-date($arg as xs:date?) → xs:integer?

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

format-date($value as xs:date?, $picture as xs:string) → xs:string?

month-from-date($arg as xs:date?) → xs:integer?

timezone-from-date($arg as xs:date?) → xs:dayTimeDuration?

year-from-date($arg as xs:date?) → xs:integer?

DATES
Localizing numbers and dates

DATETIME
adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as xs:dayTimeDuration?) →
xs:dateTime in adjust-dateTime-to-timezone

adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as xs:dayTimeDuration?) →
xs:dateTime in adjust-dateTime-to-timezone

adjust-dateTime-to-timezone($arg as xs:dateTime?) → xs:dateTime in adjust-dateTime-to-timezone

adjust-dateTime-to-timezone($arg as xs:dateTime?) → xs:dateTime in adjust-dateTime-to-timezone

dateTime

dateTime($arg1 as xs:date?, $arg2 as xs:time?) → xs:dateTime? in dateTime

dateTime($arg1 as xs:date?, $arg2 as xs:time?) → xs:dateTime? in dateTime

day-from-dateTime($arg as xs:dateTime?) → xs:integer?

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string?

format-dateTime($value as xs:dateTime?, $picture as xs:string) → xs:string?

hours-from-dateTime($arg as xs:dateTime?) → xs:integer?

minutes-from-dateTime($arg as xs:dateTime?) → xs:integer?

month-from-dateTime($arg as xs:dateTime?) → xs:integer?

seconds-from-dateTime($arg as xs:dateTime?) → xs:decimal?

Alphabetical Index

486

timezone-from-dateTime($arg as xs:dateTime?) → xs:dayTimeDuration?

year-from-dateTime($arg as xs:dateTime?) → xs:integer?

DATETIMESTAMP
current-dateTime() → xs:dateTimeStamp

DAY-FROM-DATE
day-from-date

day-from-date($arg as xs:date?) → xs:integer?

DAY-FROM-DATETIME
day-from-dateTime

day-from-dateTime($arg as xs:dateTime?) → xs:integer?

DAYS-FROM-DURATION
days-from-duration

days-from-duration($arg as xs:duration?) → xs:integer?

DAYTIMEDURATION
adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as xs:dayTimeDuration?) →
xs:dateTime

adjust-date-to-timezone($arg as xs:date?, $timezone as xs:dayTimeDuration?) → xs:date?

adjust-time-to-timezone($arg as xs:time?, $timezone as xs:dayTimeDuration?) → xs:time?

implicit-timezone() → xs:dayTimeDuration

timezone-from-date($arg as xs:date?) → xs:dayTimeDuration?

timezone-from-dateTime($arg as xs:dateTime?) → xs:dayTimeDuration?

timezone-from-time($arg as xs:time?) → xs:dayTimeDuration?

DEBUG
DEBUG_BYTE_CODE

DEBUGGERS
Commercial Editors and Debuggers

DEBUGGING
debugging in Writing reflexive extension functions in Java

debugging in Writing reflexive extension functions for .NET

Alphabetical Index

487

DECIMAL
seconds-from-dateTime($arg as xs:dateTime?) → xs:decimal?

seconds-from-duration($arg as xs:duration?) → xs:decimal?

seconds-from-time($arg as xs:time?) → xs:decimal?

DECIMAL-DIVIDE
saxon:decimal-divide()

DECIMAL-FORMAT
xsl:decimal-format

DECIMAL-FORMAT-NAME
format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string

DECLARE
declare option saxon:allow-cycles

declare option saxon:default

declare option saxon:memo-function

declare option saxon:output

DECODER
A2 Base64 Encoder/Decoder

DECOMPOSITION
decomposition

DEEP-EQUAL
deep-equal

deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean

deep-equal($parameter1 as item()*, $parameter2 as item()*) → xs:boolean

saxon:deep-equal()

DEFAULT
declare option saxon:default

DEFAULT-COLLATION
default-collation

Alphabetical Index

488

default-collation() → xs:string

DEFAULTS
Expansion of attribute and element defaults

DELETE
sql:delete

DEPENDENCY
JDK dependency

DESCRIPTION
error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none

error($code as xs:QName?, $description as xs:string) → none

DIAGNOSTICS
Diagnostics

Diagnostics and Tracing

DIFFERENCE
Set difference and intersection

DIRECTORIES
Processing directories

DISCARD-DOCUMENT
saxon:discard-document()

DISPLAY
DISPLAY_BYTE_CODE

DISTINCT-VALUES
distinct-values

distinct-values($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType*

distinct-values($arg as xs:anyAtomicType*) → xs:anyAtomicType*

DIVISION
Multiplication and division

Alphabetical Index

489

DOC
doc

doc($uri as xs:string?) → document-node()?

put($doc as node(), $uri as xs:string) → xs:NCName?

DOC-AVAILABLE
doc-available

doc-available($uri as xs:string?) → xs:boolean

DOCTYPE
saxon:doctype

DOCTYPE-PUBLIC
doctype-public

DOCTYPE-SYSTEM
doctype-system

DOCUMENT
Building a Source Document from an application

document

document($uri as item()*, $base as node()*) → node()*

document($uri as item()*) → node()*

Document Projection in Optimization

Document Projection in Handling Source Documents

xsl:document

DOCUMENTATION
XQuery Documentation

DOCUMENT-NODE
doc($uri as xs:string?) → document-node()?

parse-json($arg as xs:string, $options as map(*)) → document-node(element(*, xs:untyped))

parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped))

parse-xml($arg as xs:string) → document-node(element(*, xs:untyped))

Alphabetical Index

490

DOCUMENTS
Controlling Parsing of Source Documents

Handling Source Documents

Handling Source Documents

Preloading shared reference documents

Reading source documents

Reading source documents partially

Source Documents on the Command Line

Streaming of Large Documents

Validation of Source Documents

Whitespace Stripping in Source Documents

DOCUMENT-URI
document-uri

document-uri()

document-uri() → xs:anyURI?

document-uri($arg as node()?) → xs:anyURI?

DOM
Third-party Object Models: DOM, JDOM, XOM, and DOM4J

DOM4J
Third-party Object Models: DOM, JDOM, XOM, and DOM4J

DOUBLE
acos($arg as xs:double?) → xs:double? in acos

acos($arg as xs:double?) → xs:double? in acos

asin($arg as xs:double?) → xs:double? in asin

asin($arg as xs:double?) → xs:double? in asin

atan($arg as xs:double?) → xs:double? in atan

atan($arg as xs:double?) → xs:double? in atan

cos($# as xs:double?) → xs:double? in cos

cos($# as xs:double?) → xs:double? in cos

exp($arg1 as xs:double?, $arg2 as numeric) → xs:double in pow

exp($arg1 as xs:double?, $arg2 as numeric) → xs:double in pow

Alphabetical Index

491

exp($arg as xs:double) → xs:double in exp

exp($arg as xs:double) → xs:double in exp

exp10($arg as xs:double) → xs:double in exp10

exp10($arg as xs:double) → xs:double in exp10

log($arg as xs:double?) → xs:double? in log

log($arg as xs:double?) → xs:double? in log

log10($arg as xs:double?) → xs:double? in log10

log10($arg as xs:double?) → xs:double? in log10

number() → xs:double

number($arg as xs:anyAtomicType?) → xs:double

pi() → xs:double

sin($# as xs:double?) → xs:double? in sin

sin($# as xs:double?) → xs:double? in sin

sqrt($arg as xs:double?) → xs:double? in sqrt

sqrt($arg as xs:double?) → xs:double? in sqrt

subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()* in
subsequence

subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()* in
subsequence

subsequence($sourceSeq as item()*, $startingLoc as xs:double) → item()*

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string in
substring

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string in
substring

substring($sourceString as xs:string?, $start as xs:double) → xs:string

tan($# as xs:double?) → xs:double? in tan

tan($# as xs:double?) → xs:double? in tan

DOUBLE-SPACE
The saxon:double-space attribute

DTDS
References to W3C DTDs

DURATION
days-from-duration($arg as xs:duration?) → xs:integer?

Alphabetical Index

492

hours-from-duration($arg as xs:duration?) → xs:integer?

minutes-from-duration($arg as xs:duration?) → xs:integer?

months-from-duration($arg as xs:duration?) → xs:integer?

seconds-from-duration($arg as xs:duration?) → xs:decimal?

years-from-duration($arg as xs:duration?) → xs:integer?

DUTCH
Dutch

DYNAMIC
Tips for Dynamic Loading in .NET"

E

EDITORS
Commercial Editors and Debuggers

ELEMENT
analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result)

analyze-string($input as xs:string?, $pattern as xs:string) → element(fn:analyze-string-result)

element-with-id($arg as xs:string*, $node as node()) → element()*

element-with-id($arg as xs:string*) → element()*

Expansion of attribute and element defaults

id($arg as xs:string*, $node as node()) → element()*

id($arg as xs:string*) → element()*

in-scope-prefixes($element as element()) → xs:string* in in-scope-prefixes

in-scope-prefixes($element as element()) → xs:string* in in-scope-prefixes

namespace-uri-for-prefix($prefix as xs:string?, $element as element()) → xs:anyURI? in namespace-
uri-for-prefix

namespace-uri-for-prefix($prefix as xs:string?, $element as element()) → xs:anyURI? in namespace-
uri-for-prefix

parse-json($arg as xs:string, $options as map(*)) → document-node(element(*, xs:untyped))

parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped))

parse-xml($arg as xs:string) → document-node(element(*, xs:untyped))

resolve-QName($qname as xs:string?, $element as element()) → xs:QName? in resolve-QName

Alphabetical Index

493

resolve-QName($qname as xs:string?, $element as element()) → xs:QName? in resolve-QName

The <collations> element

The <global> element

The <localizations> element

The <resources> element

The <xquery> element

The <xsd> element

The <xslt> element

xsl:element

ELEMENT-AVAILABLE
element-available

element-available($arg as xs:string) → xs:boolean

ELEMENTS
Literal Result Elements

XSLT Elements

ELEMENT-WITH-ID
element-with-id

element-with-id($arg as xs:string*, $node as node()) → element()*

element-with-id($arg as xs:string*) → element()*

EMPTY
empty

empty($arg as item()*) → xs:boolean

ENCODE-FOR-URI
encode-for-uri

encode-for-uri($uri-part as xs:string?) → xs:string

ENCODER
A2 Base64 Encoder/Decoder

ENCODING
unparsed-text($href as xs:string?, $encoding as xs:string) → xs:string?

Alphabetical Index

494

unparsed-text-available($href as xs:string?, $encoding as xs:string) → xs:boolean

unparsed-text-lines($href as xs:string?, $encoding as xs:string) → xs:string*

ENCODINGS
Character Encodings Supported

ENDS-WITH
ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

ends-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean

ENGLISH
English

ENTITY-REF
saxon:entity-ref

ENVIRONMENT-VARIABLE
environment-variable

environment-variable($name as xs:string) → xs:string?

ERROR
error

error() → none

error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none

error($code as xs:QName?, $description as xs:string) → none

error($code as xs:QName) → none

ERROR-OBJECT
error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none

ESCAPE-HTML-URI
escape-html-uri

escape-html-uri($uri as xs:string?) → xs:string

ETC..
concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?)

→ xs:string

Alphabetical Index

495

EVAL
saxon:eval()

EVALUATE
saxon:evaluate()

xsl:evaluate

EVALUATE-NODE
saxon:evaluate-node()

EVALUATING
Evaluating XPath Expressions using s9api

EXACTLY-ONE
exactly-one

exactly-one($arg as item()*) → item()

EXAMPLE
Example in The Map Extension

Example in The Saxon SQL Extension

Example: selective copying

Example applications for .NET

JDOM Example

Running the example using Microsoft Access

Running the example using MySQL

Shakespeare Example

XQuery example using the saxon:stream pragma

XSLT example using xsl:copy-of

EXAMPLES
Examples:

Examples of XSLT 2.0 Patterns

JAXP Transformation Examples

EXECUTE
sql:execute

Alphabetical Index

496

EXISTING
Changes to existing APIs

EXISTS
exists

exists($arg as item()*) → xs:boolean

EXP
exp

exp($arg1 as xs:double?, $arg2 as numeric) → xs:double

exp($arg as xs:double) → xs:double

EXP10
exp10

exp10($arg as xs:double) → xs:double

EXPANSION
Expansion of attribute and element defaults

EXPLAIN
saxon:explain

EXPORTING
Importing and Exporting Schema Component Models

EXPRESSION
Expression tree changes

regular expression

saxon:expression()

XPath 2.0 Expression Syntax

EXPRESSIONS
Arithmetic expressions

Boolean expressions: AND and OR

Conditional Expressions

Evaluating XPath Expressions using s9api

Alphabetical Index

497

Filter expressions

For Expressions

Path expressions

Quantified Expressions

Range expressions

Sequence expressions

Streamable path expressions

EXSLT
EXSLT in Introduction

EXSLT in EXSLT Extensions

EXSLT extensions in Introduction

EXSLT Extensions in Saxon Extensions

EXTENSIBILITY
Changes to Saxon extensions and extensibility mechanisms

Extensibility in Version 9.2 (2009-08-05)

Extensibility in Version 9.1 (2008-07-02)

Extensibility in Using XQuery

Extensibility

Extensibility changes

EXTENSION
.NET extension functions

Calling JAXP XPath extension functions

Converting Arguments to .NET Extension Functions

Converting Arguments to Java Extension Functions

Converting the Result of a .NET Extension Function

Converting the Result of a Java Extension Function

Extension attributes (XSLT only)

Extension functions

Extension instructions

Implementing extension instructions

Integrated extension functions

Alphabetical Index

498

Java extension functions: full interface

Java extension functions: simple interface

The Map Extension

The Saxon SQL extension in Introduction

The Saxon SQL Extension

The SQL Extension

Writing reflexive extension functions for .NET

Writing reflexive extension functions in Java

Writing XSLT extension instructions

EXTENSIONS
Changes to Saxon extensions and extensibility mechanisms

EXSLT extensions in Introduction

EXSLT Extensions in Saxon Extensions

Extensions in Version 9.3 (2010-10-30)

Extensions in Version 9.2 (2009-08-05)

Extensions in Version 9.1 (2008-07-02)

Extensions in Version 9.0 (2007-11-03)

Extensions in Using XQuery

Saxon Extensions

Saxon extensions to XML Schema 1.1

Saxon extensions to XSD uniqueness and referential constraints

Saxon XSD Extensions

EXTERNAL
External Object Models

F

F
filter($f as function(item()) as xs:boolean, $seq as item()*) → item()*

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()*

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()*

map($f as function(item()) as item()*, $seq as item()*) → item()*

Alphabetical Index

499

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()*

FACET
The saxon:preprocess facet

FACETS
Messages associated with assertions and other facets

FACTORY
JAXP Factory Interfaces

FALLBACK
xsl:fallback

FALSE
false

false() → xs:boolean

FEATURES
Configuration Features

implementation-defined features in Introduction

Implementation-defined features in XML Schema 1.1 Conformance

Miscellaneous XSD 1.1 Features

New features in XPath 3.0

XSLT 3.0 Features

FIELD
Identifying the Java constructor, method, or field

FILE
The PTree File Format

The Saxon configuration file

FILES
binary output files in The saxon:base64Binary serialization method

binary output files in The saxon:hexBinary serialization method

JAR files included in the product

Using catalog files

Alphabetical Index

500

Writing a URI Resolver for Input Files

Writing a URI Resolver for Output Files

FILTER
filter

filter()

filter($f as function(item()) as xs:boolean, $seq as item()*) → item()*

Filter expressions

FILTERS
Writing input filters

FINALLY
saxon:finally

FIND
saxon:find()

FLAGS
analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result)

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string*

FLEMISH
Flemish (Belgium)

FLOOR
floor

floor($arg as numeric?) → numeric?

FN
analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result)

analyze-string($input as xs:string?, $pattern as xs:string) → element(fn:analyze-string-result)

fn:analyze-string()

Alphabetical Index

501

FOLD-LEFT
fold-left

fold-left()

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()*

FOLD-RIGHT
fold-right

fold-right()

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()*

FOR-EACH
xsl:for-each

FOR-EACH-GROUP
saxon:for-each-group()

xsl:for-each-group

FORMAT
Result Format

The PTree File Format

FORMAT-DATE
format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

format-date($value as xs:date?, $picture as xs:string) → xs:string?

FORMAT-DATETIME
format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string?

format-dateTime($value as xs:dateTime?, $picture as xs:string) → xs:string?

saxon:format-dateTime()

FORMAT-INTEGER
format-integer

format-integer()

Alphabetical Index

502

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string

format-integer($value as xs:integer?, $picture as xs:string) → xs:string

FORMAT-NUMBER
format-number

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string

format-number($value as numeric?, $picture as xs:string) → xs:string

saxon:format-number()

FORMAT-TIME
format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

format-time($value as xs:time?, $picture as xs:string) → xs:string?

FORUMS
Lists and forums for getting help

FRENCH
French

French (Belgium)

FROM
Building a Source Document from an application

Calling XQuery Functions from Java

Configuration from the command line

Controlling Validation from Java

Getting a value from the map

Invoking XSLT from an application

Running Queries from a Java Application

Running Saxon from Ant

Running Saxon XSLT Transformations from Ant

Running validation from Ant

Running Validation from the Command Line

Running XQuery from the Command Line

Alphabetical Index

503

Running XSLT from the Command Line

Schema-Aware XQuery from Java

Schema-Aware XQuery from the Command Line

Schema-Aware XSLT from Java

Schema-Aware XSLT from the Command Line

FULL
Java extension functions: full interface

FUNC
function-arity($func as function(*)) → xs:integer

function-name($func as function(*)) → xs:QName?

FUNCTION
Converting the Result of a .NET Extension Function

Converting the Result of a Java Extension Function

filter($f as function(item()) as xs:boolean, $seq as item()*) → item()*

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()*

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()*

function-arity($func as function(*)) → xs:integer

function-available($function as xs:string, $arity as xs:integer) → xs:boolean

function-available($function as xs:string) → xs:boolean

Function Calls

function-lookup($function as xs:string, $arity as xs:integer) → xs:boolean

function-name($func as function(*)) → xs:QName?

map($f as function(item()) as item()*, $seq as item()*) → item()*

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()*

saxon:function()

xsl:function

FUNCTION-ARITY
function-arity

function-arity($func as function(*)) → xs:integer

FUNCTION-AVAILABLE
function-available

Alphabetical Index

504

function-available($function as xs:string, $arity as xs:integer) → xs:boolean

function-available($function as xs:string) → xs:boolean

FUNCTION-LOOKUP
function-lookup

function-lookup($function as xs:string, $arity as xs:integer) → xs:boolean

FUNCTION-NAME
function-name

function-name($func as function(*)) → xs:QName?

FUNCTIONS
.NET extension functions

Calling JAXP XPath extension functions

Calling XQuery Functions from Java

Changes to Functions and Operators

Converting Arguments to .NET Extension Functions

Converting Arguments to Java Extension Functions

Extension functions

Functions and Operators in Version 9.3 (2010-10-30)

Functions and Operators in Version 9.2 (2009-08-05)

Higher-order functions

Implementation-defined aspects of Functions and Operators

Index of Functions

Integrated extension functions

Java extension functions: full interface

Java extension functions: simple interface

Writing reflexive extension functions for .NET

Writing reflexive extension functions in Java

XSLT 2.0 and XPath 2.0 Functions

G

GAC
GAC

Alphabetical Index

505

GENERAL
Converting Method Arguments - General Rules

GENERATE
GENERATE_BYTE_CODE

GENERATE-ID
generate-id

generate-id() → xs:string

generate-id($arg as node()?) → xs:string

saxon:generate-id()

GENERATION
Bytecode generation

GENERIC
A3 Generic Sorter

GERMAN
German

GET-PSEUDO-ATTRIBUTE
saxon:get-pseudo-attribute()

GLOBAL
Global Assembly Cache

The <global> element

GROUPING
Sorting, grouping and numbering

GROUPS
All Model Groups

Non-capturing groups

H

HANDLING
Handling minOccurs and maxOccurs

Alphabetical Index

506

Handling Source Documents

Handling Source Documents

HAS-CHILDREN
has-children

has-children() → xs:boolean

has-children($seq as node()) → xs:boolean

HAS-SAME-NODES
saxon:has-same-nodes()

HEAD
head

head()

head($arg as item()*) → item()?

HELP
Lists and forums for getting help

HEXBINARY
The saxon:hexBinary serialization method

HEXBINARY-TO-OCTETS
saxon:hexBinary-to-octets()

HEXBINARY-TO-STRING
saxon:hexBinary-to-string()

HIGHER-ORDER
Higher-order functions

HIGHEST
saxon:highest()

HIGHLIGHTS
Highlights in Version 9.3 (2010-10-30)

Highlights in Version 9.2 (2009-08-05)

Highlights in Version 9.1 (2008-07-02)

Alphabetical Index

507

Highlights in Version 9.0 (2007-11-03)

HISTORICAL
Historical Note

HOME
SAXON_HOME

HOURS-FROM-DATETIME
hours-from-dateTime

hours-from-dateTime($arg as xs:dateTime?) → xs:integer?

HOURS-FROM-DURATION
hours-from-duration

hours-from-duration($arg as xs:duration?) → xs:integer?

HOURS-FROM-TIME
hours-from-time

hours-from-time($arg as xs:time?) → xs:integer?

HOW
How burst-mode streaming works

HREF
unparsed-text($href as xs:string?, $encoding as xs:string) → xs:string?

unparsed-text($href as xs:string?) → xs:string?

unparsed-text-available($href as xs:string?, $encoding as xs:string) → xs:boolean

unparsed-text-available($href as xs:string?) → xs:boolean

unparsed-text-lines($href as xs:string?, $encoding as xs:string) → xs:string*

unparsed-text-lines($href as xs:string?) → xs:boolean

HYPHENATED
hyphenated names

I

ID
id

Alphabetical Index

508

id($arg as xs:string*, $node as node()) → element()*

id($arg as xs:string*) → element()*

IDENTIFYING
Identifying and Calling Specific Methods

Identifying the Java Class

Identifying the Java constructor, method, or field

IDREF
idref

idref($arg as xs:string*, $node as node()) → node()*

idref($arg as xs:string*) → node()*

IF
xsl:if

IMPLEMENTATION
Notes on the Saxon implementation in abs

Notes on the Saxon implementation in acos

Notes on the Saxon implementation in adjust-dateTime-to-timezone

Notes on the Saxon implementation in adjust-date-to-timezone

Notes on the Saxon implementation in adjust-time-to-timezone

Notes on the Saxon implementation in analyze-string

Notes on the Saxon implementation in asin

Notes on the Saxon implementation in atan

Notes on the Saxon implementation in available-environment-variables

Notes on the Saxon implementation in avg

Notes on the Saxon implementation in base-uri

Notes on the Saxon implementation in boolean

Notes on the Saxon implementation in ceiling

Notes on the Saxon implementation in codepoint-equal

Notes on the Saxon implementation in codepoints-to-string

Notes on the Saxon implementation in collection

Notes on the Saxon implementation in compare

Alphabetical Index

509

Notes on the Saxon implementation in concat

Notes on the Saxon implementation in contains

Notes on the Saxon implementation in cos

Notes on the Saxon implementation in count

Notes on the Saxon implementation in current

Notes on the Saxon implementation in current-date

Notes on the Saxon implementation in current-dateTime

Notes on the Saxon implementation in current-group

Notes on the Saxon implementation in current-grouping-key

Notes on the Saxon implementation in current-time

Notes on the Saxon implementation in data

Notes on the Saxon implementation in dateTime

Notes on the Saxon implementation in day-from-date

Notes on the Saxon implementation in day-from-dateTime

Notes on the Saxon implementation in days-from-duration

Notes on the Saxon implementation in deep-equal

Notes on the Saxon implementation in default-collation

Notes on the Saxon implementation in distinct-values

Notes on the Saxon implementation in doc

Notes on the Saxon implementation in doc-available

Notes on the Saxon implementation in document

Notes on the Saxon implementation in document-uri

Notes on the Saxon implementation in element-available

Notes on the Saxon implementation in element-with-id

Notes on the Saxon implementation in empty

Notes on the Saxon implementation in encode-for-uri

Notes on the Saxon implementation in ends-with

Notes on the Saxon implementation in environment-variable

Notes on the Saxon implementation in error

Notes on the Saxon implementation in escape-html-uri

Notes on the Saxon implementation in exactly-one

Notes on the Saxon implementation in exists

Alphabetical Index

510

Notes on the Saxon implementation in exp

Notes on the Saxon implementation in exp10

Notes on the Saxon implementation in false

Notes on the Saxon implementation in filter

Notes on the Saxon implementation in floor

Notes on the Saxon implementation in fold-left

Notes on the Saxon implementation in fold-right

Notes on the Saxon implementation in format-date

Notes on the Saxon implementation in format-dateTime

Notes on the Saxon implementation in format-integer

Notes on the Saxon implementation in format-number

Notes on the Saxon implementation in format-time

Notes on the Saxon implementation in function-arity

Notes on the Saxon implementation in function-available

Notes on the Saxon implementation in function-lookup

Notes on the Saxon implementation in function-name

Notes on the Saxon implementation in generate-id

Notes on the Saxon implementation in has-children

Notes on the Saxon implementation in head

Notes on the Saxon implementation in hours-from-dateTime

Notes on the Saxon implementation in hours-from-duration

Notes on the Saxon implementation in hours-from-time

Notes on the Saxon implementation in id

Notes on the Saxon implementation in idref

Notes on the Saxon implementation in implicit-timezone

Notes on the Saxon implementation in index-of

Notes on the Saxon implementation in innermost

Notes on the Saxon implementation in in-scope-prefixes

Notes on the Saxon implementation in insert-before

Notes on the Saxon implementation in iri-to-uri

Notes on the Saxon implementation in lang

Notes on the Saxon implementation in last

Alphabetical Index

511

Notes on the Saxon implementation in local-name

Notes on the Saxon implementation in local-name-from-QName

Notes on the Saxon implementation in log

Notes on the Saxon implementation in log10

Notes on the Saxon implementation in lower-case

Notes on the Saxon implementation in map

Notes on the Saxon implementation in map-pairs

Notes on the Saxon implementation in matches

Notes on the Saxon implementation in max

Notes on the Saxon implementation in min

Notes on the Saxon implementation in minutes-from-dateTime

Notes on the Saxon implementation in minutes-from-duration

Notes on the Saxon implementation in minutes-from-time

Notes on the Saxon implementation in month-from-date

Notes on the Saxon implementation in month-from-dateTime

Notes on the Saxon implementation in months-from-duration

Notes on the Saxon implementation in name

Notes on the Saxon implementation in namespace-uri

Notes on the Saxon implementation in namespace-uri-for-prefix

Notes on the Saxon implementation in namespace-uri-from-QName

Notes on the Saxon implementation in nilled

Notes on the Saxon implementation in node-name

Notes on the Saxon implementation in normalize-space

Notes on the Saxon implementation in normalize-unicode

Notes on the Saxon implementation in not

Notes on the Saxon implementation in number

Notes on the Saxon implementation in one-or-more

Notes on the Saxon implementation in outermost

Notes on the Saxon implementation in parse-json

Notes on the Saxon implementation in parse-xml

Notes on the Saxon implementation in path

Notes on the Saxon implementation in pi

Alphabetical Index

512

Notes on the Saxon implementation in position

Notes on the Saxon implementation in pow

Notes on the Saxon implementation in prefix-from-QName

Notes on the Saxon implementation in put

Notes on the Saxon implementation in QName

Notes on the Saxon implementation in regex-group

Notes on the Saxon implementation in remove

Notes on the Saxon implementation in replace

Notes on the Saxon implementation in resolve-QName

Notes on the Saxon implementation in resolve-uri

Notes on the Saxon implementation in reverse

Notes on the Saxon implementation in root

Notes on the Saxon implementation in round

Notes on the Saxon implementation in round-half-to-even

Notes on the Saxon implementation in seconds-from-dateTime

Notes on the Saxon implementation in seconds-from-duration

Notes on the Saxon implementation in seconds-from-time

Notes on the Saxon implementation in serialize

Notes on the Saxon implementation in serialize-json

Notes on the Saxon implementation in sin

Notes on the Saxon implementation in sqrt

Notes on the Saxon implementation in starts-with

Notes on the Saxon implementation in static-base-uri

Notes on the Saxon implementation in string

Notes on the Saxon implementation in string-join

Notes on the Saxon implementation in string-length

Notes on the Saxon implementation in string-to-codepoints

Notes on the Saxon implementation in subsequence

Notes on the Saxon implementation in substring

Notes on the Saxon implementation in substring-after

Notes on the Saxon implementation in substring-before

Notes on the Saxon implementation in sum

Alphabetical Index

513

Notes on the Saxon implementation in system-property

Notes on the Saxon implementation in tail

Notes on the Saxon implementation in tan

Notes on the Saxon implementation in timezone-from-date

Notes on the Saxon implementation in timezone-from-dateTime

Notes on the Saxon implementation in timezone-from-time

Notes on the Saxon implementation in tokenize

Notes on the Saxon implementation in trace

Notes on the Saxon implementation in translate

Notes on the Saxon implementation in true

Notes on the Saxon implementation in type-available

Notes on the Saxon implementation in unordered

Notes on the Saxon implementation in unparsed-entity-public-id

Notes on the Saxon implementation in unparsed-entity-uri

Notes on the Saxon implementation in unparsed-text

Notes on the Saxon implementation in unparsed-text-available

Notes on the Saxon implementation in unparsed-text-lines

Notes on the Saxon implementation in upper-case

Notes on the Saxon implementation in uri-collection

Notes on the Saxon implementation in year-from-date

Notes on the Saxon implementation in year-from-dateTime

Notes on the Saxon implementation in years-from-duration

Notes on the Saxon implementation in zero-or-one

Selecting the XPath implementation

XSLT 2.0 implementation

IMPLEMENTATION-DEFINED
Checklist of Implementation-Defined Items in XSLT 2.0 conformance

Checklist of Implementation-Defined Items in XQuery 1.0 Conformance

Implementation-defined aspects of Functions and Operators

Implementation-defined aspects of Serialization

implementation-defined features in Introduction

Implementation-defined features in XML Schema 1.1 Conformance

Alphabetical Index

514

IMPLEMENTING
Implementing a collating sequence

Implementing extension instructions

IMPLICIT-TIMEZONE
implicit-timezone

implicit-timezone() → xs:dayTimeDuration

IMPORT
xsl:import

IMPORTING
Importing and Exporting Schema Component Models

IMPORT-QUERY
saxon:import-query

IMPORT-SCHEMA
xsl:import-schema

INCLUDE
xsl:include

INCLUDED
JAR files included in the product

INDENTATION
indentation

INDENT-SPACES
The saxon:indent-spaces attribute

INDEX
Index of Functions

saxon:index()

INDEX-OF
index-of

Alphabetical Index

515

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer*

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType) → xs:integer*

INJECTION
A Warning about Security (SQL injection)

INNERMOST
innermost

innermost($seq as node()*) → node()*

INPUT
analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result)

analyze-string($input as xs:string?, $pattern as xs:string) → element(fn:analyze-string-result)

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean

matches($input as xs:string?, $pattern as xs:string) → xs:boolean

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string*

tokenize($input as xs:string?, $pattern as xs:string) → xs:string*

Writing a URI Resolver for Input Files

Writing input filters

IN-SCOPE-PREFIXES
in-scope-prefixes

in-scope-prefixes($element as element()) → xs:string*

INSERT
sql:insert and sql:column

INSERT-BEFORE
insert-before

insert-before($target as item()*, $position as xs:integer, $inserts as item()*) → item()*

INSERTS
insert-before($target as item()*, $position as xs:integer, $inserts as item()*) → item()*

Alphabetical Index

516

INSTALLATION
Installation: .NET platform

Installation: Java platform

Installation and Licensing

Installation on .NET

INSTALLING
Installing the software in Installation: Java platform

Installing the software in Installation: .NET platform

INSTANCE
Instance of and Castable as

INSTANCE-LEVEL
Calling .NET Instance-Level Methods

Calling Java Instance-Level Methods

INSTRUCTIONS
Conditional instructions

Extension instructions

Implementing extension instructions

Looping instructions

Non-context-sensitive instructions

Writing XSLT extension instructions

IN-SUMMER-TIME
saxon:in-summer-time()

INTEGER
codepoints-to-string($arg as xs:integer*) → xs:string

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?

compare($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:integer?

count($arg as item()*) → xs:integer

day-from-date($arg as xs:date?) → xs:integer?

day-from-dateTime($arg as xs:dateTime?) → xs:integer?

Alphabetical Index

517

days-from-duration($arg as xs:duration?) → xs:integer?

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string

format-integer($value as xs:integer?, $picture as xs:string) → xs:string

function-arity($func as function(*)) → xs:integer

function-available($function as xs:string, $arity as xs:integer) → xs:boolean

function-lookup($function as xs:string, $arity as xs:integer) → xs:boolean

hours-from-dateTime($arg as xs:dateTime?) → xs:integer?

hours-from-duration($arg as xs:duration?) → xs:integer?

hours-from-time($arg as xs:time?) → xs:integer?

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer*

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType) → xs:integer*

insert-before($target as item()*, $position as xs:integer, $inserts as item()*) → item()*

last() → xs:integer

minutes-from-dateTime($arg as xs:dateTime?) → xs:integer?

minutes-from-duration($arg as xs:duration?) → xs:integer?

minutes-from-time($arg as xs:time?) → xs:integer?

month-from-date($arg as xs:date?) → xs:integer?

month-from-dateTime($arg as xs:dateTime?) → xs:integer?

months-from-duration($arg as xs:duration?) → xs:integer?

position() → xs:integer

remove($target as item()*, $position as xs:integer) → item()*

round($arg as numeric?, $precision as xs:integer) → numeric?

round-half-to-even($arg as numeric?, $precision as xs:integer) → numeric?

string-length() → xs:integer

string-length($arg as xs:string?) → xs:integer

string-to-codepoints($arg as xs:string?) → xs:integer*

year-from-date($arg as xs:date?) → xs:integer?

year-from-dateTime($arg as xs:dateTime?) → xs:integer?

years-from-duration($arg as xs:duration?) → xs:integer?

INTEGRATED
Integrated extension functions

Alphabetical Index

518

INTERFACE
Java extension functions: full interface

Java extension functions: simple interface

S9API interface

The JAXP interface (Java)

The NodeInfo interface

The s9api interface (Java)

The Saxon.Api interface (.NET)

INTERFACES
Changes to application programming interfaces

Changes to system programming interfaces

Configuration interfaces

JAXP Factory Interfaces

INTERNAL
Internal APIs

Internal changes

INTERNALS
Internals

INTERSECTION
Set difference and intersection

INTRODUCTION
Introduction in About Saxon

Introduction in Licensing

Introduction in Saxon Configuration

Introduction in Using XQuery

Introduction in XML Schema Processing

Introduction in XPath API for Java

Introduction in Saxon on .NET

Introduction in Extensibility

Introduction in Saxon Extensions

Alphabetical Index

519

Introduction in Sample Saxon Applications

Introduction in The Saxon SQL Extension

Introduction in XSLT Elements

Introduction in XPath 2.0 Expression Syntax

Introduction in Standards Conformance

INVOKING
Invoking XQuery using the XQJ API

Invoking XSLT from an application

IRI
iri-to-uri($iri as xs:string?) → xs:string

IRI-TO-URI
iri-to-uri

iri-to-uri($iri as xs:string?) → xs:string

IS-WHOLE-NUMBER
saxon:is-whole-number()

ITALIAN
Italian

ITEM
boolean($arg as item()*) → xs:boolean

count($arg as item()*) → xs:integer

current() → item()

current-group() → item()

data($arg as item()*) → xs:anyAtomicType*

deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean in
deep-equal

deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean in
deep-equal

deep-equal($parameter1 as item()*, $parameter2 as item()*) → xs:boolean in deep-equal

deep-equal($parameter1 as item()*, $parameter2 as item()*) → xs:boolean in deep-equal

document($uri as item()*, $base as node()*) → node()*

document($uri as item()*) → node()*

Alphabetical Index

520

empty($arg as item()*) → xs:boolean

error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none

exactly-one($arg as item()*) → item() in exactly-one

exactly-one($arg as item()*) → item() in exactly-one

exists($arg as item()*) → xs:boolean

filter($f as function(item()) as xs:boolean, $seq as item()*) → item()* in filter

filter($f as function(item()) as xs:boolean, $seq as item()*) → item()* in filter

filter($f as function(item()) as xs:boolean, $seq as item()*) → item()* in filter

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-left

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-left

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-left

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-left

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-left

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-left

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-right

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-right

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-right

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-right

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-right

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()* in
fold-right

head($arg as item()*) → item()? in head

head($arg as item()*) → item()? in head

insert-before($target as item()*, $position as xs:integer, $inserts as item()*) → item()* in insert-before

insert-before($target as item()*, $position as xs:integer, $inserts as item()*) → item()* in insert-before

insert-before($target as item()*, $position as xs:integer, $inserts as item()*) → item()* in insert-before

map($f as function(item()) as item()*, $seq as item()*) → item()* in map

Alphabetical Index

521

map($f as function(item()) as item()*, $seq as item()*) → item()* in map

map($f as function(item()) as item()*, $seq as item()*) → item()* in map

map($f as function(item()) as item()*, $seq as item()*) → item()* in map

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()* in
map-pairs

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()* in
map-pairs

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()* in
map-pairs

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()* in
map-pairs

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()* in
map-pairs

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()* in
map-pairs

not($arg as item()*) → xs:boolean

one-or-more($arg as item()*) → item()+ in one-or-more

one-or-more($arg as item()*) → item()+ in one-or-more

remove($target as item()*, $position as xs:integer) → item()* in remove

remove($target as item()*, $position as xs:integer) → item()* in remove

reverse($arg as item()*) → item()* in reverse

reverse($arg as item()*) → item()* in reverse

serialize($arg as item()*, $options as map(*)) → xs:string

serialize($arg as item()*) → xs:string

Setting the context item

string($arg as item()?) → xs:string

subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()* in
subsequence

subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()* in
subsequence

subsequence($sourceSeq as item()*, $startingLoc as xs:double) → item()* in subsequence

subsequence($sourceSeq as item()*, $startingLoc as xs:double) → item()* in subsequence

tail($arg as item()*) → item()* in tail

tail($arg as item()*) → item()* in tail

trace($value as item()*, $label as xs:string) → item()* in trace

trace($value as item()*, $label as xs:string) → item()* in trace

Alphabetical Index

522

unordered($sourceSeq as item()*) → item()* in unordered

unordered($sourceSeq as item()*) → item()* in unordered

zero-or-one($arg as item()*) → item()? in zero-or-one

zero-or-one($arg as item()*) → item()? in zero-or-one

ITEM-AT
saxon:item-at()

ITEMS
Checklist of Implementation-Defined Items in XSLT 2.0 conformance

Checklist of Implementation-Defined Items in XQuery 1.0 Conformance

ITERATE
saxon:iterate

Using saxon:stream() with saxon:iterate

xsl:iterate

J

JAR
JAR files included in the product

JAVA
Calling Java Constructors

Calling Java Instance-Level Methods

Calling Static Methods in a Java Class

Calling XQuery Functions from Java

Controlling Validation from Java

Converting Arguments to Java Extension Functions

Converting the Result of a Java Extension Function

Converting Wrapped Java Objects

Getting started with Saxon on the Java platform

Identifying the Java Class

Identifying the Java constructor, method, or field

Installation: Java platform

Alphabetical Index

523

Java

Java API

Java extension functions: full interface

Java extension functions: simple interface

New Java API

Pull processing in Java

Running Queries from a Java Application

Saxon on Java

Schema-Aware XQuery from Java

Schema-Aware XSLT from Java

The JAXP interface (Java)

The s9api interface (Java)

Writing reflexive extension functions in Java

XPath API for Java

XQJ (XQuery API for Java)

JAXP
Calling JAXP XPath extension functions

JAXP

JAXP Conformance

JAXP Factory Interfaces

JAXP Source Types

JAXP Transformation Examples

Schema Processing using JAXP

The JAXP interface (Java)

The JAXP XPath API

Using JAXP for Transformations

JDK
JDK dependency

JDOM
JDOM Example

Third-party Object Models: DOM, JDOM, XOM, and DOM4J

Alphabetical Index

524

K

KEY
Obtaining a license key in Installation: Java platform

Obtaining a license key in Installation: .NET platform

Troubleshooting license key problems

xsl:key

KEYS
License keys

KNIGHT'S
Knight's Tour

L

LABEL
trace($value as item()*, $label as xs:string) → item()*

LANG
lang

lang($testlang as xs:string?, $node as node()) → xs:boolean

lang($testlang as xs:string?) → xs:boolean

LANGUAGE
format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string?

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string in
format-integer

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string in
format-integer

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

LARGE
Streaming of Large Documents

Alphabetical Index

525

LAST
last

last() → xs:integer

LAST-MODIFIED
saxon:last-modified()

LEADING
saxon:leading()

LENGTH
subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()*

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string

LIBRARY
Separate compilation of library modules

LICENSE
License keys

Mozilla Public License

Obtaining a license key in Installation: Java platform

Obtaining a license key in Installation: .NET platform

Troubleshooting license key problems

LICENSING
Installation and Licensing

Licensing

licensing in Introduction

Licensing changes

LIMITATIONS
Limitations

LINE
Command line

Command line and configuration changes

Command line changes in XSLT

Alphabetical Index

526

Command line changes in XQuery 1.0

Command line changes in Version 9.0 (2007-11-03)

Configuration from the command line

line numbers

Running Validation from the Command Line

Running XQuery from the Command Line

Running XSLT from the Command Line

Schema-Aware XQuery from the Command Line

Schema-Aware XSLT from the Command Line

Source Documents on the Command Line

LINE-LENGTH
The saxon:line-length attribute

LINE-NUMBER
saxon:line-number(node)

LINKS
Links in Invoking XSLT from an application

Links in Running Queries from a Java Application

Links to W3C specifications in abs

Links to W3C specifications in acos

Links to W3C specifications in adjust-dateTime-to-timezone

Links to W3C specifications in adjust-date-to-timezone

Links to W3C specifications in adjust-time-to-timezone

Links to W3C specifications in analyze-string

Links to W3C specifications in asin

Links to W3C specifications in atan

Links to W3C specifications in available-environment-variables

Links to W3C specifications in avg

Links to W3C specifications in base-uri

Links to W3C specifications in boolean

Links to W3C specifications in ceiling

Links to W3C specifications in codepoint-equal

Alphabetical Index

527

Links to W3C specifications in codepoints-to-string

Links to W3C specifications in collection

Links to W3C specifications in compare

Links to W3C specifications in concat

Links to W3C specifications in contains

Links to W3C specifications in cos

Links to W3C specifications in count

Links to W3C specifications in current

Links to W3C specifications in current-date

Links to W3C specifications in current-dateTime

Links to W3C specifications in current-group

Links to W3C specifications in current-grouping-key

Links to W3C specifications in current-time

Links to W3C specifications in dateTime

Links to W3C specifications in day-from-date

Links to W3C specifications in day-from-dateTime

Links to W3C specifications in days-from-duration

Links to W3C specifications in deep-equal

Links to W3C specifications in default-collation

Links to W3C specifications in distinct-values

Links to W3C specifications in doc

Links to W3C specifications in doc-available

Links to W3C specifications in document

Links to W3C specifications in element-available

Links to W3C specifications in element-with-id

Links to W3C specifications in empty

Links to W3C specifications in encode-for-uri

Links to W3C specifications in ends-with

Links to W3C specifications in environment-variable

Links to W3C specifications in error

Links to W3C specifications in escape-html-uri

Links to W3C specifications in exactly-one

Alphabetical Index

528

Links to W3C specifications in exists

Links to W3C specifications in exp

Links to W3C specifications in exp10

Links to W3C specifications in false

Links to W3C specifications in filter

Links to W3C specifications in floor

Links to W3C specifications in fold-left

Links to W3C specifications in fold-right

Links to W3C specifications in format-date

Links to W3C specifications in format-dateTime

Links to W3C specifications in format-integer

Links to W3C specifications in format-number

Links to W3C specifications in format-time

Links to W3C specifications in function-arity

Links to W3C specifications in function-available

Links to W3C specifications in function-lookup

Links to W3C specifications in function-name

Links to W3C specifications in generate-id

Links to W3C specifications in has-children

Links to W3C specifications in head

Links to W3C specifications in hours-from-dateTime

Links to W3C specifications in hours-from-duration

Links to W3C specifications in hours-from-time

Links to W3C specifications in id

Links to W3C specifications in idref

Links to W3C specifications in implicit-timezone

Links to W3C specifications in index-of

Links to W3C specifications in innermost

Links to W3C specifications in in-scope-prefixes

Links to W3C specifications in insert-before

Links to W3C specifications in iri-to-uri

Links to W3C specifications in lang

Alphabetical Index

529

Links to W3C specifications in last

Links to W3C specifications in local-name

Links to W3C specifications in local-name-from-QName

Links to W3C specifications in log

Links to W3C specifications in log10

Links to W3C specifications in lower-case

Links to W3C specifications in map

Links to W3C specifications in map-pairs

Links to W3C specifications in matches

Links to W3C specifications in max

Links to W3C specifications in min

Links to W3C specifications in minutes-from-dateTime

Links to W3C specifications in minutes-from-duration

Links to W3C specifications in minutes-from-time

Links to W3C specifications in month-from-date

Links to W3C specifications in month-from-dateTime

Links to W3C specifications in months-from-duration

Links to W3C specifications in name

Links to W3C specifications in namespace-uri

Links to W3C specifications in namespace-uri-for-prefix

Links to W3C specifications in namespace-uri-from-QName

Links to W3C specifications in nilled

Links to W3C specifications in normalize-space

Links to W3C specifications in normalize-unicode

Links to W3C specifications in not

Links to W3C specifications in number

Links to W3C specifications in one-or-more

Links to W3C specifications in outermost

Links to W3C specifications in parse-json

Links to W3C specifications in parse-xml

Links to W3C specifications in path

Links to W3C specifications in pi

Alphabetical Index

530

Links to W3C specifications in position

Links to W3C specifications in pow

Links to W3C specifications in prefix-from-QName

Links to W3C specifications in put

Links to W3C specifications in QName

Links to W3C specifications in regex-group

Links to W3C specifications in remove

Links to W3C specifications in replace

Links to W3C specifications in resolve-QName

Links to W3C specifications in resolve-uri

Links to W3C specifications in reverse

Links to W3C specifications in root

Links to W3C specifications in round-half-to-even

Links to W3C specifications in seconds-from-dateTime

Links to W3C specifications in seconds-from-duration

Links to W3C specifications in seconds-from-time

Links to W3C specifications in serialize

Links to W3C specifications in serialize-json

Links to W3C specifications in sin

Links to W3C specifications in sqrt

Links to W3C specifications in starts-with

Links to W3C specifications in static-base-uri

Links to W3C specifications in string

Links to W3C specifications in string-length

Links to W3C specifications in string-to-codepoints

Links to W3C specifications in subsequence

Links to W3C specifications in substring

Links to W3C specifications in substring-after

Links to W3C specifications in substring-before

Links to W3C specifications in sum

Links to W3C specifications in system-property

Links to W3C specifications in tail

Alphabetical Index

531

Links to W3C specifications in tan

Links to W3C specifications in timezone-from-date

Links to W3C specifications in timezone-from-dateTime

Links to W3C specifications in timezone-from-time

Links to W3C specifications in tokenize

Links to W3C specifications in trace

Links to W3C specifications in translate

Links to W3C specifications in true

Links to W3C specifications in type-available

Links to W3C specifications in unordered

Links to W3C specifications in unparsed-entity-public-id

Links to W3C specifications in unparsed-entity-uri

Links to W3C specifications in unparsed-text

Links to W3C specifications in unparsed-text-available

Links to W3C specifications in upper-case

Links to W3C specifications in uri-collection

Links to W3C specifications in year-from-date

Links to W3C specifications in year-from-dateTime

Links to W3C specifications in years-from-duration

Links to W3C specifications in zero-or-one

LIST
The Book List Stylesheet

LISTS
Lists and forums for getting help

LITERAL
Literal Result Elements

LOADING
Tips for Dynamic Loading in .NET"

LOCALE
Locale

Alphabetical Index

532

LOCALIZATION
Localization

LOCALIZATIONS
The <localizations> element

LOCALIZED
localized numbering

LOCALIZING
Localizing numbers and dates

LOCAL-NAME
local-name

local-name() → xs:string

local-name($arg as node()?) → xs:string

LOCAL-NAME-FROM-QNAME
local-name-from-QName

local-name-from-QName($arg as xs:QName?) → xs:NCName?

LOG
log

log($arg as xs:double?) → xs:double?

LOG10
log10

log10($arg as xs:double?) → xs:double?

LOOPING
Looping instructions

LOWER
lower case

LOWER-CASE
lower-case

lower-case($arg as xs:string?) → xs:string

Alphabetical Index

533

LOWEST
saxon:lowest()

M

MAP
Adding a value to the map

Creating a new map

Getting a value from the map

map

map()

map($f as function(item()) as item()*, $seq as item()*) → item()*

parse-json($arg as xs:string, $options as map(*)) → document-node(element(*, xs:untyped))

serialize($arg as item()*, $options as map(*)) → xs:string

The Map Extension

MAP-PAIRS
map-pairs

map-pairs()

map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()*

MAPS
Maps in XPath 3.0

MAPSTRING
translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string

MATCHES
matches

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean

matches($input as xs:string?, $pattern as xs:string) → xs:boolean

MATCHING-SUBSTRING
xsl:matching-substring

MAX
max

Alphabetical Index

534

max($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType?

max($arg as xs:anyAtomicType*) → xs:anyAtomicType?

MAXOCCURS
Handling minOccurs and maxOccurs

MEASUREMENT
performance measurement

MECHANISMS
Changes to Saxon extensions and extensibility mechanisms

MEMO-FUNCTION
declare option saxon:memo-function

saxon:memo-function

MERGE
xsl:merge

MERGE-ACTION
xsl:merge-action

MERGE-INPUT
xsl:merge-input

MERGE-SOURCE
xsl:merge-source

MESSAGE
xsl:message

MESSAGES
Messages associated with assertions and other facets

METHOD
Converting Method Arguments - General Rules

Identifying the Java constructor, method, or field

The method attribute

The saxon:base64Binary serialization method

Alphabetical Index

535

The saxon:hexBinary serialization method

The saxon:ptree serialization method

The saxon:xquery serialization method

METHODS
Additional Saxon methods

Calling .NET Instance-Level Methods

Calling Java Instance-Level Methods

Calling Static Methods in a .NET Class

Calling Static Methods in a Java Class

Choosing among overloaded methods

Identifying and Calling Specific Methods

MICROSOFT
Running the example using Microsoft Access

MIN
min

min($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType?

min($arg as xs:anyAtomicType*) → xs:anyAtomicType?

MINOCCURS
Handling minOccurs and maxOccurs

MINUS
Unary plus and minus

MINUTES-FROM-DATETIME
minutes-from-dateTime

minutes-from-dateTime($arg as xs:dateTime?) → xs:integer?

MINUTES-FROM-DURATION
minutes-from-duration

minutes-from-duration($arg as xs:duration?) → xs:integer?

MINUTES-FROM-TIME
minutes-from-time

Alphabetical Index

536

minutes-from-time($arg as xs:time?) → xs:integer?

MISCELLANEOUS
Miscellaneous XSD 1.1 Features

MODE
saxon:mode

xsl:mode

MODEL
All Model Groups

Changes to the Schema Component Model API

Choosing a Tree Model

Serializing a Schema Component Model

MODELS
External Object Models

Importing and Exporting Schema Component Models

Third-party Object Models: DOM, JDOM, XOM, and DOM4J

MODULES
Separate compilation of library modules

MONTH-FROM-DATE
month-from-date

month-from-date($arg as xs:date?) → xs:integer?

MONTH-FROM-DATETIME
month-from-dateTime

month-from-dateTime($arg as xs:dateTime?) → xs:integer?

MONTHS-FROM-DURATION
months-from-duration

months-from-duration($arg as xs:duration?) → xs:integer?

MOZILLA
Mozilla Public License

Alphabetical Index

537

MULTI-CORE
multi-core CPUs

MULTIPLICATION
Multiplication and division

MULTI-THREADED
Multi-threaded processing

MYSQL
Running the example using MySQL

N

NAME
environment-variable($name as xs:string) → xs:string?

name

name() → xs:string

name($arg as node()?) → xs:string

strong name

NAMEPOOL
NamePool changes

NAMES
hyphenated names

Olson timezone names

NAMESPACE
xsl:namespace

NAMESPACE-ALIAS
xsl:namespace-alias

NAMESPACE-NODE
saxon:namespace-node()

NAMESPACE-URI
namespace-uri

Alphabetical Index

538

namespace-uri() → xs:anyURI

namespace-uri($arg as node()?) → xs:anyURI

NAMESPACE-URI-FOR-PREFIX
namespace-uri-for-prefix

namespace-uri-for-prefix($prefix as xs:string?, $element as element()) → xs:anyURI?

NAMESPACE-URI-FROM-QNAME
namespace-uri-from-QName

namespace-uri-from-QName($arg as xs:QName?) → xs:anyURI?

NATURAL
natural sorting

NCNAME
local-name-from-QName($arg as xs:QName?) → xs:NCName?

prefix-from-QName($arg as xs:QName?) → xs:NCName?

put($doc as node(), $uri as xs:string) → xs:NCName?

NEW
Creating a new map

New features in XPath 3.0

New Java API

NEXT-IN-CHAIN
The saxon:next-in-chain attribute

NEXT-ITERATION
xsl:next-iteration

NEXT-MATCH
xsl:next-match

NILLED
nilled

nilled($arg as node()?) → xs:boolean?

NODE
base-uri($arg as node()?) → xs:anyURI?

Alphabetical Index

539

collection() → node()*

collection($arg as xs:string?) → node()*

document($uri as item()*, $base as node()*) → node()* in document

document($uri as item()*, $base as node()*) → node()* in document

document($uri as item()*) → node()*

document-uri($arg as node()?) → xs:anyURI?

element-with-id($arg as xs:string*, $node as node()) → element()* in element-with-id

element-with-id($arg as xs:string*, $node as node()) → element()* in element-with-id

generate-id($arg as node()?) → xs:string

has-children($seq as node()) → xs:boolean

id($arg as xs:string*, $node as node()) → element()* in id

id($arg as xs:string*, $node as node()) → element()* in id

idref($arg as xs:string*, $node as node()) → node()* in idref

idref($arg as xs:string*, $node as node()) → node()* in idref

idref($arg as xs:string*, $node as node()) → node()* in idref

idref($arg as xs:string*) → node()*

innermost($seq as node()*) → node()* in innermost

innermost($seq as node()*) → node()* in innermost

lang($testlang as xs:string?, $node as node()) → xs:boolean in lang

lang($testlang as xs:string?, $node as node()) → xs:boolean in lang

local-name($arg as node()?) → xs:string

name($arg as node()?) → xs:string

namespace-uri($arg as node()?) → xs:anyURI

nilled($arg as node()?) → xs:boolean?

node-name($arg as node()?) → xs:QName?

outermost($seq as node()*) → node()* in outermost

outermost($seq as node()*) → node()* in outermost

path($arg as node()?) → xs:string?

put($doc as node(), $uri as xs:string) → xs:NCName?

root() → node()

root($arg as node()?) → node()? in root

root($arg as node()?) → node()? in root

saxon:column-number(node)

Alphabetical Index

540

saxon:line-number(node)

serialize($arg as node(), $params as node()*) → xs:string in serialize

serialize($arg as node(), $params as node()*) → xs:string in serialize

serialize($arg as node()) → xs:string

NODEINFO
The NodeInfo interface

NODE-NAME
node-name

node-name()

node-name() → xs:QName?

node-name($arg as node()?) → xs:QName?

NODES
Converting Nodes

Converting Nodes and Sequences of Nodes in Converting Arguments to .NET Extension Functions

Converting Nodes and Sequences of Nodes in Converting Arguments to .NET Extension Functions

Processing the nodes returned by saxon:stream()

NON-CAPTURING
Non-capturing groups

NON-CONTEXT-SENSITIVE
Non-context-sensitive instructions

NONE
error() → none

error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none

error($code as xs:QName?, $description as xs:string) → none

error($code as xs:QName) → none

NON-MATCHING-SUBSTRING
xsl:non-matching-substring

NORMALIZATION
A4 Unicode Normalization

Alphabetical Index

541

NORMALIZATIONFORM
normalize-unicode($arg as xs:string?, $normalizationForm as xs:string) → xs:string

NORMALIZE-SPACE
normalize-space

normalize-space() → xs:string

normalize-space($arg as xs:string?) → xs:string

NORMALIZE-UNICODE
normalize-unicode

normalize-unicode($arg as xs:string?, $normalizationForm as xs:string) → xs:string

normalize-unicode($arg as xs:string?) → xs:string

NOT
not

not($arg as item()*) → xs:boolean

NOTE
Historical Note

NOTES
Notes on the Saxon implementation in abs

Notes on the Saxon implementation in acos

Notes on the Saxon implementation in adjust-dateTime-to-timezone

Notes on the Saxon implementation in adjust-date-to-timezone

Notes on the Saxon implementation in adjust-time-to-timezone

Notes on the Saxon implementation in analyze-string

Notes on the Saxon implementation in asin

Notes on the Saxon implementation in atan

Notes on the Saxon implementation in available-environment-variables

Notes on the Saxon implementation in avg

Notes on the Saxon implementation in base-uri

Notes on the Saxon implementation in boolean

Notes on the Saxon implementation in ceiling

Notes on the Saxon implementation in codepoint-equal

Alphabetical Index

542

Notes on the Saxon implementation in codepoints-to-string

Notes on the Saxon implementation in collection

Notes on the Saxon implementation in compare

Notes on the Saxon implementation in concat

Notes on the Saxon implementation in contains

Notes on the Saxon implementation in cos

Notes on the Saxon implementation in count

Notes on the Saxon implementation in current

Notes on the Saxon implementation in current-date

Notes on the Saxon implementation in current-dateTime

Notes on the Saxon implementation in current-group

Notes on the Saxon implementation in current-grouping-key

Notes on the Saxon implementation in current-time

Notes on the Saxon implementation in data

Notes on the Saxon implementation in dateTime

Notes on the Saxon implementation in day-from-date

Notes on the Saxon implementation in day-from-dateTime

Notes on the Saxon implementation in days-from-duration

Notes on the Saxon implementation in deep-equal

Notes on the Saxon implementation in default-collation

Notes on the Saxon implementation in distinct-values

Notes on the Saxon implementation in doc

Notes on the Saxon implementation in doc-available

Notes on the Saxon implementation in document

Notes on the Saxon implementation in document-uri

Notes on the Saxon implementation in element-available

Notes on the Saxon implementation in element-with-id

Notes on the Saxon implementation in empty

Notes on the Saxon implementation in encode-for-uri

Notes on the Saxon implementation in ends-with

Notes on the Saxon implementation in environment-variable

Notes on the Saxon implementation in error

Alphabetical Index

543

Notes on the Saxon implementation in escape-html-uri

Notes on the Saxon implementation in exactly-one

Notes on the Saxon implementation in exists

Notes on the Saxon implementation in exp

Notes on the Saxon implementation in exp10

Notes on the Saxon implementation in false

Notes on the Saxon implementation in filter

Notes on the Saxon implementation in floor

Notes on the Saxon implementation in fold-left

Notes on the Saxon implementation in fold-right

Notes on the Saxon implementation in format-date

Notes on the Saxon implementation in format-dateTime

Notes on the Saxon implementation in format-integer

Notes on the Saxon implementation in format-number

Notes on the Saxon implementation in format-time

Notes on the Saxon implementation in function-arity

Notes on the Saxon implementation in function-available

Notes on the Saxon implementation in function-lookup

Notes on the Saxon implementation in function-name

Notes on the Saxon implementation in generate-id

Notes on the Saxon implementation in has-children

Notes on the Saxon implementation in head

Notes on the Saxon implementation in hours-from-dateTime

Notes on the Saxon implementation in hours-from-duration

Notes on the Saxon implementation in hours-from-time

Notes on the Saxon implementation in id

Notes on the Saxon implementation in idref

Notes on the Saxon implementation in implicit-timezone

Notes on the Saxon implementation in index-of

Notes on the Saxon implementation in innermost

Notes on the Saxon implementation in in-scope-prefixes

Notes on the Saxon implementation in insert-before

Alphabetical Index

544

Notes on the Saxon implementation in iri-to-uri

Notes on the Saxon implementation in lang

Notes on the Saxon implementation in last

Notes on the Saxon implementation in local-name

Notes on the Saxon implementation in local-name-from-QName

Notes on the Saxon implementation in log

Notes on the Saxon implementation in log10

Notes on the Saxon implementation in lower-case

Notes on the Saxon implementation in map

Notes on the Saxon implementation in map-pairs

Notes on the Saxon implementation in matches

Notes on the Saxon implementation in max

Notes on the Saxon implementation in min

Notes on the Saxon implementation in minutes-from-dateTime

Notes on the Saxon implementation in minutes-from-duration

Notes on the Saxon implementation in minutes-from-time

Notes on the Saxon implementation in month-from-date

Notes on the Saxon implementation in month-from-dateTime

Notes on the Saxon implementation in months-from-duration

Notes on the Saxon implementation in name

Notes on the Saxon implementation in namespace-uri

Notes on the Saxon implementation in namespace-uri-for-prefix

Notes on the Saxon implementation in namespace-uri-from-QName

Notes on the Saxon implementation in nilled

Notes on the Saxon implementation in node-name

Notes on the Saxon implementation in normalize-space

Notes on the Saxon implementation in normalize-unicode

Notes on the Saxon implementation in not

Notes on the Saxon implementation in number

Notes on the Saxon implementation in one-or-more

Notes on the Saxon implementation in outermost

Notes on the Saxon implementation in parse-json

Alphabetical Index

545

Notes on the Saxon implementation in parse-xml

Notes on the Saxon implementation in path

Notes on the Saxon implementation in pi

Notes on the Saxon implementation in position

Notes on the Saxon implementation in pow

Notes on the Saxon implementation in prefix-from-QName

Notes on the Saxon implementation in put

Notes on the Saxon implementation in QName

Notes on the Saxon implementation in regex-group

Notes on the Saxon implementation in remove

Notes on the Saxon implementation in replace

Notes on the Saxon implementation in resolve-QName

Notes on the Saxon implementation in resolve-uri

Notes on the Saxon implementation in reverse

Notes on the Saxon implementation in root

Notes on the Saxon implementation in round

Notes on the Saxon implementation in round-half-to-even

Notes on the Saxon implementation in seconds-from-dateTime

Notes on the Saxon implementation in seconds-from-duration

Notes on the Saxon implementation in seconds-from-time

Notes on the Saxon implementation in serialize

Notes on the Saxon implementation in serialize-json

Notes on the Saxon implementation in sin

Notes on the Saxon implementation in sqrt

Notes on the Saxon implementation in starts-with

Notes on the Saxon implementation in static-base-uri

Notes on the Saxon implementation in string

Notes on the Saxon implementation in string-join

Notes on the Saxon implementation in string-length

Notes on the Saxon implementation in string-to-codepoints

Notes on the Saxon implementation in subsequence

Notes on the Saxon implementation in substring

Alphabetical Index

546

Notes on the Saxon implementation in substring-after

Notes on the Saxon implementation in substring-before

Notes on the Saxon implementation in sum

Notes on the Saxon implementation in system-property

Notes on the Saxon implementation in tail

Notes on the Saxon implementation in tan

Notes on the Saxon implementation in timezone-from-date

Notes on the Saxon implementation in timezone-from-dateTime

Notes on the Saxon implementation in timezone-from-time

Notes on the Saxon implementation in tokenize

Notes on the Saxon implementation in trace

Notes on the Saxon implementation in translate

Notes on the Saxon implementation in true

Notes on the Saxon implementation in type-available

Notes on the Saxon implementation in unordered

Notes on the Saxon implementation in unparsed-entity-public-id

Notes on the Saxon implementation in unparsed-entity-uri

Notes on the Saxon implementation in unparsed-text

Notes on the Saxon implementation in unparsed-text-available

Notes on the Saxon implementation in unparsed-text-lines

Notes on the Saxon implementation in upper-case

Notes on the Saxon implementation in uri-collection

Notes on the Saxon implementation in year-from-date

Notes on the Saxon implementation in year-from-dateTime

Notes on the Saxon implementation in years-from-duration

Notes on the Saxon implementation in zero-or-one

NOTICES
notices

NUMBER
number

number() → xs:double

Alphabetical Index

547

number($arg as xs:anyAtomicType?) → xs:double

xsl:number

NUMBERING
localized numbering

Sorting, grouping and numbering

NUMBERS
line numbers

Localizing numbers and dates

NUMERIC
abs($arg as numeric?) → numeric? in abs

abs($arg as numeric?) → numeric? in abs

ceiling($arg as numeric?) → numeric? in ceiling

ceiling($arg as numeric?) → numeric? in ceiling

exp($arg1 as xs:double?, $arg2 as numeric) → xs:double

floor($arg as numeric?) → numeric? in floor

floor($arg as numeric?) → numeric? in floor

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string

format-number($value as numeric?, $picture as xs:string) → xs:string

round($arg as numeric?, $precision as xs:integer) → numeric? in round

round($arg as numeric?, $precision as xs:integer) → numeric? in round

round($arg as numeric?) → numeric? in round

round($arg as numeric?) → numeric? in round

round-half-to-even($arg as numeric?, $precision as xs:integer) → numeric? in round-half-to-even

round-half-to-even($arg as numeric?, $precision as xs:integer) → numeric? in round-half-to-even

round-half-to-even($arg as numeric?) → numeric? in round-half-to-even

round-half-to-even($arg as numeric?) → numeric? in round-half-to-even

O

OBJECT
External Object Models

Alphabetical Index

548

Third-party Object Models: DOM, JDOM, XOM, and DOM4J

OBJECTS
Converting Wrapped .NET Objects

Converting Wrapped Java Objects

OBTAINING
Obtaining a license key in Installation: Java platform

Obtaining a license key in Installation: .NET platform

OCTETS-TO-BASE64BINARY
saxon:octets-to-base64Binary()

OCTETS-TO-HEXBINARY
saxon:octets-to-hexBinary()

OLSON
Olson timezone names

ON-COMPLETION
xsl:on-completion

ONE-OR-MORE
one-or-more

one-or-more($arg as item()*) → item()+

ONLY
Extension attributes (XSLT only)

OPEN
Open Content

Open Source tools

OPERATOR
Parentheses and operator precedence

OPERATORS
Changes to Functions and Operators

Alphabetical Index

549

Functions and Operators in Version 9.3 (2010-10-30)

Functions and Operators in Version 9.2 (2009-08-05)

Implementation-defined aspects of Functions and Operators

OPTIMIZATION
Optimization in Version 9.1 (2008-07-02)

Optimization in Version 9.0 (2007-11-03)

OPTIMIZATIONS
Optimizations

OPTION
declare option saxon:allow-cycles

declare option saxon:default

declare option saxon:memo-function

declare option saxon:output

OPTIONS
parse-json($arg as xs:string, $options as map(*)) → document-node(element(*, xs:untyped))

serialize($arg as item()*, $options as map(*)) → xs:string

OR
Boolean expressions: AND and OR

Identifying the Java constructor, method, or field

ORDER
order by

OTHER
Conformance with other specifications

Messages associated with assertions and other facets

OTHERWISE
xsl:otherwise

OUTERMOST
outermost

Alphabetical Index

550

outermost($seq as node()*) → node()*

OUTPUT
binary output files in The saxon:base64Binary serialization method

binary output files in The saxon:hexBinary serialization method

declare option saxon:output

saxon:output

Writing a URI Resolver for Output Files

xsl:output

OUTPUT-CHARACTER
xsl:output-character

OVERLOADED
Choosing among overloaded methods

P

PACKAGE
Choosing a software package

PACKAGED
Packaged Stylesheets

XSLT Packaged Stylesheets

PARALLEL
parallel

PARAM
xsl:param

PARAMETER1
deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean

deep-equal($parameter1 as item()*, $parameter2 as item()*) → xs:boolean

PARAMETER2
deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean

deep-equal($parameter1 as item()*, $parameter2 as item()*) → xs:boolean

Alphabetical Index

551

PARAMETERS
Additional serialization parameters

PARAMQNAME
QName($paramURI as xs:string?, $paramQName as xs:string) → xs:QName

PARAMS
serialize($arg as node(), $params as node()*) → xs:string

PARAMURI
QName($paramURI as xs:string?, $paramQName as xs:string) → xs:QName

PARENTHESES
Parentheses and operator precedence

PARSE
saxon:parse()

PARSE-HTML
saxon:parse-html()

PARSE-JSON
parse-json

parse-json($arg as xs:string, $options as map(*)) → document-node(element(*, xs:untyped))

parse-json($arg as xs:string) → xs:string

PARSER
A5 XPath Parser

PARSE-XML
parse-xml

parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped))

parse-xml($arg as xs:string) → document-node(element(*, xs:untyped))

PARSING
Controlling Parsing of Source Documents

Parsing

XML Parsing and Serialization

Alphabetical Index

552

XML Parsing in .NET

PARTIALLY
Reading source documents partially

PARTY
Third Party Source Components

PATCHES
Bugs and patches

PATH
path

path() → xs:string

path($arg as node()?) → xs:string?

Path expressions

saxon:path()

Streamable path expressions

PATTERN
analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result)

analyze-string($input as xs:string?, $pattern as xs:string) → element(fn:analyze-string-result)

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean

matches($input as xs:string?, $pattern as xs:string) → xs:boolean

Pattern syntax

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string*

tokenize($input as xs:string?, $pattern as xs:string) → xs:string*

PATTERNS
Examples of XSLT 2.0 Patterns

Patterns in XSLT 3.0

XSLT Patterns

Alphabetical Index

553

PERFORMANCE
Performance Analysis

performance measurement

PERFORM-SORT
xsl:perform-sort

PI
pi

pi()

pi() → xs:double

PICTURE
format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

format-date($value as xs:date?, $picture as xs:string) → xs:string?

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string?

format-dateTime($value as xs:dateTime?, $picture as xs:string) → xs:string?

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string

format-integer($value as xs:integer?, $picture as xs:string) → xs:string

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string

format-number($value as numeric?, $picture as xs:string) → xs:string

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

format-time($value as xs:time?, $picture as xs:string) → xs:string?

PLACE
format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string?

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

PLATFORM
Getting started with Saxon on the .NET platform

Alphabetical Index

554

Getting started with Saxon on the Java platform

Installation: .NET platform

Installation: Java platform

Prerequisites: .NET platform

PLUS
Unary plus and minus

POSITION
insert-before($target as item()*, $position as xs:integer, $inserts as item()*) → item()*

position

position() → xs:integer

remove($target as item()*, $position as xs:integer) → item()*

POW
pow

PRAGMA
The saxon:validate-type pragma

XQuery example using the saxon:stream pragma

PRECEDENCE
Parentheses and operator precedence

PRECISION
round($arg as numeric?, $precision as xs:integer) → numeric?

round-half-to-even($arg as numeric?, $precision as xs:integer) → numeric?

PREFIX
namespace-uri-for-prefix($prefix as xs:string?, $element as element()) → xs:anyURI?

PREFIX-FROM-QNAME
prefix-from-QName

prefix-from-QName($arg as xs:QName?) → xs:NCName?

PRELOADING
Preloading shared reference documents

Alphabetical Index

555

PREPROCESS
The saxon:preprocess facet

PREREQUISITES
Prerequisites

Prerequisites: .NET platform

PRESERVE-SPACE
xsl:preserve-space

PRINT-STACK
saxon:print-stack()

PROBLEMS
Troubleshooting license key problems

PROCESSING
Multi-threaded processing

Processing directories

Processing the nodes returned by saxon:stream()

Pull processing in Java

Schema Processing using JAXP

Schema Processing using s9api

XInclude processing

XML Schema Processing

PROCESSING-INSTRUCTION
xsl:processing-instruction

PRODUCT
JAR files included in the product

PRODUCTS
Related Products

PROGRAMMING
Changes to application programming interfaces

Alphabetical Index

556

Changes to system programming interfaces

PROJECTION
Document Projection in Optimization

Document Projection in Handling Source Documents

PTREE
The PTree File Format

The saxon:ptree serialization method

PTREEREADER
PTreeReader

PUBLIC
Mozilla Public License

PUBLISHED
Published Algorithms and Specifications

PULL
Pull processing in Java

PUT
put

put($doc as node(), $uri as xs:string) → xs:NCName?

Q

QNAME
error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none

error($code as xs:QName?, $description as xs:string) → none

error($code as xs:QName) → none

function-name($func as function(*)) → xs:QName?

local-name-from-QName($arg as xs:QName?) → xs:NCName?

namespace-uri-from-QName($arg as xs:QName?) → xs:anyURI?

node-name() → xs:QName?

node-name($arg as node()?) → xs:QName?

Alphabetical Index

557

prefix-from-QName($arg as xs:QName?) → xs:NCName?

QName

QName($paramURI as xs:string?, $paramQName as xs:string) → xs:QName in QName

QName($paramURI as xs:string?, $paramQName as xs:string) → xs:QName in QName

resolve-QName($qname as xs:string?, $element as element()) → xs:QName? in resolve-QName

resolve-QName($qname as xs:string?, $element as element()) → xs:QName? in resolve-QName

QUANTIFIED
Quantified Expressions

QUERIES
Compiling Queries

Running Queries from a Java Application

QUERY
saxon:query()

sql:query

R

RANDOM
random()

RANGE
Range expressions

READING
Reading source documents

Reading source documents partially

READ-ONCE
saxon:read-once

RECEIVER
Receiver

RECOGNIZE-BINARY
The saxon:recognize-binary attribute

Alphabetical Index

558

REDISTRIBUTED
Redistributed Components

REDISTRIBUTION
Redistribution in Introduction

Redistribution in Introduction

REFERENCE
Preloading shared reference documents

REFERENCES
References to W3C DTDs

Variable References

REFERENTIAL
Saxon extensions to XSD uniqueness and referential constraints

REFLEXIVE
Writing reflexive extension functions for .NET

Writing reflexive extension functions in Java

REGEX
A6 Regex Translator

regex

REGEX-GROUP
regex-group

regex-group() → xs:string

REGISTERED
Registered Collections

REGULAR
regular expression

RELATED
Related Products

Alphabetical Index

559

RELATIVE
resolve-uri($relative as xs:string?, $base as xs:string) → xs:anyURI?

resolve-uri($relative as xs:string?) → xs:anyURI?

RELEASE
Changes in this Release

REMOVE
remove

remove($target as item()*, $position as xs:integer) → item()*

REPACKAGING
Repackaging

REPLACE
replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string

REPLACEMENT
replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string

REQUIRE-WELL-FORMED
The saxon:require-well-formed attribute

RESOLVE-QNAME
resolve-QName

resolve-QName($qname as xs:string?, $element as element()) → xs:QName?

RESOLVER
Writing a URI Resolver for Input Files

Writing a URI Resolver for Output Files

RESOLVE-URI
resolve-uri

Alphabetical Index

560

resolve-uri($relative as xs:string?, $base as xs:string) → xs:anyURI?

resolve-uri($relative as xs:string?) → xs:anyURI?

RESOURCES
The <resources> element

RESULT
Converting the Result of a .NET Extension Function

Converting the Result of a Java Extension Function

Literal Result Elements

Result Format

Result tree validation

RESULT-DOCUMENT
saxon:result-document()

xsl:result-document

RESULTS
Test results

RETURN
Return types

RETURNED
Processing the nodes returned by saxon:stream()

REVERSE
reverse

reverse($arg as item()*) → item()*

ROOT
root

root() → node()

root($arg as node()?) → node()?

ROUND
round

round()

Alphabetical Index

561

round($arg as numeric?, $precision as xs:integer) → numeric?

round($arg as numeric?) → numeric?

ROUND-HALF-TO-EVEN
round-half-to-even

round-half-to-even($arg as numeric?, $precision as xs:integer) → numeric?

round-half-to-even($arg as numeric?) → numeric?

RULES
Converting Method Arguments - General Rules

RUNNING
Configuration when running Ant

Running Queries from a Java Application

Running Saxon from Ant

Running Saxon XSLT Transformations from Ant

Running the example using Microsoft Access

Running the example using MySQL

Running validation from Ant

Running Validation from the Command Line

Running XQuery from the Command Line

Running XSLT from the Command Line

S

S9API
Changes to the s9api API

Configuration using s9api

Evaluating XPath Expressions using s9api

S9API

S9API interface

Schema Processing using s9api

The s9api interface (Java)

Using s9api for Transformations

Using s9api for XQuery

Alphabetical Index

562

SAMPLE
Sample applications

Sample Saxon Applications

Shakespeare XPath Sample Application

SAXON
About Saxon

Additional Saxon methods

Changes to Saxon extensions and extensibility mechanisms

declare option saxon:allow-cycles

declare option saxon:default

declare option saxon:memo-function

declare option saxon:output

Getting started with Saxon on the .NET platform

Getting started with Saxon on the Java platform

Notes on the Saxon implementation in abs

Notes on the Saxon implementation in acos

Notes on the Saxon implementation in adjust-dateTime-to-timezone

Notes on the Saxon implementation in adjust-date-to-timezone

Notes on the Saxon implementation in adjust-time-to-timezone

Notes on the Saxon implementation in analyze-string

Notes on the Saxon implementation in asin

Notes on the Saxon implementation in atan

Notes on the Saxon implementation in available-environment-variables

Notes on the Saxon implementation in avg

Notes on the Saxon implementation in base-uri

Notes on the Saxon implementation in boolean

Notes on the Saxon implementation in ceiling

Notes on the Saxon implementation in codepoint-equal

Notes on the Saxon implementation in codepoints-to-string

Notes on the Saxon implementation in collection

Notes on the Saxon implementation in compare

Notes on the Saxon implementation in concat

Alphabetical Index

563

Notes on the Saxon implementation in contains

Notes on the Saxon implementation in cos

Notes on the Saxon implementation in count

Notes on the Saxon implementation in current

Notes on the Saxon implementation in current-date

Notes on the Saxon implementation in current-dateTime

Notes on the Saxon implementation in current-group

Notes on the Saxon implementation in current-grouping-key

Notes on the Saxon implementation in current-time

Notes on the Saxon implementation in data

Notes on the Saxon implementation in dateTime

Notes on the Saxon implementation in day-from-date

Notes on the Saxon implementation in day-from-dateTime

Notes on the Saxon implementation in days-from-duration

Notes on the Saxon implementation in deep-equal

Notes on the Saxon implementation in default-collation

Notes on the Saxon implementation in distinct-values

Notes on the Saxon implementation in doc

Notes on the Saxon implementation in doc-available

Notes on the Saxon implementation in document

Notes on the Saxon implementation in document-uri

Notes on the Saxon implementation in element-available

Notes on the Saxon implementation in element-with-id

Notes on the Saxon implementation in empty

Notes on the Saxon implementation in encode-for-uri

Notes on the Saxon implementation in ends-with

Notes on the Saxon implementation in environment-variable

Notes on the Saxon implementation in error

Notes on the Saxon implementation in escape-html-uri

Notes on the Saxon implementation in exactly-one

Notes on the Saxon implementation in exists

Notes on the Saxon implementation in exp

Alphabetical Index

564

Notes on the Saxon implementation in exp10

Notes on the Saxon implementation in false

Notes on the Saxon implementation in filter

Notes on the Saxon implementation in floor

Notes on the Saxon implementation in fold-left

Notes on the Saxon implementation in fold-right

Notes on the Saxon implementation in format-date

Notes on the Saxon implementation in format-dateTime

Notes on the Saxon implementation in format-integer

Notes on the Saxon implementation in format-number

Notes on the Saxon implementation in format-time

Notes on the Saxon implementation in function-arity

Notes on the Saxon implementation in function-available

Notes on the Saxon implementation in function-lookup

Notes on the Saxon implementation in function-name

Notes on the Saxon implementation in generate-id

Notes on the Saxon implementation in has-children

Notes on the Saxon implementation in head

Notes on the Saxon implementation in hours-from-dateTime

Notes on the Saxon implementation in hours-from-duration

Notes on the Saxon implementation in hours-from-time

Notes on the Saxon implementation in id

Notes on the Saxon implementation in idref

Notes on the Saxon implementation in implicit-timezone

Notes on the Saxon implementation in index-of

Notes on the Saxon implementation in innermost

Notes on the Saxon implementation in in-scope-prefixes

Notes on the Saxon implementation in insert-before

Notes on the Saxon implementation in iri-to-uri

Notes on the Saxon implementation in lang

Notes on the Saxon implementation in last

Notes on the Saxon implementation in local-name

Alphabetical Index

565

Notes on the Saxon implementation in local-name-from-QName

Notes on the Saxon implementation in log

Notes on the Saxon implementation in log10

Notes on the Saxon implementation in lower-case

Notes on the Saxon implementation in map

Notes on the Saxon implementation in map-pairs

Notes on the Saxon implementation in matches

Notes on the Saxon implementation in max

Notes on the Saxon implementation in min

Notes on the Saxon implementation in minutes-from-dateTime

Notes on the Saxon implementation in minutes-from-duration

Notes on the Saxon implementation in minutes-from-time

Notes on the Saxon implementation in month-from-date

Notes on the Saxon implementation in month-from-dateTime

Notes on the Saxon implementation in months-from-duration

Notes on the Saxon implementation in name

Notes on the Saxon implementation in namespace-uri

Notes on the Saxon implementation in namespace-uri-for-prefix

Notes on the Saxon implementation in namespace-uri-from-QName

Notes on the Saxon implementation in nilled

Notes on the Saxon implementation in node-name

Notes on the Saxon implementation in normalize-space

Notes on the Saxon implementation in normalize-unicode

Notes on the Saxon implementation in not

Notes on the Saxon implementation in number

Notes on the Saxon implementation in one-or-more

Notes on the Saxon implementation in outermost

Notes on the Saxon implementation in parse-json

Notes on the Saxon implementation in parse-xml

Notes on the Saxon implementation in path

Notes on the Saxon implementation in pi

Notes on the Saxon implementation in position

Alphabetical Index

566

Notes on the Saxon implementation in pow

Notes on the Saxon implementation in prefix-from-QName

Notes on the Saxon implementation in put

Notes on the Saxon implementation in QName

Notes on the Saxon implementation in regex-group

Notes on the Saxon implementation in remove

Notes on the Saxon implementation in replace

Notes on the Saxon implementation in resolve-QName

Notes on the Saxon implementation in resolve-uri

Notes on the Saxon implementation in reverse

Notes on the Saxon implementation in root

Notes on the Saxon implementation in round

Notes on the Saxon implementation in round-half-to-even

Notes on the Saxon implementation in seconds-from-dateTime

Notes on the Saxon implementation in seconds-from-duration

Notes on the Saxon implementation in seconds-from-time

Notes on the Saxon implementation in serialize

Notes on the Saxon implementation in serialize-json

Notes on the Saxon implementation in sin

Notes on the Saxon implementation in sqrt

Notes on the Saxon implementation in starts-with

Notes on the Saxon implementation in static-base-uri

Notes on the Saxon implementation in string

Notes on the Saxon implementation in string-join

Notes on the Saxon implementation in string-length

Notes on the Saxon implementation in string-to-codepoints

Notes on the Saxon implementation in subsequence

Notes on the Saxon implementation in substring

Notes on the Saxon implementation in substring-after

Notes on the Saxon implementation in substring-before

Notes on the Saxon implementation in sum

Notes on the Saxon implementation in system-property

Alphabetical Index

567

Notes on the Saxon implementation in tail

Notes on the Saxon implementation in tan

Notes on the Saxon implementation in timezone-from-date

Notes on the Saxon implementation in timezone-from-dateTime

Notes on the Saxon implementation in timezone-from-time

Notes on the Saxon implementation in tokenize

Notes on the Saxon implementation in trace

Notes on the Saxon implementation in translate

Notes on the Saxon implementation in true

Notes on the Saxon implementation in type-available

Notes on the Saxon implementation in unordered

Notes on the Saxon implementation in unparsed-entity-public-id

Notes on the Saxon implementation in unparsed-entity-uri

Notes on the Saxon implementation in unparsed-text

Notes on the Saxon implementation in unparsed-text-available

Notes on the Saxon implementation in unparsed-text-lines

Notes on the Saxon implementation in upper-case

Notes on the Saxon implementation in uri-collection

Notes on the Saxon implementation in year-from-date

Notes on the Saxon implementation in year-from-dateTime

Notes on the Saxon implementation in years-from-duration

Notes on the Saxon implementation in zero-or-one

Processing the nodes returned by saxon:stream()

Running Saxon from Ant

Running Saxon XSLT Transformations from Ant

Sample Saxon Applications

SAXON_HOME

saxon:adjust-to-civil-time()

saxon:analyze-string()

saxon:assign

saxon:assignable

saxon:base64Binary-to-octets()

Alphabetical Index

568

saxon:base64Binary-to-string()

saxon:break

saxon:call()

saxon:call-template

saxon:catch

saxon:collation

saxon:column-number(node)

saxon:compile-query()

saxon:compile-stylesheet()

saxon:continue

saxon:current-mode-name()

saxon:decimal-divide()

saxon:deep-equal()

saxon:discard-document()

saxon:doctype

saxon:entity-ref

saxon:eval()

saxon:evaluate()

saxon:evaluate-node()

saxon:explain

saxon:expression()

saxon:finally

saxon:find()

saxon:for-each-group()

saxon:format-dateTime()

saxon:format-number()

saxon:function()

saxon:generate-id()

saxon:get-pseudo-attribute()

saxon:has-same-nodes()

saxon:hexBinary-to-octets()

saxon:hexBinary-to-string()

Alphabetical Index

569

saxon:highest()

saxon:import-query

saxon:index()

saxon:in-summer-time()

saxon:is-whole-number()

saxon:item-at()

saxon:iterate

saxon:last-modified()

saxon:leading()

saxon:line-number(node)

saxon:lowest()

saxon:memo-function

saxon:mode

saxon:namespace-node()

saxon:octets-to-base64Binary()

saxon:octets-to-hexBinary()

saxon:output

saxon:parse()

saxon:parse-html()

saxon:path()

saxon:print-stack()

saxon:query()

saxon:read-once

saxon:result-document()

saxon:script

saxon:serialize()

saxon:sort()

saxon:stream()

saxon:string-to-base64Binary()

saxon:string-to-hexBinary()

saxon:string-to-utf8()

saxon:system-id()

Alphabetical Index

570

saxon:threads

saxon:transform()

saxon:try

saxon:try()

saxon:type-annotation()

saxon:unparsed-entities()

saxon:while

Saxon and XML 1.1

Saxon API for .NET

Saxon Configuration

Saxon Extensions

Saxon extensions to XML Schema 1.1

Saxon extensions to XSD uniqueness and referential constraints

Saxon on .NET in Version 9.2 (2009-08-05)

Saxon on .NET in Version 9.1 (2008-07-02)

Saxon on .NET in Redistributed Components

Saxon on .NET

Saxon on .NET changes

Saxon on Java

Saxon XSD Extensions

The saxon:base64Binary serialization method

The saxon:character-representation attribute

The saxon:double-space attribute

The saxon:hexBinary serialization method

The saxon:indent-spaces attribute

The saxon:line-length attribute

The saxon:next-in-chain attribute

The saxon:preprocess facet

The saxon:ptree serialization method

The saxon:recognize-binary attribute

The saxon:require-well-formed attribute

The saxon:supply-source-locator attribute

Alphabetical Index

571

The saxon:suppress-indentation attribute

The saxon:validate-type pragma

The saxon:xquery serialization method

The Saxon configuration file

The Saxon SQL extension in Introduction

The Saxon SQL Extension

Using saxon:stream() with saxon:iterate in Streaming of Large Documents

Using saxon:stream() with saxon:iterate in Streaming of Large Documents

What is Saxon?

XQuery example using the saxon:stream pragma

SAXON.API
The Saxon.Api interface (.NET)

SAXON-EE
Saxon-EE and Saxon-PE

SAXON-HE
Saxon-HE

Technical Support (Saxon-HE)

SAXON-PE
Saxon-EE and Saxon-PE

SAXONSERVLET
SaxonServlet

SAXRESULT
SAXResult

SCHEMA
Changes to the Schema Component Model API

Importing and Exporting Schema Component Models

Saxon extensions to XML Schema 1.1

Schema Processing using JAXP

Schema Processing using s9api

Serializing a Schema Component Model

Alphabetical Index

572

XML Schema

XML Schema 1.0 in XML Schema

XML Schema 1.0 in Version 9.1 (2008-07-02)

XML Schema 1.0 changes

XML Schema 1.0 Conformance

XML Schema 1.1 in XML Schema

XML Schema 1.1 in Version 9.1 (2008-07-02)

XML Schema 1.1 in XML Schema Processing

XML Schema 1.1 changes

XML Schema 1.1 Conformance

XML Schema Processing

SCHEMA-AWARE
Schema-Aware XQuery from Java

Schema-Aware XQuery from the Command Line

Schema-Aware XSLT from Java

Schema-Aware XSLT from the Command Line

SCHEMA-RELATED
Schema-related changes

SCRIPT
saxon:script

SEARCH
index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer*

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType) → xs:integer*

SECONDS-FROM-DATETIME
seconds-from-dateTime

seconds-from-dateTime($arg as xs:dateTime?) → xs:decimal?

SECONDS-FROM-DURATION
seconds-from-duration

seconds-from-duration($arg as xs:duration?) → xs:decimal?

Alphabetical Index

573

SECONDS-FROM-TIME
seconds-from-time

seconds-from-time($arg as xs:time?) → xs:decimal?

SECURITY
A Warning about Security (SQL injection)

SELECTING
Selecting the XPath implementation

SELECTIVE
Example: selective copying

SEPARATE
Separate compilation of library modules

SEQ
filter($f as function(item()) as xs:boolean, $seq as item()*) → item()*

fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()*

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()*

has-children($seq as node()) → xs:boolean

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer*

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType) → xs:integer*

innermost($seq as node()*) → node()*

map($f as function(item()) as item()*, $seq as item()*) → item()*

outermost($seq as node()*) → node()*

SEQ1
map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()*

SEQ2
map-pairs($f as function(item(), item()) as item()*, $seq1 as item()*, $seq2 as item()*) → item()*

SEQUENCE
Implementing a collating sequence

Sequence expressions

Alphabetical Index

574

xsl:sequence

SEQUENCES
Converting Atomic Values and Sequences

Converting Nodes and Sequences of Nodes

SERIALIZATION
Additional serialization parameters

Customizing Serialization

Implementation-defined aspects of Serialization

Serialization in Version 9.3 (2010-10-30)

Serialization in XML Parsing and Serialization

Serialization in Version 9.1 (2008-07-02)

Serialization in Version 9.0 (2007-11-03)

Serialization in Standards Conformance

The saxon:base64Binary serialization method

The saxon:hexBinary serialization method

The saxon:ptree serialization method

The saxon:xquery serialization method

User-defined serialization attributes

XML Parsing and Serialization

SERIALIZE
saxon:serialize()

serialize

serialize($arg as item()*, $options as map(*)) → xs:string

serialize($arg as item()*) → xs:string

serialize($arg as node(), $params as node()*) → xs:string

serialize($arg as node()) → xs:string

SERIALIZE-JSON
serialize-json

SERIALIZING
Serializing a Schema Component Model

Alphabetical Index

575

SET
Set difference and intersection

SETTING
Setting the context item

SHAKESPEARE
Shakespeare Example

Shakespeare stylesheet

Shakespeare XPath Sample Application

SHARED
Preloading shared reference documents

SIDE-EFFECTS
A Warning about Side-Effects

SIMPLE
Assertions on Simple Types

Java extension functions: simple interface

SIN
sin

sin()

sin($# as xs:double?) → xs:double?

SOFTWARE
Choosing a software package

Installing the software in Installation: Java platform

Installing the software in Installation: .NET platform

SORT
saxon:sort()

xsl:sort in Implementing a collating sequence

xsl:sort in XSLT Elements

SORTER
A3 Generic Sorter

Alphabetical Index

576

SORTING
natural sorting

Sorting, grouping and numbering

SOURCE
Building a Source Document from an application

Controlling Parsing of Source Documents

Handling Source Documents

Handling Source Documents

JAXP Source Types

Open Source tools

Reading source documents

Reading source documents partially

Source Documents on the Command Line

Third Party Source Components

Validation of Source Documents

Whitespace Stripping in Source Documents

SOURCEFORGE
SourceForge

SOURCESEQ
subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()*

subsequence($sourceSeq as item()*, $startingLoc as xs:double) → item()*

unordered($sourceSeq as item()*) → item()*

SOURCESTRING
substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string

substring($sourceString as xs:string?, $start as xs:double) → xs:string

SPECIFIC
Identifying and Calling Specific Methods

SPECIFICATIONS
Conformance with other specifications

Links to W3C specifications in abs

Alphabetical Index

577

Links to W3C specifications in acos

Links to W3C specifications in adjust-dateTime-to-timezone

Links to W3C specifications in adjust-date-to-timezone

Links to W3C specifications in adjust-time-to-timezone

Links to W3C specifications in analyze-string

Links to W3C specifications in asin

Links to W3C specifications in atan

Links to W3C specifications in available-environment-variables

Links to W3C specifications in avg

Links to W3C specifications in base-uri

Links to W3C specifications in boolean

Links to W3C specifications in ceiling

Links to W3C specifications in codepoint-equal

Links to W3C specifications in codepoints-to-string

Links to W3C specifications in collection

Links to W3C specifications in compare

Links to W3C specifications in concat

Links to W3C specifications in contains

Links to W3C specifications in cos

Links to W3C specifications in count

Links to W3C specifications in current

Links to W3C specifications in current-date

Links to W3C specifications in current-dateTime

Links to W3C specifications in current-group

Links to W3C specifications in current-grouping-key

Links to W3C specifications in current-time

Links to W3C specifications in dateTime

Links to W3C specifications in day-from-date

Links to W3C specifications in day-from-dateTime

Links to W3C specifications in days-from-duration

Links to W3C specifications in deep-equal

Links to W3C specifications in default-collation

Alphabetical Index

578

Links to W3C specifications in distinct-values

Links to W3C specifications in doc

Links to W3C specifications in doc-available

Links to W3C specifications in document

Links to W3C specifications in element-available

Links to W3C specifications in element-with-id

Links to W3C specifications in empty

Links to W3C specifications in encode-for-uri

Links to W3C specifications in ends-with

Links to W3C specifications in environment-variable

Links to W3C specifications in error

Links to W3C specifications in escape-html-uri

Links to W3C specifications in exactly-one

Links to W3C specifications in exists

Links to W3C specifications in exp

Links to W3C specifications in exp10

Links to W3C specifications in false

Links to W3C specifications in filter

Links to W3C specifications in floor

Links to W3C specifications in fold-left

Links to W3C specifications in fold-right

Links to W3C specifications in format-date

Links to W3C specifications in format-dateTime

Links to W3C specifications in format-integer

Links to W3C specifications in format-number

Links to W3C specifications in format-time

Links to W3C specifications in function-arity

Links to W3C specifications in function-available

Links to W3C specifications in function-lookup

Links to W3C specifications in function-name

Links to W3C specifications in generate-id

Links to W3C specifications in has-children

Alphabetical Index

579

Links to W3C specifications in head

Links to W3C specifications in hours-from-dateTime

Links to W3C specifications in hours-from-duration

Links to W3C specifications in hours-from-time

Links to W3C specifications in id

Links to W3C specifications in idref

Links to W3C specifications in implicit-timezone

Links to W3C specifications in index-of

Links to W3C specifications in innermost

Links to W3C specifications in in-scope-prefixes

Links to W3C specifications in insert-before

Links to W3C specifications in iri-to-uri

Links to W3C specifications in lang

Links to W3C specifications in last

Links to W3C specifications in local-name

Links to W3C specifications in local-name-from-QName

Links to W3C specifications in log

Links to W3C specifications in log10

Links to W3C specifications in lower-case

Links to W3C specifications in map

Links to W3C specifications in map-pairs

Links to W3C specifications in matches

Links to W3C specifications in max

Links to W3C specifications in min

Links to W3C specifications in minutes-from-dateTime

Links to W3C specifications in minutes-from-duration

Links to W3C specifications in minutes-from-time

Links to W3C specifications in month-from-date

Links to W3C specifications in month-from-dateTime

Links to W3C specifications in months-from-duration

Links to W3C specifications in name

Links to W3C specifications in namespace-uri

Alphabetical Index

580

Links to W3C specifications in namespace-uri-for-prefix

Links to W3C specifications in namespace-uri-from-QName

Links to W3C specifications in nilled

Links to W3C specifications in normalize-space

Links to W3C specifications in normalize-unicode

Links to W3C specifications in not

Links to W3C specifications in number

Links to W3C specifications in one-or-more

Links to W3C specifications in outermost

Links to W3C specifications in parse-json

Links to W3C specifications in parse-xml

Links to W3C specifications in path

Links to W3C specifications in pi

Links to W3C specifications in position

Links to W3C specifications in pow

Links to W3C specifications in prefix-from-QName

Links to W3C specifications in put

Links to W3C specifications in QName

Links to W3C specifications in regex-group

Links to W3C specifications in remove

Links to W3C specifications in replace

Links to W3C specifications in resolve-QName

Links to W3C specifications in resolve-uri

Links to W3C specifications in reverse

Links to W3C specifications in root

Links to W3C specifications in round-half-to-even

Links to W3C specifications in seconds-from-dateTime

Links to W3C specifications in seconds-from-duration

Links to W3C specifications in seconds-from-time

Links to W3C specifications in serialize

Links to W3C specifications in serialize-json

Links to W3C specifications in sin

Alphabetical Index

581

Links to W3C specifications in sqrt

Links to W3C specifications in starts-with

Links to W3C specifications in static-base-uri

Links to W3C specifications in string

Links to W3C specifications in string-length

Links to W3C specifications in string-to-codepoints

Links to W3C specifications in subsequence

Links to W3C specifications in substring

Links to W3C specifications in substring-after

Links to W3C specifications in substring-before

Links to W3C specifications in sum

Links to W3C specifications in system-property

Links to W3C specifications in tail

Links to W3C specifications in tan

Links to W3C specifications in timezone-from-date

Links to W3C specifications in timezone-from-dateTime

Links to W3C specifications in timezone-from-time

Links to W3C specifications in tokenize

Links to W3C specifications in trace

Links to W3C specifications in translate

Links to W3C specifications in true

Links to W3C specifications in type-available

Links to W3C specifications in unordered

Links to W3C specifications in unparsed-entity-public-id

Links to W3C specifications in unparsed-entity-uri

Links to W3C specifications in unparsed-text

Links to W3C specifications in unparsed-text-available

Links to W3C specifications in upper-case

Links to W3C specifications in uri-collection

Links to W3C specifications in year-from-date

Links to W3C specifications in year-from-dateTime

Links to W3C specifications in years-from-duration

Links to W3C specifications in zero-or-one

Alphabetical Index

582

Published Algorithms and Specifications

SQL
A Warning about Security (SQL injection)

sql:close

sql:connect

sql:delete

sql:execute

sql:insert and sql:column in The Saxon SQL Extension

sql:insert and sql:column in The Saxon SQL Extension

sql:query

sql:update and sql:column in The Saxon SQL Extension

sql:update and sql:column in The Saxon SQL Extension

The Saxon SQL extension in Introduction

The Saxon SQL Extension

The SQL Extension

SQRT
sqrt

sqrt()

sqrt($arg as xs:double?) → xs:double?

STANDARDS
Standards Conformance

START
substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string

substring($sourceString as xs:string?, $start as xs:double) → xs:string

STARTINGLOC
subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()*

subsequence($sourceSeq as item()*, $startingLoc as xs:double) → item()*

STARTS-WITH
starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean

Alphabetical Index

583

starts-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean

STATIC
Calling Static Methods in a .NET Class

Calling Static Methods in a Java Class

STATIC-BASE-URI
static-base-uri

static-base-uri() → xs:anyURI?

STEPS
Axis steps

STREAM
Processing the nodes returned by saxon:stream()

saxon:stream()

Using saxon:stream() with saxon:iterate

XQuery example using the saxon:stream pragma

STREAMABLE
Streamable path expressions

STREAMING
Burst-mode streaming

How burst-mode streaming works

Streaming in Version 9.2 (2009-08-05)

streaming in xsl:mode

Streaming in XSLT

Streaming of Large Documents

Streaming Templates

STRING
analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result) in analyze-string

analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result) in analyze-string

analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result) in analyze-string

Alphabetical Index

584

analyze-string($input as xs:string?, $pattern as xs:string) → element(fn:analyze-string-result) in
analyze-string

analyze-string($input as xs:string?, $pattern as xs:string) → element(fn:analyze-string-result) in
analyze-string

available-environment-variables() → xs:string*

codepoint-equal($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:boolean? in codepoint-
equal

codepoint-equal($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:boolean? in codepoint-
equal

codepoints-to-string($arg as xs:integer*) → xs:string

collection($arg as xs:string?) → node()*

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?
in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?
in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?
in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:integer? in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:integer? in compare

concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?)

→ xs:string

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in contains

deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean

default-collation() → xs:string

distinct-values($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType*

doc($uri as xs:string?) → document-node()?

doc-available($uri as xs:string?) → xs:boolean

element-available($arg as xs:string) → xs:boolean

element-with-id($arg as xs:string*, $node as node()) → element()*

element-with-id($arg as xs:string*) → element()*

encode-for-uri($uri-part as xs:string?) → xs:string in encode-for-uri

encode-for-uri($uri-part as xs:string?) → xs:string in encode-for-uri

Alphabetical Index

585

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in ends-with

environment-variable($name as xs:string) → xs:string? in environment-variable

environment-variable($name as xs:string) → xs:string? in environment-variable

error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none

error($code as xs:QName?, $description as xs:string) → none

escape-html-uri($uri as xs:string?) → xs:string in escape-html-uri

escape-html-uri($uri as xs:string?) → xs:string in escape-html-uri

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string) → xs:string? in format-date

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string) → xs:string? in format-dateTime

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string in
format-integer

Alphabetical Index

586

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string in
format-integer

format-integer($value as xs:integer?, $picture as xs:string) → xs:string in format-integer

format-integer($value as xs:integer?, $picture as xs:string) → xs:string in format-integer

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string in format-number

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string in format-number

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string in format-number

format-number($value as numeric?, $picture as xs:string) → xs:string in format-number

format-number($value as numeric?, $picture as xs:string) → xs:string in format-number

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string) → xs:string? in format-time

function-available($function as xs:string, $arity as xs:integer) → xs:boolean

function-available($function as xs:string) → xs:boolean

function-lookup($function as xs:string, $arity as xs:integer) → xs:boolean

generate-id() → xs:string

generate-id($arg as node()?) → xs:string

id($arg as xs:string*, $node as node()) → element()*

id($arg as xs:string*) → element()*

idref($arg as xs:string*, $node as node()) → node()*

idref($arg as xs:string*) → node()*

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer*

in-scope-prefixes($element as element()) → xs:string*

iri-to-uri($iri as xs:string?) → xs:string in iri-to-uri

Alphabetical Index

587

iri-to-uri($iri as xs:string?) → xs:string in iri-to-uri

lang($testlang as xs:string?, $node as node()) → xs:boolean

lang($testlang as xs:string?) → xs:boolean

local-name() → xs:string

local-name($arg as node()?) → xs:string

lower-case($arg as xs:string?) → xs:string in lower-case

lower-case($arg as xs:string?) → xs:string in lower-case

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string) → xs:boolean in matches

max($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType?

min($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType?

name() → xs:string

name($arg as node()?) → xs:string

namespace-uri-for-prefix($prefix as xs:string?, $element as element()) → xs:anyURI?

normalize-space() → xs:string

normalize-space($arg as xs:string?) → xs:string in normalize-space

normalize-space($arg as xs:string?) → xs:string in normalize-space

normalize-unicode($arg as xs:string?, $normalizationForm as xs:string) → xs:string in normalize-
unicode

normalize-unicode($arg as xs:string?, $normalizationForm as xs:string) → xs:string in normalize-
unicode

normalize-unicode($arg as xs:string?, $normalizationForm as xs:string) → xs:string in normalize-
unicode

normalize-unicode($arg as xs:string?) → xs:string in normalize-unicode

normalize-unicode($arg as xs:string?) → xs:string in normalize-unicode

parse-json($arg as xs:string, $options as map(*)) → document-node(element(*, xs:untyped))

parse-json($arg as xs:string) → xs:string in parse-json

parse-json($arg as xs:string) → xs:string in parse-json

parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped)) in
parse-xml

parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped)) in
parse-xml

Alphabetical Index

588

parse-xml($arg as xs:string) → document-node(element(*, xs:untyped))

path() → xs:string

path($arg as node()?) → xs:string?

put($doc as node(), $uri as xs:string) → xs:NCName?

QName($paramURI as xs:string?, $paramQName as xs:string) → xs:QName in QName

QName($paramURI as xs:string?, $paramQName as xs:string) → xs:QName in QName

regex-group() → xs:string

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string in replace

resolve-QName($qname as xs:string?, $element as element()) → xs:QName?

resolve-uri($relative as xs:string?, $base as xs:string) → xs:anyURI? in resolve-uri

resolve-uri($relative as xs:string?, $base as xs:string) → xs:anyURI? in resolve-uri

resolve-uri($relative as xs:string?) → xs:anyURI?

serialize($arg as item()*, $options as map(*)) → xs:string

serialize($arg as item()*) → xs:string

serialize($arg as node(), $params as node()*) → xs:string

serialize($arg as node()) → xs:string

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in starts-with

string

Alphabetical Index

589

string() → xs:string in string

string() → xs:string in string

string($arg as item()?) → xs:string in string

string($arg as item()?) → xs:string in string

string-join($arg1 as xs:string*, $arg2 as xs:string) → xs:string in string-join

string-join($arg1 as xs:string*, $arg2 as xs:string) → xs:string in string-join

string-join($arg1 as xs:string*, $arg2 as xs:string) → xs:string in string-join

string-join($arg1 as xs:string*) → xs:string in string-join

string-join($arg1 as xs:string*) → xs:string in string-join

string-length($arg as xs:string?) → xs:integer

string-to-codepoints($arg as xs:string?) → xs:integer*

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string in
substring

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string in
substring

substring($sourceString as xs:string?, $start as xs:double) → xs:string in substring

substring($sourceString as xs:string?, $start as xs:double) → xs:string in substring

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-after

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-before

Alphabetical Index

590

substring-before($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-before

system-property($arg as xs:string) → xs:string in system-property

system-property($arg as xs:string) → xs:string in system-property

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string) → xs:string* in tokenize

trace($value as item()*, $label as xs:string) → item()*

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string in translate

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string in translate

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string in translate

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string in translate

type-available($type as xs:string) → xs:boolean

unparsed-entity-public-id() → xs:string

unparsed-entity-uri() → xs:string

unparsed-text($href as xs:string?, $encoding as xs:string) → xs:string? in unparsed-text

unparsed-text($href as xs:string?, $encoding as xs:string) → xs:string? in unparsed-text

unparsed-text($href as xs:string?, $encoding as xs:string) → xs:string? in unparsed-text

unparsed-text($href as xs:string?) → xs:string? in unparsed-text

unparsed-text($href as xs:string?) → xs:string? in unparsed-text

unparsed-text-available($href as xs:string?, $encoding as xs:string) → xs:boolean in unparsed-text-
available

unparsed-text-available($href as xs:string?, $encoding as xs:string) → xs:boolean in unparsed-text-
available

unparsed-text-available($href as xs:string?) → xs:boolean

unparsed-text-lines($href as xs:string?, $encoding as xs:string) → xs:string* in unparsed-text-lines

unparsed-text-lines($href as xs:string?, $encoding as xs:string) → xs:string* in unparsed-text-lines

unparsed-text-lines($href as xs:string?, $encoding as xs:string) → xs:string* in unparsed-text-lines

unparsed-text-lines($href as xs:string?) → xs:boolean

Alphabetical Index

591

upper-case($arg as xs:string?) → xs:string in upper-case

upper-case($arg as xs:string?) → xs:string in upper-case

uri-collection($arg as xs:string?) → xs:anyURI*

STRING-JOIN
string-join

string-join()

string-join($arg1 as xs:string*, $arg2 as xs:string) → xs:string

string-join($arg1 as xs:string*) → xs:string

STRING-LENGTH
string-length

string-length() → xs:integer

string-length($arg as xs:string?) → xs:integer

STRING-TO-BASE64BINARY
saxon:string-to-base64Binary()

STRING-TO-CODEPOINTS
string-to-codepoints

string-to-codepoints($arg as xs:string?) → xs:integer*

STRING-TO-HEXBINARY
saxon:string-to-hexBinary()

STRING-TO-UTF8
saxon:string-to-utf8()

STRIPPING
Whitespace Stripping in Source Documents

STRIP-SPACE
xsl:strip-space

STRONG
strong name

STYLESHEET
Compiling a Stylesheet

Alphabetical Index

592

Shakespeare stylesheet

The Book List Stylesheet

xsl:stylesheet

STYLESHEETS
Packaged Stylesheets

Using XSLT 2.0 Stylesheets

XSLT Packaged Stylesheets

SUBSEQUENCE
subsequence

subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()*

subsequence($sourceSeq as item()*, $startingLoc as xs:double) → item()*

SUBSTRING
substring

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string

substring($sourceString as xs:string?, $start as xs:double) → xs:string

SUBSTRING-AFTER
substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string

substring-after($arg1 as xs:string?, $arg2 as xs:string?) → xs:string

SUBSTRING-BEFORE
substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string

substring-before($arg1 as xs:string?, $arg2 as xs:string?) → xs:string

SUBTRACTION
Addition and subtraction

SUM
sum

sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) → xs:anyAtomicType?

sum($arg as xs:anyAtomicType*) → xs:anyAtomicType

Alphabetical Index

593

SUPPLY-SOURCE-LOCATOR
The saxon:supply-source-locator attribute

SUPPORT
Changes to XSD support

Technical Support in About Saxon

technical support in Introduction

Technical Support (Saxon-HE)

XSLT 3.0 Support

SUPPORTED
Character Encodings Supported

SUPPRESS-INDENTATION
suppress-indentation

The saxon:suppress-indentation attribute

SWEDISH
Swedish

SYNTAX
Pattern syntax

XPath 2.0 Expression Syntax

SYSTEM
Changes to system programming interfaces

SYSTEM-ID
saxon:system-id()

SYSTEM-PROPERTY
system-property

system-property($arg as xs:string) → xs:string

T

TAGSOUP
TagSoup

Alphabetical Index

594

TAIL
tail

tail()

tail($arg as item()*) → item()*

TAN
tan

tan()

tan($# as xs:double?) → xs:double?

TARGET
insert-before($target as item()*, $position as xs:integer, $inserts as item()*) → item()*

remove($target as item()*, $position as xs:integer) → item()*

TECHNICAL
Technical Support in About Saxon

technical support in Introduction

Technical Support (Saxon-HE)

TEMPLATE
xsl:template

TEMPLATES
Streaming Templates

TEST
Test results

TESTLANG
lang($testlang as xs:string?, $node as node()) → xs:boolean

lang($testlang as xs:string?) → xs:boolean

TESTS
Conformance Tests

TEXT
xsl:text

Alphabetical Index

595

THIRD
Third Party Source Components

THIRD-PARTY
Third-party Object Models: DOM, JDOM, XOM, and DOM4J

THREADS
saxon:threads

TIME
adjust-time-to-timezone($arg as xs:time?, $timezone as xs:dayTimeDuration?) → xs:time? in adjust-
time-to-timezone

adjust-time-to-timezone($arg as xs:time?, $timezone as xs:dayTimeDuration?) → xs:time? in adjust-
time-to-timezone

adjust-time-to-timezone($arg as xs:time?) → xs:time? in adjust-time-to-timezone

adjust-time-to-timezone($arg as xs:time?) → xs:time? in adjust-time-to-timezone

current-time() → xs:time

dateTime($arg1 as xs:date?, $arg2 as xs:time?) → xs:dateTime?

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

format-time($value as xs:time?, $picture as xs:string) → xs:string?

hours-from-time($arg as xs:time?) → xs:integer?

minutes-from-time($arg as xs:time?) → xs:integer?

seconds-from-time($arg as xs:time?) → xs:decimal?

timezone-from-time($arg as xs:time?) → xs:dayTimeDuration?

TIMEZONE
adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as xs:dayTimeDuration?) →
xs:dateTime

adjust-date-to-timezone($arg as xs:date?, $timezone as xs:dayTimeDuration?) → xs:date?

adjust-time-to-timezone($arg as xs:time?, $timezone as xs:dayTimeDuration?) → xs:time?

civil timezone

Olson timezone names

TIMEZONE-FROM-DATE
timezone-from-date

timezone-from-date($arg as xs:date?) → xs:dayTimeDuration?

Alphabetical Index

596

TIMEZONE-FROM-DATETIME
timezone-from-dateTime

timezone-from-dateTime($arg as xs:dateTime?) → xs:dayTimeDuration?

TIMEZONE-FROM-TIME
timezone-from-time

timezone-from-time($arg as xs:time?) → xs:dayTimeDuration?

TIPS
Tips for Dynamic Loading in .NET"

TOKENIZE
tokenize

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string*

tokenize($input as xs:string?, $pattern as xs:string) → xs:string*

TOOLS
Open Source tools

TOUR
Knight's Tour

TRACE
trace

trace($value as item()*, $label as xs:string) → item()*

TRACING
Diagnostics and Tracing

tracing

TRANSFORM
saxon:transform()

TRANSFORMATION
JAXP Transformation Examples

TRANSFORMATIONS
Running Saxon XSLT Transformations from Ant

Alphabetical Index

597

Using JAXP for Transformations

Using s9api for Transformations

TRANSLATE
translate

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string

TRANSLATOR
A6 Regex Translator

TRANSSTRING
translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string

TRAX
TrAX

TREAT
Cast as, Treat as

TREE
Choosing a Tree Model

Expression tree changes

Result tree validation

TROUBLESHOOTING
Troubleshooting license key problems

TRUE
true

true() → xs:boolean

TRY
saxon:try

saxon:try()

xsl:try

TYPE
Conditional Type Assignment

type-available($type as xs:string) → xs:boolean

Alphabetical Index

598

TYPE-ANNOTATION
saxon:type-annotation()

TYPE-AVAILABLE
type-available

type-available($type as xs:string) → xs:boolean

TYPES
Assertions on Complex Types

Assertions on Simple Types

JAXP Source Types

Return types

U

UNARY
Unary plus and minus

UNICODE
A4 Unicode Normalization

Unicode Codepoint Collation

UNION
Union

UNIQUENESS
Saxon extensions to XSD uniqueness and referential constraints

UNORDERED
unordered

unordered($sourceSeq as item()*) → item()*

UNPARSED-ENTITIES
saxon:unparsed-entities()

UNPARSED-ENTITY-PUBLIC-ID
unparsed-entity-public-id

unparsed-entity-public-id() → xs:string

Alphabetical Index

599

UNPARSED-ENTITY-URI
unparsed-entity-uri

unparsed-entity-uri() → xs:string

UNPARSED-TEXT
unparsed-text

unparsed-text($href as xs:string?, $encoding as xs:string) → xs:string?

unparsed-text($href as xs:string?) → xs:string?

UNPARSED-TEXT-AVAILABLE
unparsed-text-available

unparsed-text-available($href as xs:string?, $encoding as xs:string) → xs:boolean

unparsed-text-available($href as xs:string?) → xs:boolean

UNPARSED-TEXT-LINES
unparsed-text-lines

unparsed-text-lines($href as xs:string?, $encoding as xs:string) → xs:string*

unparsed-text-lines($href as xs:string?) → xs:boolean

UNTYPED
parse-json($arg as xs:string, $options as map(*)) → document-node(element(*, xs:untyped))

parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped))

parse-xml($arg as xs:string) → document-node(element(*, xs:untyped))

UPDATE
sql:update and sql:column

Using XQuery Update

XQuery 3.0 and XQuery Update changes

XQuery Update 1.0

UPDATES
XQuery Updates in Version 9.2 (2009-08-05)

XQuery Updates in Version 9.1 (2008-07-02)

UPPER
upper case

Alphabetical Index

600

UPPER-CASE
upper-case

upper-case($arg as xs:string?) → xs:string

URI
doc($uri as xs:string?) → document-node()?

doc-available($uri as xs:string?) → xs:boolean

document($uri as item()*, $base as node()*) → node()*

document($uri as item()*) → node()*

escape-html-uri($uri as xs:string?) → xs:string

put($doc as node(), $uri as xs:string) → xs:NCName?

Writing a URI Resolver for Input Files

Writing a URI Resolver for Output Files

URI-COLLECTION
uri-collection

uri-collection() → xs:anyURI*

uri-collection($arg as xs:string?) → xs:anyURI*

URI-PART
encode-for-uri($uri-part as xs:string?) → xs:string

USE
Use Cases

USER-DEFINED
User-defined serialization attributes

USING
Configuration using s9api

Configuration using the .NET API

Configuration using XQJ

Evaluating XPath Expressions using s9api

Invoking XQuery using the XQJ API

Running the example using Microsoft Access

Running the example using MySQL

Alphabetical Index

601

Schema Processing using JAXP

Schema Processing using s9api

Using catalog files

Using JAXP for Transformations

Using s9api for Transformations

Using s9api for XQuery

Using saxon:stream() with saxon:iterate

Using XML Catalogs

Using XQuery

Using XQuery Update

Using XSLT 2.0

Using XSLT 2.0 Stylesheets

XQuery example using the saxon:stream pragma

XSLT example using xsl:copy-of

V

VALIDATE-TYPE
The saxon:validate-type pragma

VALIDATION
Controlling Validation from Java

Result tree validation

Running validation from Ant

Running Validation from the Command Line

Validation of Source Documents

VALUE
Adding a value to the map

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

format-date($value as xs:date?, $picture as xs:string) → xs:string?

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string?

format-dateTime($value as xs:dateTime?, $picture as xs:string) → xs:string?

Alphabetical Index

602

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string

format-integer($value as xs:integer?, $picture as xs:string) → xs:string

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string

format-number($value as numeric?, $picture as xs:string) → xs:string

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string?

format-time($value as xs:time?, $picture as xs:string) → xs:string?

Getting a value from the map

trace($value as item()*, $label as xs:string) → item()*

VALUE-OF
xsl:value-of

VALUES
Converting Atomic Values

Converting Atomic Values and Sequences

VARIABLE
Variable References

xsl:variable

VERSION
Version 9.0 (2007-11-03)

Version 9.1 (2008-07-02)

Version 9.2 (2009-08-05)

Version 9.3 (2010-10-30)

Version 9.4 (2011-12-09)

W

W3C
Links to W3C specifications in abs

Links to W3C specifications in acos

Links to W3C specifications in adjust-dateTime-to-timezone

Links to W3C specifications in adjust-date-to-timezone

Links to W3C specifications in adjust-time-to-timezone

Alphabetical Index

603

Links to W3C specifications in analyze-string

Links to W3C specifications in asin

Links to W3C specifications in atan

Links to W3C specifications in available-environment-variables

Links to W3C specifications in avg

Links to W3C specifications in base-uri

Links to W3C specifications in boolean

Links to W3C specifications in ceiling

Links to W3C specifications in codepoint-equal

Links to W3C specifications in codepoints-to-string

Links to W3C specifications in collection

Links to W3C specifications in compare

Links to W3C specifications in concat

Links to W3C specifications in contains

Links to W3C specifications in cos

Links to W3C specifications in count

Links to W3C specifications in current

Links to W3C specifications in current-date

Links to W3C specifications in current-dateTime

Links to W3C specifications in current-group

Links to W3C specifications in current-grouping-key

Links to W3C specifications in current-time

Links to W3C specifications in dateTime

Links to W3C specifications in day-from-date

Links to W3C specifications in day-from-dateTime

Links to W3C specifications in days-from-duration

Links to W3C specifications in deep-equal

Links to W3C specifications in default-collation

Links to W3C specifications in distinct-values

Links to W3C specifications in doc

Links to W3C specifications in doc-available

Links to W3C specifications in document

Alphabetical Index

604

Links to W3C specifications in element-available

Links to W3C specifications in element-with-id

Links to W3C specifications in empty

Links to W3C specifications in encode-for-uri

Links to W3C specifications in ends-with

Links to W3C specifications in environment-variable

Links to W3C specifications in error

Links to W3C specifications in escape-html-uri

Links to W3C specifications in exactly-one

Links to W3C specifications in exists

Links to W3C specifications in exp

Links to W3C specifications in exp10

Links to W3C specifications in false

Links to W3C specifications in filter

Links to W3C specifications in floor

Links to W3C specifications in fold-left

Links to W3C specifications in fold-right

Links to W3C specifications in format-date

Links to W3C specifications in format-dateTime

Links to W3C specifications in format-integer

Links to W3C specifications in format-number

Links to W3C specifications in format-time

Links to W3C specifications in function-arity

Links to W3C specifications in function-available

Links to W3C specifications in function-lookup

Links to W3C specifications in function-name

Links to W3C specifications in generate-id

Links to W3C specifications in has-children

Links to W3C specifications in head

Links to W3C specifications in hours-from-dateTime

Links to W3C specifications in hours-from-duration

Links to W3C specifications in hours-from-time

Alphabetical Index

605

Links to W3C specifications in id

Links to W3C specifications in idref

Links to W3C specifications in implicit-timezone

Links to W3C specifications in index-of

Links to W3C specifications in innermost

Links to W3C specifications in in-scope-prefixes

Links to W3C specifications in insert-before

Links to W3C specifications in iri-to-uri

Links to W3C specifications in lang

Links to W3C specifications in last

Links to W3C specifications in local-name

Links to W3C specifications in local-name-from-QName

Links to W3C specifications in log

Links to W3C specifications in log10

Links to W3C specifications in lower-case

Links to W3C specifications in map

Links to W3C specifications in map-pairs

Links to W3C specifications in matches

Links to W3C specifications in max

Links to W3C specifications in min

Links to W3C specifications in minutes-from-dateTime

Links to W3C specifications in minutes-from-duration

Links to W3C specifications in minutes-from-time

Links to W3C specifications in month-from-date

Links to W3C specifications in month-from-dateTime

Links to W3C specifications in months-from-duration

Links to W3C specifications in name

Links to W3C specifications in namespace-uri

Links to W3C specifications in namespace-uri-for-prefix

Links to W3C specifications in namespace-uri-from-QName

Links to W3C specifications in nilled

Links to W3C specifications in normalize-space

Alphabetical Index

606

Links to W3C specifications in normalize-unicode

Links to W3C specifications in not

Links to W3C specifications in number

Links to W3C specifications in one-or-more

Links to W3C specifications in outermost

Links to W3C specifications in parse-json

Links to W3C specifications in parse-xml

Links to W3C specifications in path

Links to W3C specifications in pi

Links to W3C specifications in position

Links to W3C specifications in pow

Links to W3C specifications in prefix-from-QName

Links to W3C specifications in put

Links to W3C specifications in QName

Links to W3C specifications in regex-group

Links to W3C specifications in remove

Links to W3C specifications in replace

Links to W3C specifications in resolve-QName

Links to W3C specifications in resolve-uri

Links to W3C specifications in reverse

Links to W3C specifications in root

Links to W3C specifications in round-half-to-even

Links to W3C specifications in seconds-from-dateTime

Links to W3C specifications in seconds-from-duration

Links to W3C specifications in seconds-from-time

Links to W3C specifications in serialize

Links to W3C specifications in serialize-json

Links to W3C specifications in sin

Links to W3C specifications in sqrt

Links to W3C specifications in starts-with

Links to W3C specifications in static-base-uri

Links to W3C specifications in string

Alphabetical Index

607

Links to W3C specifications in string-length

Links to W3C specifications in string-to-codepoints

Links to W3C specifications in subsequence

Links to W3C specifications in substring

Links to W3C specifications in substring-after

Links to W3C specifications in substring-before

Links to W3C specifications in sum

Links to W3C specifications in system-property

Links to W3C specifications in tail

Links to W3C specifications in tan

Links to W3C specifications in timezone-from-date

Links to W3C specifications in timezone-from-dateTime

Links to W3C specifications in timezone-from-time

Links to W3C specifications in tokenize

Links to W3C specifications in trace

Links to W3C specifications in translate

Links to W3C specifications in true

Links to W3C specifications in type-available

Links to W3C specifications in unordered

Links to W3C specifications in unparsed-entity-public-id

Links to W3C specifications in unparsed-entity-uri

Links to W3C specifications in unparsed-text

Links to W3C specifications in unparsed-text-available

Links to W3C specifications in upper-case

Links to W3C specifications in uri-collection

Links to W3C specifications in year-from-date

Links to W3C specifications in year-from-dateTime

Links to W3C specifications in years-from-duration

Links to W3C specifications in zero-or-one

References to W3C DTDs

WARNING
A Warning about Security (SQL injection)

Alphabetical Index

608

A Warning about Side-Effects

WHEN
Configuration when running Ant

xsl:when

WHILE
saxon:while

WHITESPACE
whitespace

Whitespace Stripping in Source Documents

WITH-PARAM
xsl:with-param

WORKS
How burst-mode streaming works

WRAPPED
Converting Wrapped .NET Objects

Converting Wrapped Java Objects

WRITING
Writing a URI Resolver for Input Files

Writing a URI Resolver for Output Files

Writing input filters

Writing reflexive extension functions for .NET

Writing reflexive extension functions in Java

Writing XSLT extension instructions

X

XERCES
Xerces

XINCLUDE
XInclude processing

Alphabetical Index

609

XML
Saxon and XML 1.1

Saxon extensions to XML Schema 1.1

Using XML Catalogs

XML Parsing and Serialization

XML Parsing in .NET

XML Schema

XML Schema 1.0 in XML Schema

XML Schema 1.0 in Version 9.1 (2008-07-02)

XML Schema 1.0 changes

XML Schema 1.0 Conformance

XML Schema 1.1 in XML Schema

XML Schema 1.1 in Version 9.1 (2008-07-02)

XML Schema 1.1 in XML Schema Processing

XML Schema 1.1 changes

XML Schema 1.1 Conformance

XML Schema Processing

XOM
Third-party Object Models: DOM, JDOM, XOM, and DOM4J

XPATH
A5 XPath Parser

Calling JAXP XPath extension functions

Evaluating XPath Expressions using s9api

Maps in XPath 3.0

New features in XPath 3.0

Selecting the XPath implementation

Shakespeare XPath Sample Application

The JAXP XPath API

XPath 2.0 and XQuery 1.0 changes

XPath 2.0 conformance

XPath 2.0 Expression Syntax

Alphabetical Index

610

XPath 3.0 changes in Version 9.4 (2011-12-09)

XPath 3.0 changes in Version 9.3 (2010-10-30)

XPath 3.0 Conformance

XPath API for Java

XPath changes

XSLT 2.0 and XPath 2.0 Functions

XQJ
Configuration using XQJ

Invoking XQuery using the XQJ API

The XQJ API

XQJ (XQuery API for Java)

XQJ changes

XQJ Conformance

XQUERY
Calling XQuery Functions from Java

Invoking XQuery using the XQJ API

Running XQuery from the Command Line

Schema-Aware XQuery from Java

Schema-Aware XQuery from the Command Line

The <xquery> element

The saxon:xquery serialization method

Using s9api for XQuery

Using XQuery

Using XQuery Update

XPath 2.0 and XQuery 1.0 changes

XQJ (XQuery API for Java)

XQuery 1.0 in Version 9.2 (2009-08-05)

XQuery 1.0 in Version 9.1 (2008-07-02)

XQuery 1.0 Conformance

XQuery 1.1

XQuery 3.0 and XQuery Update changes in Version 9.3 (2010-10-30)

XQuery 3.0 and XQuery Update changes in Version 9.3 (2010-10-30)

Alphabetical Index

611

XQuery 3.0 changes

XQuery 3.0 Conformance

XQuery Documentation

XQuery example using the saxon:stream pragma

XQuery Update 1.0

XQuery Updates in Version 9.2 (2009-08-05)

XQuery Updates in Version 9.1 (2008-07-02)

XS
acos($arg as xs:double?) → xs:double? in acos

acos($arg as xs:double?) → xs:double? in acos

adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as xs:dayTimeDuration?) →
xs:dateTime in adjust-dateTime-to-timezone

adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as xs:dayTimeDuration?) →
xs:dateTime in adjust-dateTime-to-timezone

adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as xs:dayTimeDuration?) →
xs:dateTime in adjust-dateTime-to-timezone

adjust-dateTime-to-timezone($arg as xs:dateTime?) → xs:dateTime in adjust-dateTime-to-timezone

adjust-dateTime-to-timezone($arg as xs:dateTime?) → xs:dateTime in adjust-dateTime-to-timezone

adjust-date-to-timezone($arg as xs:date?, $timezone as xs:dayTimeDuration?) → xs:date? in adjust-
date-to-timezone

adjust-date-to-timezone($arg as xs:date?, $timezone as xs:dayTimeDuration?) → xs:date? in adjust-
date-to-timezone

adjust-date-to-timezone($arg as xs:date?, $timezone as xs:dayTimeDuration?) → xs:date? in adjust-
date-to-timezone

adjust-date-to-timezone($arg as xs:date?) → xs:date? in adjust-date-to-timezone

adjust-date-to-timezone($arg as xs:date?) → xs:date? in adjust-date-to-timezone

adjust-time-to-timezone($arg as xs:time?, $timezone as xs:dayTimeDuration?) → xs:time? in adjust-
time-to-timezone

adjust-time-to-timezone($arg as xs:time?, $timezone as xs:dayTimeDuration?) → xs:time? in adjust-
time-to-timezone

adjust-time-to-timezone($arg as xs:time?, $timezone as xs:dayTimeDuration?) → xs:time? in adjust-
time-to-timezone

adjust-time-to-timezone($arg as xs:time?) → xs:time? in adjust-time-to-timezone

adjust-time-to-timezone($arg as xs:time?) → xs:time? in adjust-time-to-timezone

analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result) in analyze-string

Alphabetical Index

612

analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result) in analyze-string

analyze-string($input as xs:string?, $pattern as xs:string, $flags as xs:string) → element(fn:analyze-
string-result) in analyze-string

analyze-string($input as xs:string?, $pattern as xs:string) → element(fn:analyze-string-result) in
analyze-string

analyze-string($input as xs:string?, $pattern as xs:string) → element(fn:analyze-string-result) in
analyze-string

asin($arg as xs:double?) → xs:double? in asin

asin($arg as xs:double?) → xs:double? in asin

atan($arg as xs:double?) → xs:double? in atan

atan($arg as xs:double?) → xs:double? in atan

available-environment-variables() → xs:string*

avg($arg as xs:anyAtomicType*) → xs:anyAtomicType? in avg

avg($arg as xs:anyAtomicType*) → xs:anyAtomicType? in avg

base-uri() → xs:anyURI?

base-uri($arg as node()?) → xs:anyURI?

boolean($arg as item()*) → xs:boolean

codepoint-equal($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:boolean? in codepoint-
equal

codepoint-equal($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:boolean? in codepoint-
equal

codepoint-equal($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:boolean? in codepoint-
equal

codepoints-to-string($arg as xs:integer*) → xs:string in codepoints-to-string

codepoints-to-string($arg as xs:integer*) → xs:string in codepoints-to-string

collection($arg as xs:string?) → node()*

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?
in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?
in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?
in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?, $collation as xs:string) → xs:integer?
in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:integer? in compare

compare($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:integer? in compare

Alphabetical Index

613

compare($comparand1 as xs:string?, $comparand2 as xs:string?) → xs:integer? in compare

concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?) →
xs:string in concat

concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?) →
xs:string in concat

concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?) →
xs:string in concat

concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, $etc... as xs:anyAtomicType?) →
xs:string in concat

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in contains

contains($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in contains

cos($# as xs:double?) → xs:double? in cos

cos($# as xs:double?) → xs:double? in cos

count($arg as item()*) → xs:integer

current-date() → xs:date

current-dateTime() → xs:dateTimeStamp

current-grouping-key() → xs:anyAtomicType

current-time() → xs:time

data() → xs:anyAtomicType*

data($arg as item()*) → xs:anyAtomicType*

dateTime($arg1 as xs:date?, $arg2 as xs:time?) → xs:dateTime? in dateTime

dateTime($arg1 as xs:date?, $arg2 as xs:time?) → xs:dateTime? in dateTime

dateTime($arg1 as xs:date?, $arg2 as xs:time?) → xs:dateTime? in dateTime

day-from-date($arg as xs:date?) → xs:integer? in day-from-date

day-from-date($arg as xs:date?) → xs:integer? in day-from-date

day-from-dateTime($arg as xs:dateTime?) → xs:integer? in day-from-dateTime

day-from-dateTime($arg as xs:dateTime?) → xs:integer? in day-from-dateTime

days-from-duration($arg as xs:duration?) → xs:integer? in days-from-duration

days-from-duration($arg as xs:duration?) → xs:integer? in days-from-duration

Alphabetical Index

614

deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean in
deep-equal

deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as xs:string) → xs:boolean in
deep-equal

deep-equal($parameter1 as item()*, $parameter2 as item()*) → xs:boolean

default-collation() → xs:string

distinct-values($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType* in
distinct-values

distinct-values($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType* in
distinct-values

distinct-values($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType* in
distinct-values

distinct-values($arg as xs:anyAtomicType*) → xs:anyAtomicType* in distinct-values

distinct-values($arg as xs:anyAtomicType*) → xs:anyAtomicType* in distinct-values

doc($uri as xs:string?) → document-node()?

doc-available($uri as xs:string?) → xs:boolean in doc-available

doc-available($uri as xs:string?) → xs:boolean in doc-available

document-uri() → xs:anyURI?

document-uri($arg as node()?) → xs:anyURI?

element-available($arg as xs:string) → xs:boolean in element-available

element-available($arg as xs:string) → xs:boolean in element-available

element-with-id($arg as xs:string*, $node as node()) → element()*

element-with-id($arg as xs:string*) → element()*

empty($arg as item()*) → xs:boolean

encode-for-uri($uri-part as xs:string?) → xs:string in encode-for-uri

encode-for-uri($uri-part as xs:string?) → xs:string in encode-for-uri

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in ends-with

ends-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in ends-with

environment-variable($name as xs:string) → xs:string? in environment-variable

Alphabetical Index

615

environment-variable($name as xs:string) → xs:string? in environment-variable

error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none in error

error($code as xs:QName?, $description as xs:string, $error-object as item()*) → none in error

error($code as xs:QName?, $description as xs:string) → none in error

error($code as xs:QName?, $description as xs:string) → none in error

error($code as xs:QName) → none

escape-html-uri($uri as xs:string?) → xs:string in escape-html-uri

escape-html-uri($uri as xs:string?) → xs:string in escape-html-uri

exists($arg as item()*) → xs:boolean

exp($arg1 as xs:double?, $arg2 as numeric) → xs:double in pow

exp($arg1 as xs:double?, $arg2 as numeric) → xs:double in pow

exp($arg as xs:double) → xs:double in exp

exp($arg as xs:double) → xs:double in exp

exp10($arg as xs:double) → xs:double in exp10

exp10($arg as xs:double) → xs:double in exp10

false() → xs:boolean

filter($f as function(item()) as xs:boolean, $seq as item()*) → item()*

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string) → xs:string? in format-date

format-date($value as xs:date?, $picture as xs:string) → xs:string? in format-date

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

Alphabetical Index

616

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string, $language as xs:string?, $calendar as
xs:string?, $place as xs:string?) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string) → xs:string? in format-dateTime

format-dateTime($value as xs:dateTime?, $picture as xs:string) → xs:string? in format-dateTime

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string in
format-integer

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string in
format-integer

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string in
format-integer

format-integer($value as xs:integer?, $picture as xs:string, $language as xs:language) → xs:string in
format-integer

format-integer($value as xs:integer?, $picture as xs:string) → xs:string in format-integer

format-integer($value as xs:integer?, $picture as xs:string) → xs:string in format-integer

format-integer($value as xs:integer?, $picture as xs:string) → xs:string in format-integer

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string in format-number

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string in format-number

format-number($value as numeric?, $picture as xs:string, $decimal-format-name as xs:string) →
xs:string in format-number

format-number($value as numeric?, $picture as xs:string) → xs:string in format-number

format-number($value as numeric?, $picture as xs:string) → xs:string in format-number

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

Alphabetical Index

617

format-time($value as xs:time?, $picture as xs:string, $language as xs:string?, $calendar as xs:string?,
$place as xs:string?) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string) → xs:string? in format-time

format-time($value as xs:time?, $picture as xs:string) → xs:string? in format-time

function-arity($func as function(*)) → xs:integer

function-available($function as xs:string, $arity as xs:integer) → xs:boolean in function-available

function-available($function as xs:string, $arity as xs:integer) → xs:boolean in function-available

function-available($function as xs:string, $arity as xs:integer) → xs:boolean in function-available

function-available($function as xs:string) → xs:boolean in function-available

function-available($function as xs:string) → xs:boolean in function-available

function-lookup($function as xs:string, $arity as xs:integer) → xs:boolean in function-lookup

function-lookup($function as xs:string, $arity as xs:integer) → xs:boolean in function-lookup

function-lookup($function as xs:string, $arity as xs:integer) → xs:boolean in function-lookup

function-name($func as function(*)) → xs:QName?

generate-id() → xs:string

generate-id($arg as node()?) → xs:string

has-children() → xs:boolean

has-children($seq as node()) → xs:boolean

hours-from-dateTime($arg as xs:dateTime?) → xs:integer? in hours-from-dateTime

hours-from-dateTime($arg as xs:dateTime?) → xs:integer? in hours-from-dateTime

hours-from-duration($arg as xs:duration?) → xs:integer? in hours-from-duration

hours-from-duration($arg as xs:duration?) → xs:integer? in hours-from-duration

hours-from-time($arg as xs:time?) → xs:integer? in hours-from-time

hours-from-time($arg as xs:time?) → xs:integer? in hours-from-time

id($arg as xs:string*, $node as node()) → element()*

id($arg as xs:string*) → element()*

idref($arg as xs:string*, $node as node()) → node()*

idref($arg as xs:string*) → node()*

implicit-timezone() → xs:dayTimeDuration

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer* in index-of

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer* in index-of

Alphabetical Index

618

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer* in index-of

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType, $collation as xs:string) →
xs:integer* in index-of

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType) → xs:integer* in index-of

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType) → xs:integer* in index-of

index-of($seq as xs:anyAtomicType*, $search as xs:anyAtomicType) → xs:integer* in index-of

in-scope-prefixes($element as element()) → xs:string*

insert-before($target as item()*, $position as xs:integer, $inserts as item()*) → item()*

iri-to-uri($iri as xs:string?) → xs:string in iri-to-uri

iri-to-uri($iri as xs:string?) → xs:string in iri-to-uri

lang($testlang as xs:string?, $node as node()) → xs:boolean in lang

lang($testlang as xs:string?, $node as node()) → xs:boolean in lang

lang($testlang as xs:string?) → xs:boolean in lang

lang($testlang as xs:string?) → xs:boolean in lang

last() → xs:integer

local-name() → xs:string

local-name($arg as node()?) → xs:string

local-name-from-QName($arg as xs:QName?) → xs:NCName? in local-name-from-QName

local-name-from-QName($arg as xs:QName?) → xs:NCName? in local-name-from-QName

log($arg as xs:double?) → xs:double? in log

log($arg as xs:double?) → xs:double? in log

log10($arg as xs:double?) → xs:double? in log10

log10($arg as xs:double?) → xs:double? in log10

lower-case($arg as xs:string?) → xs:string in lower-case

lower-case($arg as xs:string?) → xs:string in lower-case

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string) → xs:boolean in matches

matches($input as xs:string?, $pattern as xs:string) → xs:boolean in matches

Alphabetical Index

619

max($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in max

max($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in max

max($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in max

max($arg as xs:anyAtomicType*) → xs:anyAtomicType? in max

max($arg as xs:anyAtomicType*) → xs:anyAtomicType? in max

min($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in min

min($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in min

min($arg as xs:anyAtomicType*, $collation as xs:string) → xs:anyAtomicType? in min

min($arg as xs:anyAtomicType*) → xs:anyAtomicType? in min

min($arg as xs:anyAtomicType*) → xs:anyAtomicType? in min

minutes-from-dateTime($arg as xs:dateTime?) → xs:integer? in minutes-from-dateTime

minutes-from-dateTime($arg as xs:dateTime?) → xs:integer? in minutes-from-dateTime

minutes-from-duration($arg as xs:duration?) → xs:integer? in minutes-from-duration

minutes-from-duration($arg as xs:duration?) → xs:integer? in minutes-from-duration

minutes-from-time($arg as xs:time?) → xs:integer? in minutes-from-time

minutes-from-time($arg as xs:time?) → xs:integer? in minutes-from-time

month-from-date($arg as xs:date?) → xs:integer? in month-from-date

month-from-date($arg as xs:date?) → xs:integer? in month-from-date

month-from-dateTime($arg as xs:dateTime?) → xs:integer? in month-from-dateTime

month-from-dateTime($arg as xs:dateTime?) → xs:integer? in month-from-dateTime

months-from-duration($arg as xs:duration?) → xs:integer? in months-from-duration

months-from-duration($arg as xs:duration?) → xs:integer? in months-from-duration

name() → xs:string

name($arg as node()?) → xs:string

namespace-uri() → xs:anyURI

namespace-uri($arg as node()?) → xs:anyURI

namespace-uri-for-prefix($prefix as xs:string?, $element as element()) → xs:anyURI? in namespace-
uri-for-prefix

namespace-uri-for-prefix($prefix as xs:string?, $element as element()) → xs:anyURI? in namespace-
uri-for-prefix

namespace-uri-from-QName($arg as xs:QName?) → xs:anyURI? in namespace-uri-from-QName

namespace-uri-from-QName($arg as xs:QName?) → xs:anyURI? in namespace-uri-from-QName

nilled($arg as node()?) → xs:boolean?

Alphabetical Index

620

node-name() → xs:QName?

node-name($arg as node()?) → xs:QName?

normalize-space() → xs:string

normalize-space($arg as xs:string?) → xs:string in normalize-space

normalize-space($arg as xs:string?) → xs:string in normalize-space

normalize-unicode($arg as xs:string?, $normalizationForm as xs:string) → xs:string in normalize-
unicode

normalize-unicode($arg as xs:string?, $normalizationForm as xs:string) → xs:string in normalize-
unicode

normalize-unicode($arg as xs:string?, $normalizationForm as xs:string) → xs:string in normalize-
unicode

normalize-unicode($arg as xs:string?) → xs:string in normalize-unicode

normalize-unicode($arg as xs:string?) → xs:string in normalize-unicode

not($arg as item()*) → xs:boolean

number() → xs:double

number($arg as xs:anyAtomicType?) → xs:double in number

number($arg as xs:anyAtomicType?) → xs:double in number

parse-json($arg as xs:string, $options as map(*)) → document-node(element(*, xs:untyped)) in parse-
json

parse-json($arg as xs:string, $options as map(*)) → document-node(element(*, xs:untyped)) in parse-
json

parse-json($arg as xs:string) → xs:string in parse-json

parse-json($arg as xs:string) → xs:string in parse-json

parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped)) in
parse-xml

parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped)) in
parse-xml

parse-xml($arg as xs:string, $baseURI as xs:string) → document-node(element(*, xs:untyped)) in
parse-xml

parse-xml($arg as xs:string) → document-node(element(*, xs:untyped)) in parse-xml

parse-xml($arg as xs:string) → document-node(element(*, xs:untyped)) in parse-xml

path() → xs:string

path($arg as node()?) → xs:string?

pi() → xs:double

position() → xs:integer

prefix-from-QName($arg as xs:QName?) → xs:NCName? in prefix-from-QName

Alphabetical Index

621

prefix-from-QName($arg as xs:QName?) → xs:NCName? in prefix-from-QName

put($doc as node(), $uri as xs:string) → xs:NCName? in put

put($doc as node(), $uri as xs:string) → xs:NCName? in put

QName($paramURI as xs:string?, $paramQName as xs:string) → xs:QName in QName

QName($paramURI as xs:string?, $paramQName as xs:string) → xs:QName in QName

QName($paramURI as xs:string?, $paramQName as xs:string) → xs:QName in QName

regex-group() → xs:string

remove($target as item()*, $position as xs:integer) → item()*

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string, $flags as xs:string) →
xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string in replace

replace($input as xs:string?, $pattern as xs:string, $replacement as xs:string) → xs:string in replace

resolve-QName($qname as xs:string?, $element as element()) → xs:QName? in resolve-QName

resolve-QName($qname as xs:string?, $element as element()) → xs:QName? in resolve-QName

resolve-uri($relative as xs:string?, $base as xs:string) → xs:anyURI? in resolve-uri

resolve-uri($relative as xs:string?, $base as xs:string) → xs:anyURI? in resolve-uri

resolve-uri($relative as xs:string?, $base as xs:string) → xs:anyURI? in resolve-uri

resolve-uri($relative as xs:string?) → xs:anyURI? in resolve-uri

resolve-uri($relative as xs:string?) → xs:anyURI? in resolve-uri

round($arg as numeric?, $precision as xs:integer) → numeric?

round-half-to-even($arg as numeric?, $precision as xs:integer) → numeric?

seconds-from-dateTime($arg as xs:dateTime?) → xs:decimal? in seconds-from-dateTime

seconds-from-dateTime($arg as xs:dateTime?) → xs:decimal? in seconds-from-dateTime

seconds-from-duration($arg as xs:duration?) → xs:decimal? in seconds-from-duration

Alphabetical Index

622

seconds-from-duration($arg as xs:duration?) → xs:decimal? in seconds-from-duration

seconds-from-time($arg as xs:time?) → xs:decimal? in seconds-from-time

seconds-from-time($arg as xs:time?) → xs:decimal? in seconds-from-time

serialize($arg as item()*, $options as map(*)) → xs:string

serialize($arg as item()*) → xs:string

serialize($arg as node(), $params as node()*) → xs:string

serialize($arg as node()) → xs:string

sin($# as xs:double?) → xs:double? in sin

sin($# as xs:double?) → xs:double? in sin

sqrt($arg as xs:double?) → xs:double? in sqrt

sqrt($arg as xs:double?) → xs:double? in sqrt

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in starts-with

starts-with($arg1 as xs:string?, $arg2 as xs:string?) → xs:boolean in starts-with

static-base-uri() → xs:anyURI?

string() → xs:string

string($arg as item()?) → xs:string

string-join($arg1 as xs:string*, $arg2 as xs:string) → xs:string in string-join

string-join($arg1 as xs:string*, $arg2 as xs:string) → xs:string in string-join

string-join($arg1 as xs:string*, $arg2 as xs:string) → xs:string in string-join

string-join($arg1 as xs:string*) → xs:string in string-join

string-join($arg1 as xs:string*) → xs:string in string-join

string-length() → xs:integer

string-length($arg as xs:string?) → xs:integer in string-length

string-length($arg as xs:string?) → xs:integer in string-length

string-to-codepoints($arg as xs:string?) → xs:integer* in string-to-codepoints

string-to-codepoints($arg as xs:string?) → xs:integer* in string-to-codepoints

subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()* in
subsequence

Alphabetical Index

623

subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as xs:double) → item()* in
subsequence

subsequence($sourceSeq as item()*, $startingLoc as xs:double) → item()*

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string in
substring

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string in
substring

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string in
substring

substring($sourceString as xs:string?, $start as xs:double, $length as xs:double) → xs:string in
substring

substring($sourceString as xs:string?, $start as xs:double) → xs:string in substring

substring($sourceString as xs:string?, $start as xs:double) → xs:string in substring

substring($sourceString as xs:string?, $start as xs:double) → xs:string in substring

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-after

substring-after($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-after

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string) → xs:string in
substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-before

substring-before($arg1 as xs:string?, $arg2 as xs:string?) → xs:string in substring-before

sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) → xs:anyAtomicType? in sum

sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) → xs:anyAtomicType? in sum

Alphabetical Index

624

sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) → xs:anyAtomicType? in sum

sum($arg as xs:anyAtomicType*) → xs:anyAtomicType in sum

sum($arg as xs:anyAtomicType*) → xs:anyAtomicType in sum

system-property($arg as xs:string) → xs:string in system-property

system-property($arg as xs:string) → xs:string in system-property

tan($# as xs:double?) → xs:double? in tan

tan($# as xs:double?) → xs:double? in tan

timezone-from-date($arg as xs:date?) → xs:dayTimeDuration? in timezone-from-date

timezone-from-date($arg as xs:date?) → xs:dayTimeDuration? in timezone-from-date

timezone-from-dateTime($arg as xs:dateTime?) → xs:dayTimeDuration? in timezone-from-dateTime

timezone-from-dateTime($arg as xs:dateTime?) → xs:dayTimeDuration? in timezone-from-dateTime

timezone-from-time($arg as xs:time?) → xs:dayTimeDuration? in timezone-from-time

timezone-from-time($arg as xs:time?) → xs:dayTimeDuration? in timezone-from-time

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string) → xs:string* in tokenize

tokenize($input as xs:string?, $pattern as xs:string) → xs:string* in tokenize

trace($value as item()*, $label as xs:string) → item()*

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string in translate

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string in translate

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string in translate

translate($arg as xs:string?, $mapString as xs:string, $transString as xs:string) → xs:string in translate

true() → xs:boolean

type-available($type as xs:string) → xs:boolean in type-available

type-available($type as xs:string) → xs:boolean in type-available

unparsed-entity-public-id() → xs:string

unparsed-entity-uri() → xs:string

unparsed-text($href as xs:string?, $encoding as xs:string) → xs:string? in unparsed-text

unparsed-text($href as xs:string?, $encoding as xs:string) → xs:string? in unparsed-text

Alphabetical Index

625

unparsed-text($href as xs:string?, $encoding as xs:string) → xs:string? in unparsed-text

unparsed-text($href as xs:string?) → xs:string? in unparsed-text

unparsed-text($href as xs:string?) → xs:string? in unparsed-text

unparsed-text-available($href as xs:string?, $encoding as xs:string) → xs:boolean in unparsed-text-
available

unparsed-text-available($href as xs:string?, $encoding as xs:string) → xs:boolean in unparsed-text-
available

unparsed-text-available($href as xs:string?, $encoding as xs:string) → xs:boolean in unparsed-text-
available

unparsed-text-available($href as xs:string?) → xs:boolean in unparsed-text-available

unparsed-text-available($href as xs:string?) → xs:boolean in unparsed-text-available

unparsed-text-lines($href as xs:string?, $encoding as xs:string) → xs:string* in unparsed-text-lines

unparsed-text-lines($href as xs:string?, $encoding as xs:string) → xs:string* in unparsed-text-lines

unparsed-text-lines($href as xs:string?, $encoding as xs:string) → xs:string* in unparsed-text-lines

unparsed-text-lines($href as xs:string?) → xs:boolean in unparsed-text-lines

unparsed-text-lines($href as xs:string?) → xs:boolean in unparsed-text-lines

upper-case($arg as xs:string?) → xs:string in upper-case

upper-case($arg as xs:string?) → xs:string in upper-case

uri-collection() → xs:anyURI*

uri-collection($arg as xs:string?) → xs:anyURI* in uri-collection

uri-collection($arg as xs:string?) → xs:anyURI* in uri-collection

year-from-date($arg as xs:date?) → xs:integer? in year-from-date

year-from-date($arg as xs:date?) → xs:integer? in year-from-date

year-from-dateTime($arg as xs:dateTime?) → xs:integer? in year-from-dateTime

year-from-dateTime($arg as xs:dateTime?) → xs:integer? in year-from-dateTime

years-from-duration($arg as xs:duration?) → xs:integer? in years-from-duration

years-from-duration($arg as xs:duration?) → xs:integer? in years-from-duration

XSD
Changes to XSD support

Miscellaneous XSD 1.1 Features

Saxon extensions to XSD uniqueness and referential constraints

Saxon XSD Extensions

The <xsd> element

Alphabetical Index

626

XSL
xsl:analyze-string

xsl:apply-imports

xsl:apply-templates

xsl:attribute

xsl:attribute-set

xsl:break

xsl:call-template

xsl:character-map

xsl:choose

xsl:comment

xsl:copy

xsl:copy-of

xsl:decimal-format

xsl:document

xsl:element

xsl:evaluate

xsl:fallback

xsl:for-each

xsl:for-each-group

xsl:function

xsl:if

xsl:import

xsl:import-schema

xsl:include

xsl:iterate

xsl:key

xsl:matching-substring

xsl:merge

xsl:merge-action

xsl:merge-input

xsl:merge-source

Alphabetical Index

627

xsl:message

xsl:mode

xsl:namespace

xsl:namespace-alias

xsl:next-iteration

xsl:next-match

xsl:non-matching-substring

xsl:number

xsl:on-completion

xsl:otherwise

xsl:output

xsl:output-character

xsl:param

xsl:perform-sort

xsl:preserve-space

xsl:processing-instruction

xsl:result-document

xsl:sequence

xsl:sort in Implementing a collating sequence

xsl:sort in XSLT Elements

xsl:strip-space

xsl:stylesheet

xsl:template

xsl:text

xsl:try

xsl:value-of

xsl:variable

xsl:when

xsl:with-param

XSLT example using xsl:copy-of

XSLT
Examples of XSLT 2.0 Patterns

Alphabetical Index

628

Extension attributes (XSLT only)

Invoking XSLT from an application

Patterns in XSLT 3.0

Running Saxon XSLT Transformations from Ant

Running XSLT from the Command Line

Schema-Aware XSLT from Java

Schema-Aware XSLT from the Command Line

Streaming in XSLT

The <xslt> element

Using XSLT 2.0

Using XSLT 2.0 Stylesheets

Writing XSLT extension instructions

XSLT

XSLT 2.0

XSLT 2.0 and XPath 2.0 Functions

XSLT 2.0 conformance

XSLT 2.0 implementation

XSLT 3.0 changes

XSLT 3.0 conformance

XSLT 3.0 Features

XSLT 3.0 Support

XSLT changes in Version 9.4 (2011-12-09)

XSLT changes in Version 9.0 (2007-11-03)

XSLT Elements

XSLT example using xsl:copy-of

XSLT Packaged Stylesheets

XSLT Patterns

Y

YEAR-FROM-DATE
year-from-date

year-from-date($arg as xs:date?) → xs:integer?

Alphabetical Index

629

YEAR-FROM-DATETIME
year-from-dateTime

year-from-dateTime($arg as xs:dateTime?) → xs:integer?

YEARS-FROM-DURATION
years-from-duration

years-from-duration($arg as xs:duration?) → xs:integer?

Z

ZERO
fold-left($f as function(item()*, item()) as item()*, $zero as item()*, $seq as item()*) → item()*

fold-right($f as function(item(), item()*) as item()*, $zero as item()*, $seq as item()*) → item()*

sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) → xs:anyAtomicType?

ZERO-OR-ONE
zero-or-one

zero-or-one($arg as item()*) → item()?

#

#
cos($# as xs:double?) → xs:double?

sin($# as xs:double?) → xs:double?

tan($# as xs:double?) → xs:double?

	Saxon User Documentation
	Table of Contents
	Chapter 1. About Saxon
	Introduction
	Getting Started
	Getting started with Saxon on the Java platform
	Getting started with Saxon on the .NET platform

	What is Saxon?
	Choosing a software package
	Installation: Java platform
	Prerequisites
	Obtaining a license key
	Troubleshooting license key problems
	Installing the software
	JAR files included in the product

	Installation: .NET platform
	Historical Note
	Technical Support
	Lists and forums for getting help
	Bugs and patches

	Related Products

	Chapter 2. Changes in this Release
	Version 9.4 (2011-12-09)
	Bytecode generation
	Reading source documents
	XPath 3.0 changes
	XSLT changes
	XSLT Packaged Stylesheets
	XQuery 3.0 changes
	Changes to XSD support
	Changes to Functions and Operators
	Changes to Saxon extensions and extensibility mechanisms
	Changes to application programming interfaces
	Changes to system programming interfaces

	Version 9.3 (2010-10-30)
	Highlights
	Installation on .NET
	Command line and configuration changes
	Extensibility changes
	Extensions
	XSLT 3.0 changes
	Streaming in XSLT
	XPath 3.0 changes
	XPath 2.0 and XQuery 1.0 changes
	XQuery 3.0 and XQuery Update changes
	Functions and Operators
	XML Schema 1.0 changes
	XML Schema 1.1 changes
	Changes to the s9api API
	Saxon on .NET changes
	Serialization
	Running Saxon from Ant
	The SQL Extension
	Internal changes

	Version 9.2 (2009-08-05)
	Highlights
	Installation and Licensing
	S9API interface
	Saxon on .NET
	XSLT
	XQuery 1.0
	XQuery Updates
	XQuery 1.1
	XML Schema
	Streaming
	Functions and Operators
	XML Parsing and Serialization
	External Object Models
	Extensibility
	Extensions
	Optimizations
	Internals

	Version 9.1 (2008-07-02)
	Highlights
	XQuery Updates
	XML Schema 1.1
	XML Schema 1.0
	XSLT 2.0
	XQuery 1.0
	XQJ (XQuery API for Java)
	S9API
	JAXP
	Extensibility
	Extensions
	Diagnostics and Tracing
	Saxon on .NET
	Internal APIs
	Serialization
	Optimization

	Version 9.0 (2007-11-03)
	Highlights
	New Java API
	Command line changes
	XSLT changes
	XPath changes
	Extensions
	Schema-related changes
	Changes to existing APIs
	Pull processing in Java
	Serialization
	Localization
	Optimization
	Diagnostics
	NamePool changes
	Expression tree changes

	Chapter 3. Licensing
	Introduction
	Contributors
	Third Party Source Components
	Redistributed Components
	Published Algorithms and Specifications

	Chapter 4. Saxon Configuration
	Introduction
	Configuration interfaces
	JAXP Factory Interfaces
	Configuration using s9api
	Configuration using the .NET API
	Configuration from the command line
	Configuration using XQJ
	Configuration when running Ant

	The Saxon configuration file
	The <global> element
	The <xslt> element
	The <xquery> element
	The <xsd> element
	The <resources> element
	The <collations> element
	The <localizations> element

	Configuration Features

	Chapter 5. Using XSLT 2.0
	Using XSLT 2.0 Stylesheets
	Running XSLT from the Command Line
	Compiling a Stylesheet
	Packaged Stylesheets
	Running Saxon XSLT Transformations from Ant
	Invoking XSLT from an application
	Using s9api for Transformations
	Using JAXP for Transformations

	Performance Analysis
	XSLT 3.0 Support

	Chapter 6. Using XQuery
	Introduction
	Running XQuery from the Command Line
	Running Queries from a Java Application
	Using s9api for XQuery
	Invoking XQuery using the XQJ API

	Using XQuery Update
	Calling XQuery Functions from Java
	Result Format
	Compiling Queries
	Extensibility
	Extensions
	Use Cases

	Chapter 7. Handling Source Documents
	Handling Source Documents
	Source Documents on the Command Line
	Collections
	Building a Source Document from an application
	Preloading shared reference documents
	Using XML Catalogs
	Writing input filters
	XInclude processing
	Controlling Parsing of Source Documents
	Saxon and XML 1.1
	JAXP Source Types
	Third-party Object Models: DOM, JDOM, XOM, and DOM4J
	Choosing a Tree Model
	The PTree File Format
	Validation of Source Documents
	Whitespace Stripping in Source Documents
	Streaming of Large Documents
	Burst-mode streaming
	Processing the nodes returned by saxon:stream()
	Reading source documents partially
	Streamable path expressions
	How burst-mode streaming works
	Using saxon:stream() with saxon:iterate
	Streaming Templates

	Document Projection
	References to W3C DTDs

	Chapter 8. XML Schema Processing
	Introduction
	Running Validation from the Command Line
	Controlling Validation from Java
	Schema Processing using s9api
	Schema Processing using JAXP

	Running validation from Ant
	Schema-Aware XSLT from the Command Line
	Schema-Aware XSLT from Java
	Schema-Aware XQuery from the Command Line
	Schema-Aware XQuery from Java
	XML Schema 1.1
	Assertions on Complex Types
	Assertions on Simple Types
	Conditional Type Assignment
	All Model Groups
	Open Content
	Miscellaneous XSD 1.1 Features

	Importing and Exporting Schema Component Models
	Handling minOccurs and maxOccurs
	Saxon extensions to XML Schema 1.1
	Messages associated with assertions and other facets
	The saxon:preprocess facet
	Saxon extensions to XSD uniqueness and referential constraints

	Chapter 9. XPath API for Java
	Introduction
	Evaluating XPath Expressions using s9api
	The JAXP XPath API
	Selecting the XPath implementation
	Setting the context item
	Return types
	Additional Saxon methods
	Calling JAXP XPath extension functions

	The NodeInfo interface

	Chapter 10. Saxon on .NET
	Introduction
	Saxon API for .NET
	XML Parsing in .NET

	Chapter 11. Extensibility
	Introduction
	Integrated extension functions
	Java extension functions: simple interface
	Java extension functions: full interface
	.NET extension functions

	Writing reflexive extension functions in Java
	Choosing among overloaded methods
	Calling Static Methods in a Java Class
	Calling Java Constructors
	Calling Java Instance-Level Methods

	Converting Arguments to Java Extension Functions
	Converting Method Arguments - General Rules
	Converting Atomic Values
	Converting Nodes
	Converting Wrapped Java Objects

	Converting the Result of a Java Extension Function
	Writing reflexive extension functions for .NET
	Calling Static Methods in a .NET Class
	Calling .NET Constructors
	Calling .NET Instance-Level Methods

	Converting Arguments to .NET Extension Functions
	Converting Atomic Values and Sequences
	Converting Nodes and Sequences of Nodes
	Converting Wrapped .NET Objects

	Converting the Result of a .NET Extension Function
	Writing XSLT extension instructions
	Customizing Serialization
	Implementing a collating sequence
	Localizing numbers and dates
	Writing a URI Resolver for Input Files
	Writing a URI Resolver for Output Files

	Chapter 12. Saxon Extensions
	Introduction
	EXSLT Extensions
	Extension attributes (XSLT only)
	saxon:assignable
	saxon:explain
	saxon:memo-function
	saxon:read-once
	saxon:threads

	Additional serialization parameters
	The method attribute
	The saxon:base64Binary serialization method
	The saxon:hexBinary serialization method
	The saxon:ptree serialization method
	The saxon:character-representation attribute
	The saxon:double-space attribute
	The saxon:indent-spaces attribute
	The saxon:line-length attribute
	The saxon:next-in-chain attribute
	The saxon:recognize-binary attribute
	The saxon:require-well-formed attribute
	The saxon:supply-source-locator attribute
	The saxon:suppress-indentation attribute
	The saxon:xquery serialization method
	User-defined serialization attributes

	Extension functions
	saxon:adjust-to-civil-time()
	saxon:analyze-string()
	saxon:base64Binary-to-octets()
	saxon:base64Binary-to-string()
	saxon:call()
	saxon:column-number(node)
	saxon:compile-query()
	saxon:compile-stylesheet()
	saxon:current-mode-name()
	saxon:decimal-divide()
	saxon:deep-equal()
	saxon:discard-document()
	saxon:eval()
	saxon:evaluate()
	saxon:evaluate-node()
	saxon:expression()
	saxon:find()
	saxon:for-each-group()
	saxon:format-dateTime()
	saxon:format-number()
	saxon:function()
	saxon:generate-id()
	saxon:get-pseudo-attribute()
	saxon:has-same-nodes()
	saxon:hexBinary-to-octets()
	saxon:hexBinary-to-string()
	saxon:highest()
	saxon:index()
	saxon:in-summer-time()
	saxon:is-whole-number()
	saxon:item-at()
	saxon:last-modified()
	saxon:leading()
	saxon:line-number(node)
	saxon:lowest()
	saxon:namespace-node()
	saxon:stream()
	saxon:octets-to-base64Binary()
	saxon:octets-to-hexBinary()
	saxon:parse()
	saxon:parse-html()
	saxon:path()
	saxon:print-stack()
	saxon:query()
	saxon:result-document()
	saxon:serialize()
	saxon:sort()
	saxon:string-to-base64Binary()
	saxon:string-to-hexBinary()
	saxon:string-to-utf8()
	saxon:system-id()
	saxon:transform()
	saxon:try()
	saxon:type-annotation()
	saxon:unparsed-entities()

	The Map Extension
	Extension instructions
	saxon:assign
	saxon:break
	saxon:call-template
	saxon:catch
	saxon:collation
	saxon:continue
	saxon:doctype
	saxon:entity-ref
	saxon:finally
	saxon:import-query
	saxon:iterate
	saxon:mode
	saxon:script
	saxon:try
	saxon:while

	Chapter 13. Sample Saxon Applications
	Introduction
	Knight's Tour
	JAXP Transformation Examples
	SaxonServlet
	The Book List Stylesheet
	Shakespeare Example
	The Bible
	JDOM Example
	Example applications for .NET

	Chapter 14. The Saxon SQL Extension
	Introduction
	sql:connect
	sql:query
	sql:insert and sql:column
	sql:update and sql:column
	sql:delete
	sql:close
	sql:execute
	Example
	A Warning about Side-Effects
	A Warning about Security (SQL injection)

	Chapter 15. XSLT Elements
	Introduction
	xsl:analyze-string
	xsl:apply-imports
	xsl:apply-templates
	xsl:attribute
	xsl:attribute-set
	xsl:break
	xsl:call-template
	xsl:character-map
	xsl:choose
	xsl:comment
	xsl:copy
	xsl:copy-of
	xsl:decimal-format
	xsl:document
	xsl:element
	xsl:evaluate
	xsl:fallback
	xsl:for-each
	xsl:for-each-group
	xsl:function
	xsl:if
	xsl:include
	xsl:import
	xsl:import-schema
	xsl:iterate
	xsl:key
	xsl:matching-substring
	xsl:merge
	xsl:merge-action
	xsl:merge-input
	xsl:merge-source
	xsl:message
	xsl:mode
	xsl:namespace
	xsl:namespace-alias
	xsl:next-iteration
	xsl:next-match
	xsl:non-matching-substring
	xsl:number
	xsl:on-completion
	xsl:otherwise
	xsl:output
	xsl:output-character
	xsl:param
	xsl:perform-sort
	xsl:preserve-space
	xsl:processing-instruction
	xsl:result-document
	xsl:sequence
	xsl:sort
	xsl:strip-space
	xsl:stylesheet
	xsl:template
	xsl:text
	xsl:try
	xsl:value-of
	xsl:variable
	xsl:when
	xsl:with-param
	Literal Result Elements
	XSLT Patterns
	Examples of XSLT 2.0 Patterns
	Pattern syntax
	Patterns in XSLT 3.0

	Chapter 16. XPath 2.0 Expression Syntax
	Introduction
	Constants
	Variable References
	Function Calls
	Axis steps
	Parentheses and operator precedence
	Filter expressions
	Path expressions
	Cast as, Treat as
	Set difference and intersection
	Union
	Arithmetic expressions
	Unary plus and minus
	Multiplication and division
	Addition and subtraction

	Range expressions
	Comparisons
	Instance of and Castable as
	Conditional Expressions
	Quantified Expressions
	For Expressions
	Boolean expressions: AND and OR
	Sequence expressions
	New features in XPath 3.0
	Maps in XPath 3.0

	Chapter 17. XSLT 2.0 and XPath 2.0 Functions
	Index of Functions
	abs
	acos
	adjust-dateTime-to-timezone
	adjust-date-to-timezone
	adjust-time-to-timezone
	analyze-string
	asin
	atan
	available-environment-variables
	avg
	base-uri
	boolean
	ceiling
	codepoint-equal
	codepoints-to-string
	collection
	compare
	concat
	contains
	cos
	count
	current
	current-date
	current-dateTime
	current-group
	current-grouping-key
	current-time
	data
	dateTime
	day-from-date
	day-from-dateTime
	days-from-duration
	deep-equal
	default-collation
	distinct-values
	doc
	doc-available
	document
	document-uri
	element-available
	element-with-id
	empty
	encode-for-uri
	ends-with
	environment-variable
	error
	escape-html-uri
	exactly-one
	exists
	exp
	exp10
	false
	filter
	floor
	fold-left
	fold-right
	format-date
	format-dateTime
	format-integer
	format-number
	format-time
	function-arity
	function-available
	function-lookup
	function-name
	generate-id
	has-children
	head
	hours-from-dateTime
	hours-from-duration
	hours-from-time
	id
	idref
	implicit-timezone
	index-of
	innermost
	in-scope-prefixes
	insert-before
	iri-to-uri
	lang
	last
	local-name
	local-name-from-QName
	log
	log10
	lower-case
	map
	map-pairs
	matches
	max
	min
	minutes-from-dateTime
	minutes-from-duration
	minutes-from-time
	month-from-date
	month-from-dateTime
	months-from-duration
	name
	namespace-uri
	namespace-uri-for-prefix
	namespace-uri-from-QName
	nilled
	node-name
	normalize-space
	normalize-unicode
	not
	number
	one-or-more
	outermost
	parse-json
	parse-xml
	path
	pi
	position
	pow
	prefix-from-QName
	put
	QName
	regex-group
	remove
	replace
	resolve-QName
	resolve-uri
	reverse
	root
	round
	round-half-to-even
	seconds-from-dateTime
	seconds-from-duration
	seconds-from-time
	serialize
	serialize-json
	sin
	sqrt
	starts-with
	static-base-uri
	string
	string-join
	string-length
	string-to-codepoints
	subsequence
	substring
	substring-after
	substring-before
	sum
	system-property
	tail
	tan
	timezone-from-date
	timezone-from-dateTime
	timezone-from-time
	tokenize
	trace
	translate
	true
	type-available
	unordered
	unparsed-entity-public-id
	unparsed-entity-uri
	unparsed-text
	unparsed-text-available
	unparsed-text-lines
	upper-case
	uri-collection
	year-from-date
	year-from-dateTime
	years-from-duration
	zero-or-one

	Chapter 18. Standards Conformance
	Introduction
	XSLT 2.0 conformance
	XSLT 3.0 conformance
	XPath 2.0 conformance
	XPath 3.0 Conformance
	XQuery 1.0 Conformance
	XQuery 3.0 Conformance
	XML Schema 1.0 Conformance
	XML Schema 1.1 Conformance
	Serialization
	XQuery Update 1.0
	Conformance with other specifications
	Character Encodings Supported
	JAXP Conformance
	XQJ Conformance

	Chapter 19. Alphabetical Index
	Introduction
	-
	.
	1
	2
	3
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Θ

